淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0706201212212700
中文論文名稱 整合性庫存控制與配送物流網路之多目標區位定址問題之模型建立與探討-以台灣醫療血液供應鏈為例
英文論文名稱 The Multi-Objective Facility Location Problem Model with Integrated Inventory Control and Logistics Network Issues – In the case of Taiwan Medical Blood Supply Chain
校院名稱 淡江大學
系所名稱(中) 管理科學學系碩士班
系所名稱(英) Master’s Program, Department of Management Sciences
學年度 100
學期 2
出版年 101
研究生中文姓名 胡琇涵
研究生英文姓名 Hsiu-Han Hu
學號 699620141
學位類別 碩士
語文別 中文
口試日期 2012-05-24
論文頁數 143頁
口試委員 指導教授-廖述賢
共同指導教授-謝佳琳
委員-林長青
委員-林隆儀
委員-劉基全
中文關鍵字 設施區位定址  整合性供應鏈  庫存控制  血液供應鏈  血液倉儲  多目標規劃  遺傳基因演算法 
英文關鍵字 Facility Location Problem (FLP)  Integrated Supply Chain  Inventory Control  Blood Supply Chain  Blood Warehouse  Multi-Objective  Evolutionary Algorithm 
學科別分類
中文摘要 本研究主要是探討台灣血液供應鏈之區位定址問題,依據退化性產品(血液)之特性區分為兩階段討論本研究的數學模型,策略階段為整合供應鏈管理議題中定址與運輸問題;戰術階段則是庫存控制問題,以兩階層的供應鏈為例,由捐血中心將血液產品運送至血液倉儲,血液倉儲再將血液產品配送至各層級醫院。
本模式所考量的目標為總供應鏈成本最小與服務回應率最大,因研究模式為多目標模式,所以本研究使用基因遺傳演算法(NSGA-Ⅱ)求解混合非線性整數規劃問題,並以兩個貪婪法則運用基因遺傳演算法求取柏拉圖最佳解。
依據所欲研究問題之混合式基因遺傳演算法所建立的MATLAB程式進行相關模式求解與數據分析,瞭解數學規劃模式中相關參數與不同因子之間的變化,對整個整合性血液供應鏈網路選址問題中最適解的影響。
最後,本研究從台北捐血中心所負責之各層級醫院中找出15家潛在血液倉儲的實際位置,由設計三種個案情境將不同目標函數賦予三個不同權重數值,得知不同目標函數權重之情境明顯影響血液倉儲地點設置與數量的決策,求解出每個血液倉儲最適補貨週期與經濟訂購量,並以敏感度分析來探討各項成本的影響程度,而此研究結果可提供於決策者最適選擇方案。
英文摘要 The study is focused on the design of Facility Location Problem (FLP) in a logistics network for a blood supply chain in Taiwan. According to the blood characteristic of deterioration, we design a two-staged model to depict our problem. In the strategic level, we discuss the issues of facility location and transportation decisions in supply chain management. In the tactic level, we consider about the inventory control problem. In our two-staged blood supply chain, the blood center, where the blood is collected from donors, sends whole blood to a blood warehouse and then it is distributed to different levels of hospitals.
Our goal of using two objectives to minimize the total supply chain cost and the maximize responsiveness level. In order to find the Pareto optimal solutions, we use Non-dominated Sorting Genetic Algorithm (NSGA-Ⅱ) to solve a mixed nonlinear integer programming problem with two greedy heuristics. We use the software of MATLAB to solve our established model. According to the computational results, we realize the effects of the optimal Pareto solutions in our problem.
We also design three different scenarios to understand how different conditions affect both strategic and tactic decisions so that, the decision makers could make decisions from the computational solutions. Finally, we perform sensitivity analysis to understand the impacts on changing model parameters.
論文目次 目 錄
目錄 I
表目錄 III
圖目錄 IV
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 5
1.3研究範圍與限制 6
1.4研究流程與架構大綱 8
第二章 文獻探討 11
2.1研究問題文獻 11
2.1.1退化性產品 11
2.1.2供應鏈管理模式 16
2.1.3血液供應鏈管理 30
2.2研究方法文獻 40
2.2.1多目標規劃法 40
2.2.2多目標遺傳演算法 49
2.3小結 57
第三章 血液供應鏈模式建構 58
3.1研究問題描述 58
3.1.1美國Chicago地區之區域血液供應鏈現況 58
3.1.2台灣地區之區域血液供應鏈現況 59
3.1.3本研究之研究問題 60
3.2研究問題建構 65
3.2.1研究假設論述 65
3.2.2研究模型符號說明 66
3.3小結 77
第四章問題求解方法 78
4.1多目標最佳化方法介紹 78
4.1.1多目標問題定義 78
4.1.2多目標基因遺傳演算法 79
4.2概述第二代非支配基因演算法(NSGA-Ⅱ) 80
4.2.1NSGA-Ⅱ相關背景與基本運算規則 80
4.2.2基因遺傳演算法求解數學模型 83
4.3小結 87
第五章 個案設計與分析 88
5.1個案設計說明 88
5.1.1相關資料論述 89
5.2個案求解 91
5.3個案分析 93
5.3.1階段一策略定址設計模型 93
5.3.2階段二戰術庫存規劃模型 109
第六章 結論與後續研究建議 121
6.1研究結論 121
6.2管理意涵 122
6.2.1學術管理意涵 123
6.2.2實務管理意涵 123
6.3後續研究建議 125
6.3.1資料蒐集 125
6.3.2研究方法 125
6.3.3逆物流血液回收管理 126
6.3.4急難供應鏈管理 126
6.3.5資料倉儲與RFID 127
參考文獻 128
附錄一 143


表目錄
表2-1 退化性商品的分類 12
表2-2 非立即退化問題的相關文獻整理 15
表2-3 區位定址問題之數學分析方法 19
表2-4 設施區位問題與銷售物流網路之相關研究文獻整理 21
表2-5 位置庫存模型分類 27
表2-6 不同國家人口血型比例 32
表2-7 研究方法相關文獻整理 36
表2-8 分類層級相關研究文獻整理 38
表2-9 多目標規劃法相關研究文獻整理 42
表2-10常見的傳統多目標規劃法整理 44
表2-11多目標遺傳演算法分類表 54
表3-1 策略階段相關成本結構分析 69
表4-1 兩種貪婪法則說明 84
表5-1 相關參數假設資料說明 90
表5-2 柏拉圖最適解之演進趨勢圖與圖形說明 92
表5-3 標準化表示法 94
表5-4 個案情境論述 95
表5-5 柏拉圖前緣解與計算決策結果 96
表5-6 不同情境所對應之目標函數值與血液倉儲設置數 100
表5-7 三組柏拉圖最適前緣解之差異性比較 100
表5-8 不同情境下的柏拉圖最佳解與對應醫院結果 101
表5-9 柏拉圖前緣解之總供應鏈成本項目比重 105
表5-10 三組柏拉圖最適前緣解之成本結構分析 108
表5-11 庫存規劃階段確定性庫存模式符號假設 109
表5-12 血液倉儲與所對應醫院之年血液需求量 111
表5-13 倉儲最適補貨週期、經濟訂購量與庫存相關成本 117
表5-14 不同參數變動下對最適解的影響 118

圖目錄
圖1-1 台北捐血中心血液配送模式 4
圖1-2 設置血液倉儲後配送模式 5
圖1-3 本研究的研究流程 8
圖2-1 供應鏈領域 16
圖2-2 銷售網路設計系統中之四個戰略計劃 21
圖2-3 供應鏈管理模式 24
圖2-4 整合性供應鏈模式 24
圖2-5 三階層系統 26
圖2-6 區域性血液供應與需求圖 31
圖2-7 血液管理研究文獻趨勢圖 34
圖2-8 血液管理的解決方法趨勢圖 35
圖2-9 血液管理的分類層級趨勢圖 38
圖2-10 精確式解法與啟發式解法研究文獻趨勢圖 40
圖2-11 多目標規劃法之分類 43
圖2-12 雙目標最小化柏拉圖最適解集合 48
圖2-13 多目標遺傳演算法分類圖 49
圖3-1 地區性血液供應鏈的分類層級架構 59
圖3-2 台灣區域血液的作業配送流程 60
圖3-3(1-3)不同組織架構之血液供應模式 61
圖3-4 本研究之血液供應鏈網絡系統架構圖 62
圖3-5 概述本研究的策略定址設計和戰術庫存規劃流程 63
圖3-6 數學模型的概念圖形 67
圖3-7 概述階段一總供應鏈之成本結構 68
圖3-8 集合覆蓋問題 70
圖3-9 部分欠撥且欠撥率與等候時間相關之非即時退化物品庫存系統 75
圖4-1 典型的基因遺傳演算法架構 79
圖4-2 非支配解的排序過程 81
圖4-3 擁擠距離推測 82
圖4-4 NSGA-Ⅱ的演算流程 82
圖4-5 研究問題之基因編碼方式 83
圖4-6 混合基因演算法流程圖 85
圖4-7 均一交配的範例說明 86
圖5-1 研究個案之物流配送架構圖 89
圖5-2 個案情境分析 95
圖5-3 CASE 1平均目標最適解選址結果 103
圖5-4 CASE 2成本最適解選址結果 104
圖5-5 CASE 3服務回應最適解選址結果 104

參考文獻 一、中文文獻
張有恆 (1998),物流管理。台北:華泰文化事業公司。
許志義 (1994),多目標決策互動限制權重法之整合與運用。台北:五南圖書出版公司。
曾建元 (2010)。大型量販店整合性庫存控制與銷售物流網路之多目標區位定址問題。淡江大學管理科系碩士班碩士論文,台北。
楊志德 (2007)。考慮非即時退化性物品的一些確定性存貨模式之研究。淡江大學管理科學系博士班博士論文,台北。
蔡麗敏 (1999)。廢輪胎處理廠區位指派與運送路線選擇之研究。國立交通大學交通運輸研究所碩士論文,新竹。
蘇喜、莊逸洲、孫建峰、林曉薇 (1995)。醫院血庫經濟訂購量模式之建立-個案研究。中華衛誌,14,446-454。

二、英文文獻部分
Ballou, R. H., & Masters, J. M. (1993). Commercial software for locating warehoused and other facilities. Journal of Business Logistics, 14(2), 70-107.
Ballou, R. H., Gilbert, S. M. & Mukherjee, A. (2000). New managerial challenges from supply chain opportunities. Industrial Marketing Management, 29(1), 7-18.
Beasley, J. E., & Chu, P. C. (1996). A Genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2), 392-404.
Beliën, J., & Forcé, H. (2011). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1-6.
Benayoun, R., Montgolfier, J. D., Tergny, J., & Larichev, O. (1971). Linear Programming with Multiple Objective Functions: Step Method (STEM). Mathematical Programming, 1(3), 366-375.
Benkherouf, L. (1997). A deterministic order level inventory model for deteriorating items with two storage facilities. International Journal of Production Economics, 48(2), 167-175.
Bertazzi, L., Savelsbergh, M., & Speranza, M. G. (2008). Inventory Routing, Operations Research/Computer Science Interfaces Series. Part I, 43, 49-72.
Carden, R., & DelliFraine, J. L. (2005). An examination of blood center structure and hospital customer satisfaction: what can centralized and decentralized blood centers learn from each other. Health Marketing Quarterly, 22(3), 21–42.
Chakrabarty, T., Giri, B. C., & Chaudhuri, K. S. (1998). An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip’s model. Computers and Operations Research, 25(7-8) 649-657.
Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming, Wiley. New York.
Chen, C. L., Wang, B. W., & Lee, W. C. (2003). Multi-objective optimization for a multi-enterprise supply chain network. Industrial and Engineering Chemistry Research, 42(9), 1879-1889.
Chung, K. J. (2010). The viewpoint on “Optimal inventory policy with non-instantaneous receipt under trade credit by Ouyang, Teng, Chuang and Chuang”. International Journal of Production Economics, 124(1), 293-298.
Coello, Coello C. A. (2006). 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to be Done, in Gary Y. Yen and David B. Fogel (editors), Computational Intelligence: Principles and Practice, IEEE Computational Intelligence Society, Chapter 4, 73-88.
Cohen, J. L. (1978). Multi-objective programming and planning, Academic Press. New York.
Cohen, M.A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistics Quarterly, 24(2), 257-268.
Cohen, M. A., & Lee, H. L. (1988). Strategic Analysis of Integrated Production-Distribution Systems: Models and Methods. Operations Research, 36(2), 216-228.
Covert, R.P., & Philip, G.C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5(4), 323-326.
Croxton, K. L., & Zinn (2005). Inventory considerations in network design. Journal of Business Logistics, 26(1), 149-168.
Cumming, P. D., Kendall, K. E., Pegels, C. C., Seagle, J. P., & Shubsda, J. F. (1976). A collections planning model for regional blood suppliers: description and validation. Management Science, 22(9), 962–971.
Daskin, M. S., Coullard, C., & Shen, Z. J. (2002). An inventory-location model: Formulation, Solution Algorithm and Computational Results. Annals of Operations Research, 110(1-4), 83-106.
Dave, U., & Patel, L.K. (1981). (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 32(2), 137-142.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation Evolutionary Computation, 6(2), 182-197.
Denesiuk, L., Richardson, T., Nahirniak, S., & Clarke, G. (2006). Implementation of a redistribution system for near-outdate red blood cell units. Archives of Pathology and Laboratory Medicine, 130(8), 1178–1183.
Dijk, N. V., Haijema, R., Wal, J. V. D., & Sibinga, C.S. (2009). Blood platelet production: a novel approach for practical optimization. Transfusion, 49(3), 411–420.
Ding, H., Benyoucef, L., & Xie, X. (2009). Stochastic multi-objective production-distribution network design using simulation-based optimization. International Journal of Production Research, 47(2), 479-254.
Dupont, L. (2008). Branch and bound algorithm for a facility location problem with concave site dependent costs. International Journal of Production Economics, 112(1), 245-254.
Erenguc, S., Simpson, N. C., & Vakharia, A. J. (1999). Integrated production/distribution planning in supply chains: An invited review. European Journal of Operational Research, 115(2), 219-236.
Erlebacher, S. J., & Meller, R. D. (2000). The interaction of location and inventory in designing distribution systems. IIE Transactions, 32(2), 155-166.
Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multi-objective optimization: Formulation, Discussion and Generalization, Proceeding of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, 416-423
Geoffrion, A. M. (1972). An interactive approach for multi-criteria optimization, with an application to the operation of an academic department. Management Science, 194(1), 357-368.
Ghare, P.M., & Schrader, G.H. (1963). A model for exponentially decaying inventory system. Journal of Industrial Engineering, 14(1), 238-243.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.
Ganeshan, R. (1999). Managing supply chain inventories: A multiple retailer, one warehouse, multiple supplier model. International Journal of Production Economics, 59(1-3), 341-354.
Giri, B. C., Goswami, A., & Chaudhuri, K. S. (1996). An EOQ model for deteriorating items with time varying demand and cost. Journal of the Operational Research Society, 47(11), 1398-1405.
Godin, G., Conner, M., Sheeran, P., Bélanger-Gravel, A., & Germain, M. (2007). Determinants of repeated blood donation among new and experienced blood donors. Transfusion, 47(9), 1607–1615.
Goswami, A., & Chaudhuri, K.S. (1992). An economic order quantity model for items with two levels of storage for a linear trend in demand. Journal of the Operational Research Society, 43(2), 157-167.
Goyal, S.K., & Giri, B.C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1-16.
Hadley, G., & Whitin, T.M. (1961). An optimal final inventory model. Management Science, 7(2), 179-183.
Heddle, N. M., Liu, Y., Barty, R., Webert, K.E., Whittaker, S., Gagliardi, K., Lauzon, D., & Owens, W. (2009). Factors affecting the frequency of red blood cell outdates: an approach to establish benchmarking targets. Transfusion, 49(2), 219–226.
Hemmelmayr, V. (2010). Vendor managed inventory for environments with stochastic product usage. European Journal of Operational Research, 202(3), 686–695.
Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsbergh, M. W. P. (2009). Delivery strategies for blood products supplies. OR Spectrum, 31(4), 707–725.
Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A Niched Pareto Genetic Algorithm for multi-objective optimization, In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1, 82-87, Piscataway, New Jersey, IEEE Service Center.
Hwang, C. L., & Masud, A. S. (1979). Multiple objective decision-making: Methods and Applications, Springer-Verlag. New York.
Ijiri, Y. (1965). Management goals and accounting for control. Amsterdam: North-Holland publishing.
Jayaraman, V. (1998). Transportation, Facility location and inventory issues in distribution network design: An Investigation. International Journal of Operations & Production Management, 18(5), 47.
Joshua, D., & Knowles, D. W. (2002). Enumeration of pareto optimal multi-criteria spanning trees-a proof of the incorrectness of Zhou and Gen’s proposed algorithm. European Journal of Operation Research, 143(3), 543-547.
Kamp, C., Heiden, M., Henseler, O., & Seitz, R. (2010). Management of blood supplies during an influenza pandemic. Transfusion, 50(1), 231-239.
Katsaliaki, K. (2008). Cost-effective practices in the blood service sector. Health Policy, 86(2-3), 276–287.
Kendall, K. E. (1980). Multiple objective planning for regional blood centers. Long Range Planning, 13(4), 98–104.
Keskin, B. B., Üster, H., & Cetinkaya, S. (2010). Integration of strategic and tactical decisions for vendor selection under capacity constraints. Computers & Operations Research, 37(12), 2182-2191.
Kopach, R. (2008). Tutorial on constructing a red blood cell inventory management system with two demand rates. European Journal of Operational Research, 185(3), 1051–1059.
Liao, S. H., & Hsieh, C. L. (2010). A Multi-objective evolutionary Optimization Approach for Solving a Capacitated Location-inventory Distribution Network System. Journal of the Chinese Institute of Transportation, 22(2), 185-210.
Lin, Y. K., Yeh, C. T. (2012). Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS. European Journal of Operational Research, 218(3), 735–746.
Maister, D. H. (1976). Centralization of Inventories and the Square Root Law. International Journal of Physical Distribution, 6(3), 124-134.
Marglin, S. A. (1967). Public investment criteria London: Allen and Unwin.
Melo, M.T., Nickel, S., & Saldanha-da-Gama, F. S. (2009). Facility location and supply chain management- A review. European Journal of Operational Research, 33(1), 181-208.
Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers and Industrial Engineering, 43(1-2), 251-261.
Miranda, P. A., & Garrido, R. A. (2006). A simultaneous inventory control and facility location model with stochastic capacity constraints. Netw Spat Econ, 6(1), 39–53.
Nagy, G., & Salhi, S. (2006). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649-672.
Nahmias, S. (1982). Perishable inventory theory: a review. Operations Research, 30 (4), 680–780.
Neumann, J.V., & Morgenstern, O. (1944). The Theory of Games and Economic Behavior, New York: Princeton University Press.
Nozick, L. K. (2001a). The fixed charge facility location problem with coverage restrictions. Transportation Research, Part E, 37, 281-296.
Nozick, L.K., & Turnquist, M. A. (1998). Integrating inventory impacts into a fixed-charge model for locating DCs. Transportation Research, Part E, 34(3), 173-186.
Nozick, L. K., & Turnquist, M. A. (2001b). A two-echelon allocation and distribution center location analysis. Transportation Research, Part E, 37(5), 425-441.
Or, I., & Pierskalla, W. P. (1979). A transportation location-allocation model for regional blood banking. AIIE Transactions, 11(2), 86–92.
Ouyang, L. Y., Teng, J. T., & Cheng M. C. (2010). A fuzzy inventory system with deteriorating items under supplier credits linked to ordering quantity. Journal of Information Science and Engineering, 26, 231-253.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637-651.
Owen, S. H., & Daskin, M. S. (1998). Strategic facility location:A Review. European Journal of Operational Research, 111(3), 423-447.
Peidro, D., Mula, J., Jiménez, M., & Botella, M. D. M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80.
Pereira, A. (2006). Economies of scale in blood banking: a study based on data envelopment analysis. Vox Sanguinis, 90(4), 308–315.
Perera, G., Hyam, C., Taylor, C., & Chapman, J. F. (2009). Hospital blood inventory practice: the factors affecting stock level and wastage. Transfusion Medicine, 19 (2), 99–104.
Philip, J. (1972). Algorithms for the Vector Maximization Problem. Mathematical Programming, 2(1), 207-229.
Pierskalla, W. P. (2005). Supply chain management of blood banks. International Series in Operations Research & Management Science, 70, Part 2, 103-145.
Pitocco, C., & Sexton, T. R. (2005). Alleviating blood shortages in a resource constrained environment. Transfusion, 45(7), 1118–1126.
Prastacos, G. P. (1984). Blood inventory management: An overview of theory and practice. Management Science, 30(7), 777-800.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research Society, 42(1), 27-37.
Ramesh, S., Kannan, S., & Baskar, S. (2012). Application of modified NSGA-II algorithm to multi-objective reactive power planning. Applied Soft Computing, 12(2), 741–753.
Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598.
Sachan, R.S. (1984). On (T,Si) inventory policy model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 35(11), 1013-1019.
Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms, In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, 93-100, Hillsdale, NJ.
Shah, Y. K. (1977). An order-level lot-size inventory model for deteriorating items. AIIE Transactions, 9(1), 108-112.
Shen, Z. J. (2000). Approximation Algorithms for Various Supply Chain Problems, Ph.D Thesis, Dept. of Industrial Engineering and Management Sciences, Northwestern University.
Shen, Z. J. (2007). Integrated supply chain design models: a survey and future research directions. Journal of Industrial and Management Optimization, 3(1), 1-27.
Shen, Z. J., Coullard, C. R., & Daskin, M. S. (2003). A joint location-inventory model. Transportation Science, 37(1), 40-55.
Shen, Z. J., & Qi, L. (2007). Incorporating inventory and routing costs in strategic location models. European Journal of Operational Research, 179(2), 372-389.
Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2000). Designing and Managing the Supply Chain: Concepts, strategies, and case studies (3/e). New York: McGraw-Hill.
Snyder, L. V., Daskin, M. S., & Teo, C. P. (2007). The stochastic location model with risk-pooling. European Journal of Operational Research, 179(3), 1221-1238.
Srinivas, N., & Deb, K. (1994). Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248.
Steuer, R. E., & Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(3), 326-344.
Thai, V. V., & Grewal, D. (2005). An analysis of the efficiency and competitiveness of Vietnamese port system. Asia Pacific Journal of Marketing and Logistics, 17(1), 3-31.
Thanh, P. N., Bostel, N., & Peton, O. (2008). A dynamic model for facility location in the design of complex supply chains. International Journal of Production Economics, 113(2), 678-693.
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94 (11), 1-15.
Weber, A. (1909). Uber den Standort der Industrien, Tubingen.
Wee, H.M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, 22(3), 345-356.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making. Sara Miller McCune, Sage Publications.
Yu P. L. (1973). A class of solutions for group precision problems. Management Science, 19(8), 362-378.
Yu, P. L., & Leitmann, G. (1974). Compromise solutions, domination structures, and Salukvadze’s solution. Journal of Optimization Theory and Applications, 13(3), 362-378.
Zadeh, L. A. (1963). Optimality and nonscalar-valued performance criteria. IEEE Transactions Evolutionary Computing, 3(1), 257-271.
Zeleny, M. (1974). A Concept of Compromise Solutions and the Method of the Displaced Ideal. Computers & Operations Research, 1(4), 479-496.
Zinn, W., Levy M., & Bowersox, D. J. (1989). Measuring the effect of inventory centralization/decentralization on aggregate safety stock: the ‘Square Root Law’ revisited. Journal of Business Logistics, 10(2), 1-14.
Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the Strength Pareto Evolutionary Algorithm for multi-objective optimization. In K. C. Giannakoglou et al. (eds.), Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems (EUROGEN 2002), 95-100.


三、網路資料
1.中華民國內政部全球資訊網,取自:http://www.moi.gov.tw/index.aspx。
2.台灣血液基金會-台北捐血中心,取自:http://www.tp.blood.org.tw。
3.維基百科,取自:http://zh.wikipedia.org。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-06-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-06-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信