§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0706201114403500
DOI 10.6846/TKU.2011.00215
論文名稱(中文) 次世代無線通訊系統之使用疊代演算法來降低RPI效應
論文名稱(英文) Using Iterative Algorithm to Mitigate RPI Effect in Next Generation Wireless Communication
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 黃興
研究生(英文) Hsin Huang
學號 698440418
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2011-05-24
論文頁數 39頁
口試委員 指導教授 - 李揚漢(yhleepp@yahoo.com.tw)
委員 - 李揚漢
委員 - 詹益光
委員 - 蔡志宏
委員 - 曹恆偉
委員 - 許獻聰
關鍵字(中) 多天線輸入與輸出
低密度同位元檢查碼
正交分頻多工
多天線輸入與輸出及正交分頻多工之渦輪疊代接收機
關鍵字(英) Multiple Input Multiple Output (MIMO)
Low Density Parity Check Code (LDPC code)
Orthogonal Frequency Division Multiplexing (OFDM)
MIMO OFDM Turbo Iterative Receiver
第三語言關鍵字
學科別分類
中文摘要
次世代無線通訊系統(LTE-A)中,傳收發端會配置多根天線(Multiple Input Multiple Output, MIMO)或是使用載波聚合(Carrier Aggregation, CA)來提高資料的傳送速度,這兩種技術的共通點就是多根天線,然而在多天線的系統中會降低系統效能的原因有可能是使用者的使用行為或是天線設計問題等等,若此現象發生我們稱之為天線間的接收功率不匹配(Received Power Imbalance, RPI),若對此現象置之不理則會造成系統的效能以非線性的速度降低,因此本論文分別在CA系統以及MIMO OFDM系統中使用疊代演算法來降低RPI對系統的影響。根據本論文的模擬結果可以發現使用疊代演算法的接收器能有效降低RPI效應。
英文摘要
For next generation wireless communication like Long Term Evolution-Advanced (LTE-A), in order to increase data rate the transmitter and receiver may equip multiple antennas or the system aggregates many component carriers to approach high data rate. Multiple antennas is a common characteristic between CA and MIMO system, however the received power imbalance (RPI) may cause by design flaw, operator’s negligence etc. If the system does not consider RPI effect, the system will be degradation non-linearly. Consequently in this thesis we will use iterative algorithm to mitigate RPI effect in CA system and MIMO OFDM system respectively. Based on simulation result we can find the iterative receiver can alleviate RPI effect greatly.
第三語言摘要
論文目次
List of Figures	V
List of Tables	VI
Chapter 1 Introduction	1
1.1	Study Motivation	1
1.2	Organization	2
Chapter2 The Decoder and Encoder of LDPC Code	3
2.1	Introduction of LDPC	3
2.2	The Sum-Product Algorithm	4
2.3	Based on QC LDPC Codes for Fast Encoding	7
Chapter3 Mitigate RPI Effect in CA System	11
3.1	Introduction	11
3.2	Using LDPC and AMC to Mitigate RPI Effect in CA System	12
3.3	Simulation Result	13
3.4	Conclusion	14
Chapter4 Using Iterative Algorithm to Mitigate RPI Effect in MIMO OFDM System	16
4.1	Introduction	16
4.2	MIMO OFDM Transmitter and Turbo Iterative Receiver	17
4.3	Simulation Result	22
4.4	Conclusion	33
Chapter5 Future Work	34
Reference	35

List of Figures
Figure 2. 1 CN Nodes Update Procedure	4
Figure 2. 2 VN Nodes Update Procedure	5
Figure 2. 3 jth VN collect all information	5
Figure 3. 1 Contiguous Type Carrier Aggregation	11
Figure 3. 2 Non-contiguous Type Carrier Aggregation	11
Figure 3. 3 A Carrier Aggregation Communication System with Received Power Imbalance (RPI)	13
Figure 3. 4 System Performance Comparisons	14
Figure 4. 1 A MIMO OFDM Transmitter and Turbo Iterative Receiver Structure	17
Figure 4. 2 The Receiver Suffers from RPI Effect	23
Figure 4. 3 RPI=0dB, MIMO OFDM Demodulation and LDPC Decoder	24
Figure 4. 4 RPI=-1dB, MIMO OFDM Demodulation and LDPC Decoder	25
Figure 4. 5 RPI=-2dB, MIMO OFDM Demodulation and LDPC Decoder	25
Figure 4. 6 RPI=-3dB, MIMO OFDM Demodulation and LDPC Decoder	25
Figure 4. 7 RPI=-4dB, MIMO OFDM Demodulation and LDPC Decoder	26
Figure 4. 8 RPI=-5dB, MIMO OFDM Demodulation and LDPC Decoder	26
Figure 4. 9 RPI=-6dB, MIMO OFDM Demodulation and LDPC Decoder	26
Figure 4. 10 RPI=-7dB, MIMO OFDM Demodulation and LDPC Decoder	27
Figure 4. 11 RPI=-8dB, MIMO OFDM Demodulation and LDPC Decoder	27
Figure 4. 12 RPI=-9dB, MIMO OFDM Demodulation and LDPC Decoder	27
Figure 4. 13 RPI=-10dB, MIMO OFDM Demodulation and LDPC Decoder	28
Figure 4. 14 RPI=0dB, MIMO OFDM Demodulation and CC216 Decoder	28
Figure 4. 15 RPI=-1dB, MIMO OFDM Demodulation and CC216 Decoder	28
Figure 4. 16 RPI=-2dB, MIMO OFDM Demodulation and CC216 Decoder	29
Figure 4. 17 RPI=-3dB, MIMO OFDM Demodulation and CC216 Decoder	29
Figure 4. 18 RPI=-4dB, MIMO OFDM Demodulation and CC216 Decoder	29
Figure 4. 19 RPI=-5dB, MIMO OFDM Demodulation and CC216 Decoder	30
Figure 4. 20 RPI v.s. EbN0 at BER-3 using CC216 decoder	32
Figure 4. 21 RPI v.s. EbN0 at BER-3 using LDPC decoder	32

List of Tables 
Table 4. 1 Channel Coder	23
Table 4. 2 LTE-OFDM and CP Parameter	24
Table 4. 3 LTE-Multipath Parameter	24
Table 4. 4 Simulation Results Comparison between LDPC and CC216	30
參考文獻
[1]3GPP TR 36.814, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects,” Version 9.0.0, Mar. 2010.
[2]3GPP TS 36.912 “Feasibility study for Further Advancements for E-UTRA (LTE-Advanced),” Version 9.1.0, Dec. 2009.
[3]3GPP TS 36.101: “User Equipment (UE) radio transmission and reception,” Version 9.3.0, Mar. 2010.
[4]3GPP TS 36.104: “Base Station (BS) radio transmission and reception,” Version 9.4.0, Jun. 2010.
[5]3GPP TS 36.211: “Physical Channels and Modulation,” Version 9.1.0, Mar. 2010.
[6]P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel” in URSI International Symposium on Signals, Systems, and Electronics, 1998, pp. 295-300.
[7]G.J. Foschini and M.J. Gans, “On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas,” Wireless Personal Communications, Vol.6, 1998, pp. 311-335
[8]V. Tarokh, A. Naguib, N. Seshadri, and A.R. Calderbank, “Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Transactions on Communications, vol.47, no.2, pp.199-207, Feb.,1999 
[9]H. Futaki and T. Ohtsuki, “Low-density parity-check (LDPC) coded MIMO systems with iterative turbo decoding,” in IEEE 58th Vehicular Technology Conference, vol. 1, 2003, pp. 342-346. 
[10]Jun Zheng and B.D. Rao, “LDPC-coded MIMO systems with unknown block fading channels: soft MIMO detector design, channel estimation, and code optimization,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1504-1518, Apr., 2006.
[11]A. Matache, C. Jones, and R. Wesel, “Reduced complexity MIMO detectors for LDPC coded systems,” in IEEE Military Communications Conference, vol. 2, 2004, pp. 1073-1079
[12]J. Hou, P.H. Siegel, and L.B. Milstein, “Design of multi-input multi-output systems based on low-density Parity-check codes,” IEEE Transactions on Communications, vol. 53, no. 4, pp. 601-611, Apr., 2005. 
[13]S. ten Brink, G. Kramer, and A. Ashikhmin, , “Design of low-density parity-check codes for modulation and detection,” IEEE Transactions on Communications, vol. 52, no. 4, pp. 670-678, Apr., 2004.
[14]Di Lu and D.K.C. So, “Performance based receive antenna selection for V-BLAST systems,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 214-225, Jan., 2009.
[15]M. Sellathurai and S. Haykin, “Turbo-BLAST for wireless communications: theory and experiments,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp.2538-2546, Oct., 2002.
[16]Zhan Guo and P. Nilsson, “A low complexity soft-output MIMO decoding algorithm,” in IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication, 2005, pp. 90-93.
[17]Xiaodong Wang and H.V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Transactions on Communications, vol. 47, no. 7, pp. 1046-1061, Jul., 1999.
[18]S.M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp.1451-1458, Oct. 1998.
[19]B.M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Transactions on Communications, vol. 51, no. 3, pp. 389-399, Mar., 2003.
[20]B. Lu, Guosen Yue, and Xiaodong Wang, “Performance analysis and design optimization of LDPC-coded MIMO OFDM systems,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 348-361, Feb., 2004.
[21]B. Muquet, M. de Courville, G.B. Giannakis, Z. Wang, and P. Duhamel, “Reduced complexity equalizers for zero-padded OFDM transmissions,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, 2000, pp. 2973-2976.
[22]Chenggao Han T. Hashimoto, and N. Suehiro, “Constellation Rotated Vector OFDM and Its Performance over Rayleigh Fading Channels,” in IEEE International Conference on Communications, 2009, pp.1-5.
[23]M. Torabi, and M.R. Soleymani, “Adaptive bit allocation for space-time block coded OFDM system,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.4, 2003, pp. 409-412.
[24]W.A.C. Fernando, R.M.A.P. Rajatheva, and K.M. Ahmed, “Performance of coded OFDM with higher modulation schemes,” in International Conference on Communication Technology Proceedings, vol. 2, 1998, pp. S38-03-1-S38-03-5.
[25]Iwamura, M.; Etemad, K.; Mo-Han Fong; Nory, R.; Love, R.;, “Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update],” IEEE Communications Magazine, vol. 48, no. 8, pp. 60-67, Aug., 2010.
[26]R. Ratasuk, D. Tolli, and A. Ghosh, “Carrier Aggregation in LTE-Advanced,” in IEEE 71st Conference on Vehicular Technology, 2010, pp. 1-5.
[27]A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology [Invited Paper],” IEEE Wireless Communications, vol. 17, no. 3, pp. 10-22, Jun., 2010,
[28]K. Johansson, J. Bergman, D. Gerstenberger, M. Blomgren, and A. Wallen, “Multi-Carrier HSPA Evolution,” in IEEE 69th Conference on Vehicular Technology, 2009, pp. 1-5.
[29]I-Kang Fu, Yih-Shen Chen, Paul Cheng, Youngsoo Yuk, Yongho Kim, R. and Jin Sam Kwak, “Multicarrier technology for 4G WiMax system [WiMAX/LTE Update],” IEEE Communications Magazine, vol. 48, no. 8, pp.50-58, Aug., 2010.
[30]R. G. Gallager, “Low density parity check codes,” IRE Trans. on Inform. Theory, vol. IT-8, no. 1, pp. 21–28, Jan. 1962.
[31]D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.399-431, Mar. 1997.
[32]Sae-Young Chung, G.D., Jr. Forney, T.J. Richardson, and R. Urbanke, “On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Communications Letters, vol.5, no. 2, pp. 58-60, Feb., 2004.
[33]Sae-Young Chung, T.J. Richardson, and R.L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 657-670, Feb., 2001.
[34]F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on Information Theory, vol.47, no. 2, pp. 498-519, Feb., 2001.
[35]Jilei Hou, P.H. Siegel, and L.B. Milstein, , “Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 5, pp. 924-934, May 2001.
[36]T.J. Richardson and R.L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, pp. 599-618, no. 2, Feb., 2001.
[37]Jon-Lark Kim, U.N. Peled, I. Perepelitsa, V. Pless, and S. Friedland,  “Explicit construction of families of LDPC codes with no 4-cycles,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 49-57, Oct., 2004.
[38]Sunghwan Kim, Jong-Seon No, Habong Chung, and Dong-Joon Shin;, “Quasi-Cyclic Low-Density Parity-Check Codes With Girth Larger Than 12,” IEEE Transactions on Information Theory, vol. 53, no. 8, pp. 2885-2891, Aug., 2007.
[39]J. Wu and H.-N. Lee, , “Best mapping for LDPC coded modulation on SISO, MIMO and MAC channels,” in IEEE Conference on Wireless Communications and Networking, vol. 4, 2004, pp. 2428-2431.
[40]J. Hou, P.H. Siegel, L.B. Milstein, and H.D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 2141-2155, Sep., 2003.
[41]S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Transactions on Communications, vol. 52, no. 4, pp.670-678, Apr., 2004.
[42]E. Akay and E. Ayanoglu, “Low complexity decoding of bit-interleaved coded modulation for M-ary QAM,” in IEEE International Conference on Communications, vol. 2, 2004, pp. 901-905.
[43]R.D. Maddock and A.H. Banihashemi, “Reliability-based coded modulation with low-density parity-check codes,” IEEE Transactions on Communications, vol. 54, no. 3, pp.403-406, Mar., 2006.
[44]A. Yahya, O. Sidek, M.F.M. Salleh, and F. Ghani, “A new Quasi-Cyclic low density parity check codes,” in IEEE Symposium on Industrial Electronics & Applications, vol. 1, 2009, pp. 239-242.
[45]	Yige Wang, J.S. Yedidia, and S.C. Draper, “Construction of high-girth QC-LDPC codes,” in 5th International Symposium on Turbo Codes and Related Topics, 2008, pp. 180-185.
[46]Sunghwan Kim, Jong-Seon No, Habong Chung, Dong-Joon Shin, “Cycle Analysis and Construction of Protographs for QC LDPC Codes With Girth Larger Than 12,” in IEEE International Symposium on Information Theory, 2007, pp. 2256-2260.
[47]T.J. Richardson and R.L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47, no.2, pp. 638-656, Feb., 2001.
[48]R.M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, and D.J., Jr. Costello, “LDPC block and convolutional codes based on circulant matrices,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 2966-2984, Dec., 2004.
[49]Yizhou Ma, Moonho Lee, and Yang Xiao, “LDPC codes based on circulant permutation matrices for fast encoding,” in IET International Conference on Wireless, Mobile and Multimedia Networks, 2006, pp. 1-3.
[50]S. Myung, K. Yang, and J. Kim, , “Quasi-cyclic LDPC codes for fast encoding,” IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2894-2901, Aug., 2005.
[51]M.P.C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 1788-1793, Aug., 2004.
[52]O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened Array Codes of Large Girth,” IEEE Transactions on Information Theory, vol. 52, no. 8, pp. 3707-3722, Aug., 2006.
[53]Xiaojian Liu, Xiaofu Wu, Chunming Zhao, “Shortening for irregular QC-LDPC codes,” in IEEE Communications Letters, vol. 13, 2009, pp.612-614.
[54]M. Yang, W.E. Ryan, and Li Yan “Design of efficiently encodable moderate-length high-rate irregular LDPC codes,” IEEE Transactions on Communications, vol. 52, no. 4, pp. 564-571, Apr. 2004.
[55]G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized ldpc codes with low error floors,” IEEE Transactions on Communications, vol. 56, no. 12, pp. 49-57, Dec., 2008.
[56]William E. Ryan, Lin. Shu, “Channel codes: Classical and Modern,” Cambridge University Press 2009
[57]K. Ogawa, A. Yamamoto, and J.-I. Takada, , “Multipath Performance of Handset Adaptive Array Antennas in the Vicinity of a Human Operator,” IEEE Transactions on Antennas and Propagation, vol. 53, no.8, part: 1, pp. 2422-2436, Aug., 2005.
[58]K. Ogawa, S. Amari, H. Iwai, and A. Yamamoto, “Effects of Received Power Imbalance on the Channel Capacity of a Handset MIMO,” in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, pp. 1-5.
[59]K. Ogawa, T. Matsuyoshi, and K. Monma, “An analysis of the performance of a handset diversity antenna influenced by head, hand, and shoulder effects at 900 MHz .II. Correlation characteristics,” IEEE Transactions on Vehicular Technology, vol. 50, no.3, pp. 845-853, Mar., 2001.
[60]K. Ogawa, H. Iwai, A. Yamamoto, and J. Takada, “Channel capacity of a handset MIMO antenna influenced by the effects of 3D angular spectrum, polarization, and operator,” in IEEE Symposium on Antennas and Propagation Society International, pp. 153-156, 2006.
[61]Y.H. Lee, Y. G. Jan, L. Wang, Q. Chen, Q. Yuan, and K. Sawaya, “Using Hopping Technique for Interference Mitigation in Modulated Scattering Array Antenna System,” IEICE Electron. Express, vol.7, no. 12, pp.839-843, 2010.
[62]Y.H. Lee, Y.-G. Jan, H. Huang, Q. Chen, Q. Yuan, K. Sawaya, “Using LDPC Coding and AMC to Mitigate Received Power Imbalance in Carrier Aggregation Communication System,” IEICE Electron. Express, vol.8, no. 8, pp.618-622, 2011.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信