
系統識別號 
U00020706201114403500 
中文論文名稱

次世代無線通訊系統之使用疊代演算法來降低RPI效應 
英文論文名稱

Using Iterative Algorithm to Mitigate RPI Effect in Next Generation Wireless Communication 
校院名稱 
淡江大學 
系所名稱(中) 
電機工程學系碩士班 
系所名稱(英) 
Department of Electrical Engineering 
學年度 
99 
學期 
2 
出版年 
100 
研究生中文姓名 
黃興 
研究生英文姓名 
Hsin Huang 
學號 
698440418 
學位類別 
碩士 
語文別 
中文 
第二語文別 
英文 
口試日期 
20110524 
論文頁數 
39頁 
口試委員 
指導教授李揚漢 委員李揚漢 委員詹益光 委員蔡志宏 委員曹恆偉 委員許獻聰

中文關鍵字 
多天線輸入與輸出
低密度同位元檢查碼
正交分頻多工
多天線輸入與輸出及正交分頻多工之渦輪疊代接收機

英文關鍵字 
Multiple Input Multiple Output (MIMO)
Low Density Parity Check Code (LDPC code)
Orthogonal Frequency Division Multiplexing (OFDM)
MIMO OFDM Turbo Iterative Receiver

學科別分類 
學科別＞應用科學＞電機及電子

中文摘要 
次世代無線通訊系統(LTEA)中，傳收發端會配置多根天線(Multiple Input Multiple Output, MIMO)或是使用載波聚合(Carrier Aggregation, CA)來提高資料的傳送速度，這兩種技術的共通點就是多根天線，然而在多天線的系統中會降低系統效能的原因有可能是使用者的使用行為或是天線設計問題等等，若此現象發生我們稱之為天線間的接收功率不匹配(Received Power Imbalance, RPI)，若對此現象置之不理則會造成系統的效能以非線性的速度降低，因此本論文分別在CA系統以及MIMO OFDM系統中使用疊代演算法來降低RPI對系統的影響。根據本論文的模擬結果可以發現使用疊代演算法的接收器能有效降低RPI效應。 
英文摘要 
For next generation wireless communication like Long Term EvolutionAdvanced (LTEA), in order to increase data rate the transmitter and receiver may equip multiple antennas or the system aggregates many component carriers to approach high data rate. Multiple antennas is a common characteristic between CA and MIMO system, however the received power imbalance (RPI) may cause by design flaw, operator’s negligence etc. If the system does not consider RPI effect, the system will be degradation nonlinearly. Consequently in this thesis we will use iterative algorithm to mitigate RPI effect in CA system and MIMO OFDM system respectively. Based on simulation result we can find the iterative receiver can alleviate RPI effect greatly. 
論文目次 
List of Figures V
List of Tables VI
Chapter 1 Introduction 1
1.1 Study Motivation 1
1.2 Organization 2
Chapter2 The Decoder and Encoder of LDPC Code 3
2.1 Introduction of LDPC 3
2.2 The SumProduct Algorithm 4
2.3 Based on QC LDPC Codes for Fast Encoding 7
Chapter3 Mitigate RPI Effect in CA System 11
3.1 Introduction 11
3.2 Using LDPC and AMC to Mitigate RPI Effect in CA System 12
3.3 Simulation Result 13
3.4 Conclusion 14
Chapter4 Using Iterative Algorithm to Mitigate RPI Effect in MIMO OFDM System 16
4.1 Introduction 16
4.2 MIMO OFDM Transmitter and Turbo Iterative Receiver 17
4.3 Simulation Result 22
4.4 Conclusion 33
Chapter5 Future Work 34
Reference 35
List of Figures
Figure 2. 1 CN Nodes Update Procedure 4
Figure 2. 2 VN Nodes Update Procedure 5
Figure 2. 3 jth VN collect all information 5
Figure 3. 1 Contiguous Type Carrier Aggregation 11
Figure 3. 2 Noncontiguous Type Carrier Aggregation 11
Figure 3. 3 A Carrier Aggregation Communication System with Received Power Imbalance (RPI) 13
Figure 3. 4 System Performance Comparisons 14
Figure 4. 1 A MIMO OFDM Transmitter and Turbo Iterative Receiver Structure 17
Figure 4. 2 The Receiver Suffers from RPI Effect 23
Figure 4. 3 RPI=0dB, MIMO OFDM Demodulation and LDPC Decoder 24
Figure 4. 4 RPI=1dB, MIMO OFDM Demodulation and LDPC Decoder 25
Figure 4. 5 RPI=2dB, MIMO OFDM Demodulation and LDPC Decoder 25
Figure 4. 6 RPI=3dB, MIMO OFDM Demodulation and LDPC Decoder 25
Figure 4. 7 RPI=4dB, MIMO OFDM Demodulation and LDPC Decoder 26
Figure 4. 8 RPI=5dB, MIMO OFDM Demodulation and LDPC Decoder 26
Figure 4. 9 RPI=6dB, MIMO OFDM Demodulation and LDPC Decoder 26
Figure 4. 10 RPI=7dB, MIMO OFDM Demodulation and LDPC Decoder 27
Figure 4. 11 RPI=8dB, MIMO OFDM Demodulation and LDPC Decoder 27
Figure 4. 12 RPI=9dB, MIMO OFDM Demodulation and LDPC Decoder 27
Figure 4. 13 RPI=10dB, MIMO OFDM Demodulation and LDPC Decoder 28
Figure 4. 14 RPI=0dB, MIMO OFDM Demodulation and CC216 Decoder 28
Figure 4. 15 RPI=1dB, MIMO OFDM Demodulation and CC216 Decoder 28
Figure 4. 16 RPI=2dB, MIMO OFDM Demodulation and CC216 Decoder 29
Figure 4. 17 RPI=3dB, MIMO OFDM Demodulation and CC216 Decoder 29
Figure 4. 18 RPI=4dB, MIMO OFDM Demodulation and CC216 Decoder 29
Figure 4. 19 RPI=5dB, MIMO OFDM Demodulation and CC216 Decoder 30
Figure 4. 20 RPI v.s. EbN0 at BER3 using CC216 decoder 32
Figure 4. 21 RPI v.s. EbN0 at BER3 using LDPC decoder 32
List of Tables
Table 4. 1 Channel Coder 23
Table 4. 2 LTEOFDM and CP Parameter 24
Table 4. 3 LTEMultipath Parameter 24
Table 4. 4 Simulation Results Comparison between LDPC and CC216 30

參考文獻 
[1]3GPP TR 36.814, “Evolved Universal Terrestrial Radio Access (EUTRA); Further Advancements for EUTRA Physical Layer Aspects,” Version 9.0.0, Mar. 2010.
[2]3GPP TS 36.912 “Feasibility study for Further Advancements for EUTRA (LTEAdvanced),” Version 9.1.0, Dec. 2009.
[3]3GPP TS 36.101: “User Equipment (UE) radio transmission and reception,” Version 9.3.0, Mar. 2010.
[4]3GPP TS 36.104: “Base Station (BS) radio transmission and reception,” Version 9.4.0, Jun. 2010.
[5]3GPP TS 36.211: “Physical Channels and Modulation,” Version 9.1.0, Mar. 2010.
[6]P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela, “VBLAST: an architecture for realizing very high data rates over the richscattering wireless channel” in URSI International Symposium on Signals, Systems, and Electronics, 1998, pp. 295300.
[7]G.J. Foschini and M.J. Gans, “On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas,” Wireless Personal Communications, Vol.6, 1998, pp. 311335
[8]V. Tarokh, A. Naguib, N. Seshadri, and A.R. Calderbank, “Spacetime codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Transactions on Communications, vol.47, no.2, pp.199207, Feb.,1999
[9]H. Futaki and T. Ohtsuki, “Lowdensity paritycheck (LDPC) coded MIMO systems with iterative turbo decoding,” in IEEE 58th Vehicular Technology Conference, vol. 1, 2003, pp. 342346.
[10]Jun Zheng and B.D. Rao, “LDPCcoded MIMO systems with unknown block fading channels: soft MIMO detector design, channel estimation, and code optimization,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 15041518, Apr., 2006.
[11]A. Matache, C. Jones, and R. Wesel, “Reduced complexity MIMO detectors for LDPC coded systems,” in IEEE Military Communications Conference, vol. 2, 2004, pp. 10731079
[12]J. Hou, P.H. Siegel, and L.B. Milstein, “Design of multiinput multioutput systems based on lowdensity Paritycheck codes,” IEEE Transactions on Communications, vol. 53, no. 4, pp. 601611, Apr., 2005.
[13]S. ten Brink, G. Kramer, and A. Ashikhmin, , “Design of lowdensity paritycheck codes for modulation and detection,” IEEE Transactions on Communications, vol. 52, no. 4, pp. 670678, Apr., 2004.
[14]Di Lu and D.K.C. So, “Performance based receive antenna selection for VBLAST systems,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 214225, Jan., 2009.
[15]M. Sellathurai and S. Haykin, “TurboBLAST for wireless communications: theory and experiments,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp.25382546, Oct., 2002.
[16]Zhan Guo and P. Nilsson, “A low complexity softoutput MIMO decoding algorithm,” in IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication, 2005, pp. 9093.
[17]Xiaodong Wang and H.V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Transactions on Communications, vol. 47, no. 7, pp. 10461061, Jul., 1999.
[18]S.M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp.14511458, Oct. 1998.
[19]B.M. Hochwald and S. ten Brink, “Achieving nearcapacity on a multipleantenna channel,” IEEE Transactions on Communications, vol. 51, no. 3, pp. 389399, Mar., 2003.
[20]B. Lu, Guosen Yue, and Xiaodong Wang, “Performance analysis and design optimization of LDPCcoded MIMO OFDM systems,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 348361, Feb., 2004.
[21]B. Muquet, M. de Courville, G.B. Giannakis, Z. Wang, and P. Duhamel, “Reduced complexity equalizers for zeropadded OFDM transmissions,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, 2000, pp. 29732976.
[22]Chenggao Han T. Hashimoto, and N. Suehiro, “Constellation Rotated Vector OFDM and Its Performance over Rayleigh Fading Channels,” in IEEE International Conference on Communications, 2009, pp.15.
[23]M. Torabi, and M.R. Soleymani, “Adaptive bit allocation for spacetime block coded OFDM system,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.4, 2003, pp. 409412.
[24]W.A.C. Fernando, R.M.A.P. Rajatheva, and K.M. Ahmed, “Performance of coded OFDM with higher modulation schemes,” in International Conference on Communication Technology Proceedings, vol. 2, 1998, pp. S38031S38035.
[25]Iwamura, M.; Etemad, K.; MoHan Fong; Nory, R.; Love, R.;, “Carrier aggregation framework in 3GPP LTEadvanced [WiMAX/LTE Update],” IEEE Communications Magazine, vol. 48, no. 8, pp. 6067, Aug., 2010.
[26]R. Ratasuk, D. Tolli, and A. Ghosh, “Carrier Aggregation in LTEAdvanced,” in IEEE 71st Conference on Vehicular Technology, 2010, pp. 15.
[27]A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTEadvanced: nextgeneration wireless broadband technology [Invited Paper],” IEEE Wireless Communications, vol. 17, no. 3, pp. 1022, Jun., 2010,
[28]K. Johansson, J. Bergman, D. Gerstenberger, M. Blomgren, and A. Wallen, “MultiCarrier HSPA Evolution,” in IEEE 69th Conference on Vehicular Technology, 2009, pp. 15.
[29]IKang Fu, YihShen Chen, Paul Cheng, Youngsoo Yuk, Yongho Kim, R. and Jin Sam Kwak, “Multicarrier technology for 4G WiMax system [WiMAX/LTE Update],” IEEE Communications Magazine, vol. 48, no. 8, pp.5058, Aug., 2010.
[30]R. G. Gallager, “Low density parity check codes,” IRE Trans. on Inform. Theory, vol. IT8, no. 1, pp. 21–28, Jan. 1962.
[31]D.J.C. MacKay, “Good errorcorrecting codes based on very sparse matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.399431, Mar. 1997.
[32]SaeYoung Chung, G.D., Jr. Forney, T.J. Richardson, and R. Urbanke, “On the Design of LowDensity ParityCheck Codes within 0.0045 dB of the Shannon Limit,” IEEE Communications Letters, vol.5, no. 2, pp. 5860, Feb., 2004.
[33]SaeYoung Chung, T.J. Richardson, and R.L. Urbanke, “Analysis of sumproduct decoding of lowdensity paritycheck codes using a Gaussian approximation,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 657670, Feb., 2001.
[34]F.R. Kschischang, B.J. Frey, and H.A. Loeliger, “Factor graphs and the sumproduct algorithm,” IEEE Transactions on Information Theory, vol.47, no. 2, pp. 498519, Feb., 2001.
[35]Jilei Hou, P.H. Siegel, and L.B. Milstein, , “Performance analysis and code optimization of low density paritycheck codes on Rayleigh fading channels,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 5, pp. 924934, May 2001.
[36]T.J. Richardson and R.L. Urbanke, “The capacity of lowdensity paritycheck codes under messagepassing decoding,” IEEE Transactions on Information Theory, vol. 47, pp. 599618, no. 2, Feb., 2001.
[37]JonLark Kim, U.N. Peled, I. Perepelitsa, V. Pless, and S. Friedland, “Explicit construction of families of LDPC codes with no 4cycles,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 4957, Oct., 2004.
[38]Sunghwan Kim, JongSeon No, Habong Chung, and DongJoon Shin;, “QuasiCyclic LowDensity ParityCheck Codes With Girth Larger Than 12,” IEEE Transactions on Information Theory, vol. 53, no. 8, pp. 28852891, Aug., 2007.
[39]J. Wu and H.N. Lee, , “Best mapping for LDPC coded modulation on SISO, MIMO and MAC channels,” in IEEE Conference on Wireless Communications and Networking, vol. 4, 2004, pp. 24282431.
[40]J. Hou, P.H. Siegel, L.B. Milstein, and H.D. Pfister, “Capacityapproaching bandwidthefficient coded modulation schemes based on lowdensity paritycheck codes,” IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 21412155, Sep., 2003.
[41]S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of lowdensity paritycheck codes for modulation and detection,” IEEE Transactions on Communications, vol. 52, no. 4, pp.670678, Apr., 2004.
[42]E. Akay and E. Ayanoglu, “Low complexity decoding of bitinterleaved coded modulation for Mary QAM,” in IEEE International Conference on Communications, vol. 2, 2004, pp. 901905.
[43]R.D. Maddock and A.H. Banihashemi, “Reliabilitybased coded modulation with lowdensity paritycheck codes,” IEEE Transactions on Communications, vol. 54, no. 3, pp.403406, Mar., 2006.
[44]A. Yahya, O. Sidek, M.F.M. Salleh, and F. Ghani, “A new QuasiCyclic low density parity check codes,” in IEEE Symposium on Industrial Electronics & Applications, vol. 1, 2009, pp. 239242.
[45] Yige Wang, J.S. Yedidia, and S.C. Draper, “Construction of highgirth QCLDPC codes,” in 5th International Symposium on Turbo Codes and Related Topics, 2008, pp. 180185.
[46]Sunghwan Kim, JongSeon No, Habong Chung, DongJoon Shin, “Cycle Analysis and Construction of Protographs for QC LDPC Codes With Girth Larger Than 12,” in IEEE International Symposium on Information Theory, 2007, pp. 22562260.
[47]T.J. Richardson and R.L. Urbanke, “Efficient encoding of lowdensity paritycheck codes,” IEEE Transactions on Information Theory, vol. 47, no.2, pp. 638656, Feb., 2001.
[48]R.M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, and D.J., Jr. Costello, “LDPC block and convolutional codes based on circulant matrices,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 29662984, Dec., 2004.
[49]Yizhou Ma, Moonho Lee, and Yang Xiao, “LDPC codes based on circulant permutation matrices for fast encoding,” in IET International Conference on Wireless, Mobile and Multimedia Networks, 2006, pp. 13.
[50]S. Myung, K. Yang, and J. Kim, , “Quasicyclic LDPC codes for fast encoding,” IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 28942901, Aug., 2005.
[51]M.P.C. Fossorier, “Quasicyclic lowdensity paritycheck codes from circulant permutation matrices,” IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 17881793, Aug., 2004.
[52]O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened Array Codes of Large Girth,” IEEE Transactions on Information Theory, vol. 52, no. 8, pp. 37073722, Aug., 2006.
[53]Xiaojian Liu, Xiaofu Wu, Chunming Zhao, “Shortening for irregular QCLDPC codes,” in IEEE Communications Letters, vol. 13, 2009, pp.612614.
[54]M. Yang, W.E. Ryan, and Li Yan “Design of efficiently encodable moderatelength highrate irregular LDPC codes,” IEEE Transactions on Communications, vol. 52, no. 4, pp. 564571, Apr. 2004.
[55]G. Liva, W. E. Ryan, and M. Chiani, “Quasicyclic generalized ldpc codes with low error floors,” IEEE Transactions on Communications, vol. 56, no. 12, pp. 4957, Dec., 2008.
[56]William E. Ryan, Lin. Shu, “Channel codes: Classical and Modern,” Cambridge University Press 2009
[57]K. Ogawa, A. Yamamoto, and J.I. Takada, , “Multipath Performance of Handset Adaptive Array Antennas in the Vicinity of a Human Operator,” IEEE Transactions on Antennas and Propagation, vol. 53, no.8, part: 1, pp. 24222436, Aug., 2005.
[58]K. Ogawa, S. Amari, H. Iwai, and A. Yamamoto, “Effects of Received Power Imbalance on the Channel Capacity of a Handset MIMO,” in IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, pp. 15.
[59]K. Ogawa, T. Matsuyoshi, and K. Monma, “An analysis of the performance of a handset diversity antenna influenced by head, hand, and shoulder effects at 900 MHz .II. Correlation characteristics,” IEEE Transactions on Vehicular Technology, vol. 50, no.3, pp. 845853, Mar., 2001.
[60]K. Ogawa, H. Iwai, A. Yamamoto, and J. Takada, “Channel capacity of a handset MIMO antenna influenced by the effects of 3D angular spectrum, polarization, and operator,” in IEEE Symposium on Antennas and Propagation Society International, pp. 153156, 2006.
[61]Y.H. Lee, Y. G. Jan, L. Wang, Q. Chen, Q. Yuan, and K. Sawaya, “Using Hopping Technique for Interference Mitigation in Modulated Scattering Array Antenna System,” IEICE Electron. Express, vol.7, no. 12, pp.839843, 2010.
[62]Y.H. Lee, Y.G. Jan, H. Huang, Q. Chen, Q. Yuan, K. Sawaya, “Using LDPC Coding and AMC to Mitigate Received Power Imbalance in Carrier Aggregation Communication System,” IEICE Electron. Express, vol.8, no. 8, pp.618622, 2011.

論文使用權限 
同意紙本無償授權給館內讀者為學術之目的重製使用，於20110609公開。同意授權瀏覽/列印電子全文服務，於20110609起公開。 


