淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0706201103082800
中文論文名稱 交易信用投資策略之隨機模型
英文論文名稱 The Stochastic Model of the Investment Strategy for Trade Credit
校院名稱 淡江大學
系所名稱(中) 管理科學研究所博士班
系所名稱(英) Graduate Institute of Management Science
學年度 99
學期 2
出版年 100
研究生中文姓名 陳伯源
研究生英文姓名 Po-Yuan Chen
學號 892560466
學位類別 博士
語文別 中文
口試日期 2011-06-03
論文頁數 87頁
口試委員 指導教授-張紘炬
委員-林進財
委員-李培齊
委員-陳耀竹
委員-黃建森
委員-歐陽良裕
委員-莊忠柱
中文關鍵字 隨機價格  隨機利率  交易信用  實質選擇權 
英文關鍵字 Stochastic Price  Stochastic Interest Rate  Trade Credit  Real Option 
學科別分類
中文摘要 傳統資金管理的成效有賴於對未來現金流量預測之準確性,然而在金融風暴蔓延與貨幣戰爭激烈的不確定年代,產品價格、利率與匯率等風險深深影響公司獲利的穩定性。基於傳統財務管理理論未能充分將企業經營的不確定性納入考量,本論文將價格與利率的不確定性整合至公司理財與投資決策模型中,提出一個在延遲付款下的公司價值評價模型,並進而推導出公司價值的封閉解。接著將公司價值的動態,以隨機動態規劃法與蒙地卡羅模擬法,分別推導出在風險環境下具有延遲支付貨款權益的公司之實質選擇權價值。
本論文整合Merton在1973年所發表的隨機利率模型與常見於金融衍生性商品評價的幾何布朗運動隨機價格模型,將其應用在具有交易信用的公司評價與實質選擇權評價模型之建立。在模型的建構過程中,本論文考慮以下諸參數:隨機價格與隨機利率的漂移項與波動性、銷貨成本率、需求的價格彈性、產品的市場占有率、信用期間的長短等。以上諸因素對公司價值與實質選擇權價值的影響程度不一,依其重要性排序,可提供經營管理者投資決策與風險控管之依據。在本文中,風險性與隨機性的源頭來自於價格與利率的動態過程,這與日常管理實務上的經驗不謀而合,而公司營運活動的營收與盈餘受到這兩股具有高度不確定性的因子影響,未來現金流量亦呈現隨機波動之現象,乃至於公司價值亦是一個隨機漂移的過程。本文將管理實務上常見的交易信用制度整合至隨機模型中,使得模型本身更具備有管理上的意涵與貢獻。
英文摘要 In the world surrounded by uncertainties ranging from financial crisis to currency war, the volatility of commodity price, interest rate and foreign exchange rate significantly affects the stability of corporate earnings. However, many frameworks of corporate valuation did not explicitly take into account risk factors, which the thesis intends to incorporate in a valuation model for a firm with trade credit under price and interest rate uncertainties. Analytical solutions for corporate value under uncertainties are derived and used as the basis of further formulation for the real option value, representing the investment profits for such a firm with trade credit under uncertainties. The stochastic dynamic programming and Monte Carlo simulation approaches are employed to derive the real option value.
This thesis integrates the stochastic interest rate model of Merton (1973) and the geometric Brownian motion model of price into a framework for corporate valuation when a firm facing both the price and the interest rate risks. The risks are propagated from the price, the interest rate, the future cash flows to the corporate value. The supplier allows the firm to defer its merchandise payments due to the trade credit terms. To obtain more earnings, the firm has an opportunity to invest the deferred payment amounts in interest-bearing financial instruments. Other factors considered in this framework include the cost rate, the market share, the price elasticity of demand, and the time length of credit period. The analytical solution for corporate value is derived. Subsequently, the analytical and numerical solutions for the investment threshold and the real option value are obtained. The sensitivity analyses of the corporate value, the investment threshold, and the real option value are performed in illustrations. The managerial implications provide an insight into the investment strategy for the firm under uncertainties.
論文目次 目錄 I
表目錄 III
圖目錄 IV
通用符號─覽表 VI

第一章 緒論 1
1.1研究動機與目的 1
1.2文獻探討 3
1.3本文結構 13
第二章 利率為常數的公司評價模型 14
2.1符號及假設 14
2.2模型之建立 15
2.3模型之求解 18
2.4模型之敏感度分析 22
2.5小結 26
第三章 利率為隨機過程的公司評價模型 28
3.1符號及假設 28
3.2模型之建立 29
3.3模型之求解 32
3.4模型之敏感度分析 44
3.5小結 47
第四章 實質選擇權的評價模型 49
4.1符號及假設 49
4.2常數利率下的實質選擇權評價 50
4.3隨機利率下的實質選擇權評價 62
4.4數值範例 65
4.5模型應用 71
4.6小結 73
第五章 結論 75
5.1研究結論 75
5.2管理意涵 78
5.3未來研究方向 79
參考文獻 81

表目錄
表 1-1 本文相關研究的內容分析對照表 12
表 4-1 實質選擇權價值的數值範例:在10,000條樣本路徑、價格動態下跌趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αr = -0.005、σr = 0.015下的蒙地卡羅模擬結果 67
表 4-2 實質選擇權價值的數值範例:在10,000條樣本路徑、價格動態下跌趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αr = +0.005、σr = 0.015下的蒙地卡羅模擬結果 67
表 4-3 實質選擇權價值的數值範例:在10,000條樣本路徑、價格動態上漲趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αr = -0.005、σr = 0.015下的蒙地卡羅模擬結果 68
表 4-4 實質選擇權價值的數值範例:在10,000條樣本路徑、價格動態上漲趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αr = +0.005、σr = 0.015下的蒙地卡羅模擬結果 68
表 4-5 實質選擇權價值的數值範例:在10,000條樣本路徑、利率動態下跌趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αp = -0.01、σp= 0.05下的蒙地卡羅模擬結果 69
表 4-6 實質選擇權價值的數值範例:在10,000條樣本路徑、利率動態下跌趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αp = +0.01、σp= 0.05下的蒙地卡羅模擬結果 69
表 4-7 實質選擇權價值的數值範例:在10,000條樣本路徑、利率動態上漲趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αp = -0.01、σp = 0.05下的蒙地卡羅模擬結果 70
表 4-8 實質選擇權價值的數值範例:在10,000條樣本路徑、利率動態上漲趨勢與參數組合δ= 1 week、ρ= 0.12、P0= 0.008、r0= 0.065、αp = +0.01、σp = 0.05下的蒙地卡羅模擬結果 70

圖目錄
圖 1-1 2001至2010年間,LCD零組件的每月價格與出貨量的動態過程 10
圖 1-2 2001至2010年間,三個月期國庫券的殖利率的動態過程 10
圖 2-1 在不同的常數利率下,公司價值對價格動態起始值之敏感度分析 24
圖 2-2 常數利率下,公司價值對價格動態的漂移項與波動性之敏感度分析 24
圖 2-3 常數利率下,公司價值對銷貨成本率與需求的價格彈性之敏感度分析 25
圖 2-4 常數利率下,公司價值對銷貨成本率與產品市占率之敏感度分析 25
圖 2-5 常數利率下,公司價值對交易時間間隔與延遲付款期數之敏感度分析 26
圖 3-1 隨機利率下,公司價值對利率動態的漂移項與波動性之敏感度分析 45
圖 3-2 隨機利率下,公司價值對價格動態的漂移項與波動性之敏感度分析 45
圖 3-3 隨機利率下,公司價值對銷貨成本率與需求的價格彈性之敏感度分析 46
圖 3-4 隨機利率下,公司價值對銷貨成本率與產品市占率之敏感度分析 46
圖 3-5 隨機利率下,公司價值對交易時間間隔與延遲付款期數之敏感度分析 47
圖 3-6 隨機利率下,公司價值對價格動態與利率動態起始值之敏感度分析 47
圖 4-1 不同常數利率下,投資門檻對價格動態的起始值之敏感度分析 58
圖 4-2 常數利率下,投資門檻對價格動態的漂移項與波動性之敏感度分析 58
圖 4-3 常數利率下投資門檻對需求的價格彈性與銷貨成本率之敏感度分析 58
圖 4-4 常數利率下,投資門檻對產品市占率與銷貨成本率之敏感度分析 58
圖 4-5 常數利率下,投資門檻對交易時間間隔與延遲付款期數之敏感度分析 58
圖 4-6 不同常數利率下,實質選擇權價值對價格動態的起始值之敏感度分析 60
圖 4-7 常數利率下,實質選擇權價值對價格動態漂移項與波動性之敏感度分析 60
圖 4-8 常數利率下,實質選擇權價值對需求的價格彈性與銷貨成本率之敏感度分析 61
圖 4-9 常數利率下,實質選擇權價值對產品市占率與銷貨成本率之敏感度分析 61
圖 4-10 常數利率下,實質選擇權價值對交易時間間隔與延遲付款期數之敏感度分析 61
圖 4-11 隨機利率的蒙地卡羅模擬之樣本路徑 64
圖 4-12 隨機價格的蒙地卡羅模擬之樣本路徑 64
圖 4-13 公司價值動態的蒙地卡羅模擬之樣本路徑 64
圖 4-14 投資效益(Vt-I)折現值的蒙地卡羅模擬之樣本路徑 64
圖 4-15 應用本隨機模型進行交易信用公司之投資決策步驟 72

參考文獻 [1] Aggarwal, S.P. and Jaggi, C.K. (1995). Ordering policies of deteriorating items under permis-sible delay in payments. The Journal of the Operational Research Society, 46 (5), 658-662.
[2] Bellman, R.E. (1957). Dynamic Programming. NJ: The Princeton University Press.
[3] Black, F. and Cox, J.C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. The Journal of Finance, 31 (2), 351-367.
[4] Black, F. and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47 (4), 52-59.
[5] Black, F. and Scholes, M. (1973). The pricing of options and liabilities. The Journal of Politi-cal Economy, 81 (3), 637-654.
[6] Bougheas, S., Mateut, S. and Mizen, P. (2009). Corporate trade credit and inventories: new evidence of a trade-off from accounts payable and receivable. Journal of Banking and Finance, 33 (2), 300-307.
[7] Carruth, A., Dickerson, A. and Henley, A. (2001). What do we know about investment under uncertainty? Journal of Economic Surveys, 14 (2), 19-153.
[8] Casey, C. (2001). Corporate valuation, capital structure, and risk management: a stochastic DCF approach. European Journal of Operational Research, 135 (2), 311-325.
[9] Chan, K.C., Karolyi, G.A., Longstaff ,F.A. and Sanders, A.B. (1992). An empirical comparison of alternative models of the short-term interest rate. The Journal of Finance, 47 (3), 1209-1227.
[10] Chang, H.C., Ho, C.H., Ouyang, L.Y. and Su, C.H. (2009). The optimal pricing and ordering policy for an integrated inventory model when trade credit linked to order quantity. Applied Mathematical Modelling, 33 (7), 2978-2991.
[11] Chen, L.H. and Kang, F.S. (2010). Integrated inventory models considering the two-level trade credit policy and a price-negotiation scheme. European Journal of Operational Re-search, 205 (1), 47-58.
[12] Chung, K.J. and Liao, J.J. (2009). The optimal ordering policy of the EOQ model under trade credit depending on the ordering quantity from the DCF approach. European Journal of Op-erational Research, 196 (2), 563-568.
[13] Copeland, T., Koller, T. and Murrin, J. (1996). Valuation: Measuring and managing the value of companies, 2nd ed., NJ: John Wiley & Sons, Inc.
[14] Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985). A theory of the term structure of interest rates. Econometrica, 53 (2), 385-407.
[15] Dave, U. and Patel, L.K. (1981). (T,Si) Policy inventory model for deteriorating items with time proportional demand. The Journal of the Operational Research Society, 32 (2), 137-142.
[16] Dave, U. (1985). On “Economic order quantity under conditions of permissible delay in payments” by Goyal. The Journal of the Operational Research Society, 36 (11), 1069-1070.
[17] Dixit, A.K. and Pindyck, R.S. (1994). Investment under uncertainty. NJ: The Princeton Uni-versity Press.
[18] Dothan, L. U. (1978). On the term structure of interest rates. Journal of Financial Economics, 6 (1), 59-69.
[19] Fatoki, O. and Odeyemi, A. (2010). The determinants of access to trade credit by new SMEs in south Africa. African Journal of Business Management, 4 (13), 2763-2770.
[20] Goyal, S.K. (1985). Economic order quantity under conditions of permissible delay in pay-ments. The Journal of the Operational Research Society, 36 (4), 335-338.
[21] Gupta, D. and Wang, L. (2009). A stochastic inventory model with trade credit. Manufactur-ing and Service Operations Management, 11 (1), 4-18.
[22] Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. The Journal of the Operational Research Society, 54 (9), 1011-1015.
[23] Hull, J. and White, A. (1990). Pricing interest rate derivative securities. The Review of Finan-cial Studies, 3 (4), 573-592.
[24] Hwang, H. and Shinn, S.W. (1997). Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24 (6), 539-547.
[25] Jamal, A.M.M., Sarker, B.R. and Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage and permissible delay in payment. The Journal of the Operational Research Society, 48 (8), 826-833.
[26] Jamal, A.M.M., Sarker, B.R. and Wang, S. (2000). Optimal payment time for a retailer under permitted delay of payment by the wholesaler. International Journal of Production Econom-ics, 66 (1), 59-66.
[27] Kim, J., Hwang, H. and Shinn, S.W. (1995). An optimal credit policy to increase supplier's profits with price-dependent demand functions. Production Planning and Control, 6 (1), 45-50.
[28] Kleczyk, E. (2008). Risk management in the development of new products in the pharmaceu-tical industry. African Journal of Business Management, 2 (10), 186-194.
[29] Landes, T. and Loistl, O. (1992). Complexity models in financial markets. Applied Stochastic Models and Data Analysis, Special Issue in Finance, 8 (9), 209-228.
[30] Liao, H.C., Tsai, C.H. and Su, C.T. (2000). An inventory model with deteriorating items un-der inflation when a delay in payment is permissible. International Journal of Production Economics, 63 (2), 207-214.
[31] McDonald, R. and Siegel, D. (1986). The value of waiting to invest. The Quarterly Journal of Economics, 101 (4), 707-728.
[32] Mercurio, F. and Moraleda, J.M. (2000). An analytically tractable interest rate model with humped volatility. European Journal of Operational Research, 120 (1), 205-214.
[33] Merton, R.C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4 (1), 141-183.
[34] Merton, R.C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29 (2), 449-470.
[35] Ng, C.K., Smith, J.K. and Smith, R.L. (1999). Evidence on the determinants of credit terms used in interfirm trade. The Journal of Finance, 54 (3), 1109-1129.
[36] Ouyang, L.Y., Chang, C.T. and Teng, J.T. (2005). An EOQ model for deteriorating items un-der trade credits. The Journal of the Operational Research Society, 56 (6), 719-726.
[37] Ouyang, L.Y., Teng, J.T. and Chen, L.H. (2006). Optimal ordering policy for deteriorating items with partial backlogging under permissible delay in payments. Journal of Global Op-timization, 34 (2), 245-271.
[38] Petersen, M.A. and Rajan, R.G. (1997). Trade credit: Theories and evidence. The Review of Financial Studies, 10 (3), 661-691.
[39] Pindyck, R.S. (1991). Irreversibility, uncertainty, and investment. Journal of Economic Lit-erature, 29 (3), 1110-1148.
[40] Rappaport, A. (2000). Creating shareholder value: A guide for managers and investors. NY : Simon & Schuster Inc.
[41] Robb, D.J. and Silver, E.A. (2006). Inventory management under date-terms supplier trade credit with stochastic demand and lead time. The Journal of the Operational Research Soci-ety, 57 (6), 692-702.
[42] Sarker, B.R., Jamal, A.M.M. and Wang, S. (2000). Optimal payment time under permissible delay in payment for products with deterioration. Production Planning and Control, 11 (4), 380-390.
[43] Sarker, B. R. and Pan, H. (1994). Effects of inflation and the time value of money on order quantity and allowable shortage. International Journal of Production Economics, 34 (1), 65-72.
[44] Schwartz, E.S. and Moon, M. (2001). Rational pricing of internet companies revisited. The Financial Review, 36 (4), 7-26.
[45] Shreve, S.E. (2000). Stochastic calculus for finance II: Continuous-time models. NY: Springer, Inc.
[46] Teng, J.T. (2002). On the economic order quantity under conditions of permissible delay in payments. The Journal of the Operational Research Society, 53 (8), 915-918.
[47] Teng, J.T. and Chang, C.T. (2009). Optimal manufacturer’s replenishment policies in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 195 (2), 358-363.
[48] Tuckman, B. (2002). Fixed income securities: tools for today’s markets. NJ: John Wiley & Sons, Inc.
[49] Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Finan-cial Economics, 5 (2), 177-188.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信