§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0707201210234200
DOI 10.6846/TKU.2012.00283
論文名稱(中文) DSP實現強健動態輸出回授電壓追蹤應用於升壓式DC-DC轉換器與DC-AC反流器
論文名稱(英文) DSP Implementation of Robust Dynamic Output Feedback Voltage Tracking for DC-DC Boost Converter and DC-AC Inverter
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 黃柏菖
研究生(英文) Bo-Chang Huang
學號 699460043
學位類別 碩士
語言別 英文
第二語言別
口試日期 2012-06-20
論文頁數 61頁
口試委員 指導教授 - 劉寅春(pliu@mail.tku.edu.tw)
委員 - 江東昇(tschiang@cyu.edu.tw)
委員 - 邱謙松(cschiu@dec.ee.cycu.edu.tw)
關鍵字(中) 非線性系統
線性矩陣不等式(LMI)
數位訊號處理器(DSP)
直流對直流升壓式轉換器
直流對交流反流器
關鍵字(英) Nonlinear systems
Linear Matrix Inequalities(LMIs)
Digital Signal Processor1104(DSP1104)
DC-DC boost converter
DC-AC inverter
第三語言關鍵字
學科別分類
中文摘要
有鑑於未來再生能源發展之必要性,當中良好的電力轉換是必須的。本論文即以市電並聯系統為研究基礎,針對其中直流對直流及直流對交流的控制部分進行討論與研究,以期能得到最佳化的電力轉換效能。
    在系統的電力轉換中,本文是以升壓式直流對直流轉換器以及直流對交流反流器為研究對象。但因轉換器與反流器在實際系統操作時,為一種非線性系統。因此為解決此問題,本文將採取非線性系統類線性化的方式來處理。
    在控制器的部分,以升壓式直流對直流轉換器能穩定輸出為設計目的。因此在非線性系統中,為了達到輸出電壓的追蹤與調節,本文透過一個已知的線性調節定理來處理。另外,透過matlab的LMI toolbox對觀測器與狀態控制器的穩定度進行分析。同時求解出觀測器與狀態控制器的增益值。
    最後在實驗建立上,將以數位訊號處理器DSP作為實驗實現的基礎,根據其運作特性作為電腦與轉換器之間訊號傳遞的界面。為驗證此控制器架構可有效的調節轉換器輸出狀態,本文中設計兩種實驗第一、輸入電壓變動,第二、輸出負載變動。以證明本文提出的控制理論能在不同狀況下有效調節轉換器之電壓。
英文摘要
In the future, Renewable energy is become a major topic for discussion. Good power transformation is very important for renewable energy system. In this thesis, we will focus on power change control part where is basic on Grid-connect system. The power change part have DC-DC Boost Converter and DC-AC Inverter. 
   Due to the operation is a nonlinear condition. So before control, we need to discuss the modeling of nonlinear systems into linear-like systems with state –dependent parameters.
In the controller design part, because DC-DC Boost Converter need to has stability output voltage. According to objective, we use robust output tracking/regulation for converter. However, due to converter operation is nonlinear system, so we need adopting well-known linear regulator theory to do. The robust output tracking/regulation stability analysis can into LMIs. The matlab LMIs is powerful numerical toolboxes solve for observer/controller gains.
   Finally, we design a practical experiments on the basis on Digital Signal Processor 1104 (DSP1104), then carried out on converter. Through the experiment, we can verify the proposed methodology.
第三語言摘要
論文目次
Contents
Abstract in Chinese........................................I
Abstract in English.......................................II
Contents.................................................III
List of Figures............................................V
List of Tables...........................................VII
1 Introduction.............................................1
  1.1 Research Background..................................1
      1.1.1 Fuzzy System...................................2
      1.1.2 Linear Matrix Inequalities.....................3
  1.2 Literature Review....................................4
  1.3 Problem Formulation and Motivations..................7
  1.4 Organization of Thesis...............................7
2 DC-DC Boost Converter, DC-AC Full Bridge Inverter and    
  Mathematical Models......................................9
  2.1 DC-DC Boost Converter Structure.....................10
  2.2 DC-AC Full Bridge Inverter Structure................11
  2.3 Mathematical Models.................................12
      2.3.1 Averaging Method of One Time Scale Discontinuous 
            System........................................12
      2.3.2 DC-DC Boost Converter Maths models............13
      2.3.3 DC-AC Inverter Math models....................16
3 Dynamic Output Feedback Controller......................22
  3.1 Basic Rule and Observer Design of Fuzzy Modelling...22
  3.2 Formulation of Linear Matrix Inequalities...........23
  3.3 Robust Output Tracking/Regulation...................25
  3.4 The Controller Design of DC-DC Boost Converter......30
4 Numerical Simulations...................................31
  4.1 DC-DC Boost Converter Element Choose................31
  4.2 DC-DC Boost Converter Simulations and Results.......35
      4.2.1 Example 1 (Input voltage variation test)......35
      4.2.2 Example 2 (Load variation test)...............47
  4.3 DC-AC Inverter Simulation and Results...............49
5 Practical Experiments...................................52
  5.1 Experiment Environment..............................52
  5.2 Experimental Results................................52
6 Conclusions and Future Works............................56
  6.1 Conclusions.........................................56
  6.2 Future Works........................................57
References................................................58

List of Figures
  1.1 System circuit.......................................4
  2.1 DC-DC Converter System...............................9
  2.2 Basic structure of DC-DC Boost Converter............10
  2.3 DC-AC Inverter Circuit..............................11
  2.4 MOSFET turn-on condition............................13
  2.5 MOSFET turn-off condition...........................13
  2.6 MOSFET turn-on condition............................16
  2.7 MOSFET turn-on condition............................17
  4.1 Boundary condition at DC-DC Boost Converter’s CCM/DCM  
      ....................................................33
  4.2 Output voltage ripple at DC-DC Boost Converter’s CCM 
      condition...........................................33
  4.3 All system of simulink..............................34
  4.4 Simulation results Vin = 20v, Vref = 40v............36
  4.5 Inductance current iL when Vin = 20v................36
  4.6 Controller single u when Vin = 20v..................37
  4.7 Simulation results Vin = 25v, Vref = 40v............38
  4.8 Inductance current iL when Vin = 25v................38
  4.9 Controller single u when Vin = 25v..................39
  4.10 Simulation results Vin = 30v, Vref = 40v...........40
  4.11 Inductance current iL when Vin = 30v...............40
  4.12 Controller single u when Vin = 30v.................41
  4.13 Simulation results Vin = 70v, Vref = 150v..........42
  4.14 Inductance current iL when Vin = 70v...............43
  4.15 Controller single u when Vin = 70v.................43
  4.16 Simulation results Vin = 75v, Vref = 150v..........44
  4.17 Inductance current iL when Vin = 75v...............44
  4.18 Controller single u when Vin = 75v.................45
  4.19 Simulation results Vin = 80v, Vref = 150v..........45
  4.20 Inductance current iL when Vin = 80v...............46
  4.21 Controller single u when Vin = 80v.................46
  4.22 RO change between RL = 60Ω and RL = 100Ω when Vin = 
       25v................................................47
  4.23 RO change between RL = 60Ω and RL = 100Ω when Vin = 
       75v................................................48
  4.24 Simulation circuit of DC-AC inverter...............50
  4.25 Vout = ac 45v 60Hz when Vin = dc 80v...............50
  4.26 Vout = ac 110v 60Hz when Vin = dc 203v.............51
  5.1 System structure....................................53
  5.2 DSP card............................................53
  5.3 DSP I/O box.........................................54
  5.4 TDS.................................................54
  5.5 Power supply........................................55

List of Tables
  4.1 Parameter of DC-DC Boost Converter..................35
  4.2 Tests parameter of DC-AC Inverter...................49
  4.3 Parameter of DC-AC Inverter.........................49
參考文獻
[1] K. Lian, T. Chiang, C. Chiu, and P. Liu, “Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 31, no. 1, pp. 66–83, 2001.
[2] L. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.
[3] R. Isermann, “On fuzzy logic applications for automatic control, supervision, and fault diagnosis,” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 28, no. 2, pp. 221–235, 1998.
[4] F. S. Lin, “Integral fuzzy control and application on power converter,” Master’s thesis, CYCU, 2003.
[5] T. Takagi and M. Sugeno, “Fuzzy identification of system and its applications to modelling and control,” IEEE Trans. Syst., Man, and Cyber, vol. 15, pp. 116–132, 1985.
[6] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy sets and systems, vol. 45, no. 2, pp. 135–156, 1992.
[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. Society for Industrial Mathematics, 1994, vol. 15.
[8] A. Jadbabaie, A. Titli, and M. Jamshidi, “Fuzzy observer-based control of nonlinear systems,” in Decision and Control, 1997., Proceedings of the 36th IEEE Conference on, vol. 4. IEEE, 1997, pp. 3347–3349.
[9] K. Tanaka, T. Kosaki, and H. Wang, “Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and lmi-based design,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 28, no. 3, pp. 329–337, 1998.
[10] C. Kung and C. Liao, “Fuzzy-sliding mode controller design for tracking control of nonlinear system,” in American Control Conference, 1994, vol. 1. IEEE, 1994,
pp. 180–184.
[11] H. Lam, F. Leung, and P. Tam, “Fuzzy control of dc-dc switching converters based on ts modeling approach,” in Industrial Electronics Society, 1998. IECON'98. Proceedings of the 24th Annual Conference of the IEEE, vol. 2. IEEE, 1998, pp. 1052–1054.
[12] C. Olalla, R. Leyva, A. El Aroudi, P. Garces, and I. Queinnec, “Lmi robust control design for boost pwm converters,” Power Electronics, IET, vol. 3, no. 1, pp. 75–85, 2010.
[13] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable duty cycle control to achieve high input power factor for dcm boost pfc converter,” Industrial Electronics, IEEE
Transactions on, no. 99, pp. 1–1, 2011.
[14] H. HUANG, C. HSIEH, J. LIAO, and K. CHEN, “Adaptive droop resistance technique for adaptive voltage positioning in boost dc-dc converters,” IEEE transactions on power electronics, vol. 26, no. 7-8, pp. 1920–1932, 2011.
[15] N. Y. Zhonghan Shen and H. Min, “A multimode digitally controlled boost converter with pid auto-tuning and constant frequency/constant off-time hybrid pwm control,” Power Electronics, IEEE Transactions on, no. 99, pp. 1–1, 2011.
[16] S. Mishra, K. Jha, and K. Ngo, “Dynamic linearizing modulator for large-signal linearization of a boost converter,” Power Electronics, IEEE Transactions on, vol. 26, no. 10, pp. 3046 –3054, oct. 2011.
[17] J.-J. Yun, H.-J. Choe, Y.-H. Hwang, Y.-K. Park, and B. Kang, “Improvement of power-conversion efficiency of a dc-dc boost converter using a passive snubber circuit,” Industrial Electronics, IEEE Transactions on, vol. 59, no. 4, pp. 1808
–1814, april 2012.
[18] M. Amin and O. Mohammed, “Development of high-performance grid-connected wind energy conversion system for optimum utilization of variable speed wind turbines,” Sustainable Energy, IEEE Transactions on, vol. 2, no. 3, pp. 235 –245, july 2011.
[19] G. Pannell, D. Atkinson, and B. Zahawi, “Analytical study of grid-fault response of wind turbine doubly fed induction generator,” Energy Conversion, IEEE Transactions  on, vol. 25, no. 4, pp. 1081 –1091, dec. 2010.
[20] H. Wang, C. Nayar, J. Su, and M. Ding, “Control and interfacing of a grid connected small-scale wind turbine generator,” Energy Conversion, IEEE Transactions on, vol. 26, no. 2, pp. 428 –434, june 2011.
[21] S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Martinez-Velasco, C. Silva, J. Pontt, and J. Rodriguez, “Control strategies based on symmetrical components for grid- connected converters under voltage dips,” Industrial Electronics, IEEE Transactions on, vol. 56, no. 6, pp. 2162 –2173, june 2009.
[22] W. Hu, Z. Chen, Y. Wang, and Z. Wang, “Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-to-back power converters,”
Energy Conversion, IEEE Transactions on, vol. 24, no. 3, pp. 640 –649, sept. 2009.
[23] B. Liu, X. Yang, Y. Zhang, H. Ye, and F. Kong, “A new control strategy combing pi and quasi-pr control under rotate frame for three phase grid-connected photovoltaic
inverter,” in Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on. IEEE, 2011, pp. 882–888.
[24] W. C. Lin, “Fuzzy model based tracking control with performance,” Master’s thesis, CYCU, 2001.
[25] C. Y. Huang, “T-s-fuzzy controller design for dc-dc power converter,” Master’s thesis, CYCU, 2002.
[26] K. Tanaka and M. Sano, “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” Fuzzy Systems, IEEE Transactions on, vol. 2, no. 2, pp. 119–134, 1994.
[27] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” Fuzzy Systems, IEEE Transactions on, vol. 4, no. 1, pp. 14–23, 1996.
[28] K. Lian, C. Chiu, T. Chiang, and P. Liu, “Lmi-based fuzzy chaotic synchronization and communications,” Fuzzy Systems, IEEE Transactions on, vol. 9, no. 4, pp. 539–553, 2001.
[29] B. Chen, C. Tseng, and H. Uang, “Mixed h2/h fuzzy output feedback control design for nonlinear dynamic systems: an lmi approach,” Fuzzy Systems, IEEE Transactions on, vol. 8, no. 3, pp. 249–265, 2000.
[30] J. Sun and H. Grotstollen, “Averaged modelling of switching power converters: Reformulation and theoretical basis,” in Power Electronics Specialists Conference, 1992. PESC'92 Record., 23rd Annual IEEE. IEEE, 1992, pp. 1165–1172.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信