淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-0706200823482700
中文論文名稱 台灣選擇權隱含波動度之資訊內涵與預測能力
英文論文名稱 The Information Content and Forecasting Ability of TAIEX Options Implied Volatility
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 96
學期 2
出版年 97
研究生中文姓名 陳敏夫
研究生英文姓名 Min-Fu Chen
學號 695531391
學位類別 碩士
語文別 中文
口試日期 2008-05-17
論文頁數 55頁
口試委員 指導教授-林蒼祥
共同指導教授-蔡蒔銓
委員-林筠
委員-段昌文
委員-李命志
中文關鍵字 隱含波動度  無模型  波動度指數  資訊內涵 
英文關鍵字 Implied Volatility  Model-Free  Information Content  VIX 
學科別分類 學科別社會科學商學
中文摘要 本研究利用台灣股價指數選擇權資料來檢驗BS模型基礎下隱含波動度與無模型建構下隱含波動度的預測能力及其所包含的資訊,試圖找出一個可做為未來真實波動率最佳的預測指標,希望能提供台灣股市交易者一個較佳的參考資訊。本文除了比較了歷史波動度、BS隱含波動度和Britten-Jones and Neuberger (2000)所提出的無模型隱含波動度外,亦考慮了台灣期貨交易所近年所引用CBOE分別在1993與2003年所推出的新舊兩種波動度指數(VXO、VIX)與其修正的台灣選擇權波動度指數(TVXO)。
本文的實證研究結果發現,所有的隱含波動度預測值皆包含了未來實現波動度一定程度的資訊在內,資訊內涵也較歷史波動度來的多。在BS模型基礎下所計算出的隱含波動度中,使用多種履約價格算出的隱含波動度,對於未來實現波動度將會比使用單一履約價格的隱含波動度保留更多的資訊。無模型建構下的隱含波動度使用了不同履約價格的選擇權資訊而計算的,相較於BS模型的隱含波動度而言,無模型設定的隱含波動度對於未來波動度保留了較多的資訊。預測能力也較只使用單一履約價格的BS隱含波動度來的高。
英文摘要 This article use the data of TAIEX Options to test the information contain and forecast ability of the Black-Scholes implied volatility and the model-free implied volatility, try to find a more efficient indices of real volatility. This article not only compare the Black-Scholes implied volatility and the model-free implied volatility which were derived by Britten-Jones and Neuberger (2000), but also consider the market volatility indices which were introduced by CBOE in 1993 and 2003(VIX and VXO) and the TAIEX Options volatility indices by Taiwan(TVXO).
The empirical study in this article finds that all the implied volatility subsumes some information contained of the realized volatility, and the information contain of implied volatility is more than historical volatility. And our results from TAIEX Options support that the model-free implied volatility subsumes more information contained than the Black-Scholes implied volatility and historical volatility and is a more efficient forecast for future realized volatility.
論文目次 第一章 序論……………………………………………………………1
第一節 研究動機……………………………………………………1
第二節 研究目的……………………………………………………2
第三節 研究架構……………………………………………………3
第二章 文獻探討………………………………………………………4
第一節 隱含波動度相關文獻………………………………………4
第二節 無模型隱含波動度…………………………………………6
第三節 波動度指數相關文獻………………………………………7
第三章 研究方法………………………………………………………9
第一節 資料來源與選取……………………………………………9
第二節 VXO指數編製方式…………………………………………10
第三節 VIX指數編製方式…………………………………………11
第四節 台灣選擇權TVXO指數編製方式 …………………………14
第五節 無模型隱含波動度之建構 ………………………………16
第六節 歷史波動度與實現波動度之估計 ………………………19
第七節 迴歸分析模型 ……………………………………………21
第四章 實證結果分析 ………………………………………………24
第一節 樣本基本分析 ……………………………………………24
第二節 簡單迴歸分析 ……………………………………………28
第三節 BS模型基礎下之隱含波動度比較 ………………………32
第四節 無模型建構下之隱含波動度比較 ………………………36
第五節 隱含波動度之總合比較 …………………………………39
第五章 結論與建議 …………………………………………………48
參考文獻………………………………………………………………50

表目次
表一:波動度預測能力比較 ……………………………………………5
表二:各隱含波動度的基本統計量……………………………………25
表三:各種波動度之間的相關性矩陣…………………………………26
表四:隱含波動度之簡單迴歸結果(OLS) ……………………………30
表五:隱含變異數之簡單迴歸結果(OLS) ……………………………31
表六:BS模型基礎下之隱含波動度包含迴歸結果(OLS) ……………34
表七:無模型建構下隱含波動度之簡單迴歸與包含迴歸結果(OLS) 37
表八:歷史波動度與各種隱含波動度之包含迴歸結果(OLS) ………40
表九:隱含波動度之簡單迴歸與包含迴歸結果(OLS) ………………42
表十:波動度指數之簡單迴歸與包含迴歸結果(OLS) ………………45

圖目次
圖一:不同隱含波動度與實現波動度的走勢圖 ……………………27
圖二:不同隱含波動度與實現波動度的走勢圖(續) ………………27
參考文獻 參考文獻

一、中文部分
1.江木偉,2004,「台指選擇權隱含波動度指標之資訊內涵—新編VIX 指標之實證」,國立臺灣大學財務金融學研究所碩士論文。
2.李存修、盧佳鈺、江木偉,2005,「台指選擇權隱含波動度指標之資訊內涵」,證券市場發展季刊,第68期,1-42頁
3.呂美儀,2007,「臺指選擇權隱含波動度預測能力之實證分析」,淡江大學財務金融研究所碩士論文。
4.胡僑芸,2003,「臺指選擇權指數VIX指數之編制與交易策略分析」,國立中山大學財務管理研究所碩士論文。
5.黃雯卿,2007,「無模型設定隱含波動度之實證研究-以台灣股價指數選擇權為例」,國立東華大學國際經濟研究所碩士論文。
6.鄭智謙,2006,「無模型設定隱含波動度-S&P500指數期貨選擇權的隱含波動度之實證研究」,國立臺灣大學財務金融學研究所碩士論文。
7.鄭義、胡僑芸、林忠義,2005,「波動度指數VIX於臺指選擇權市場之應用」,臺灣期貨市場雙月刊,第七卷,第二期,13-33頁。
8.盧佳鈺,2003,「台指選擇權隱含波動度指標之資訊內涵」,國立臺灣大學商學研究所碩士論文。

二、英文部分
1.Ait-Sahalia, Y., and A. W. Lo, 1998, “Nonparametric Estimation of State-price Densities Implicit in Financial Asset Prices,” Journal of Finance, 53, 499–547.
2.Ait-Sahalia, Y.,P.A. Mykland, and L. Zhang, 2003, “How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise,” Review of Financial Studies, 18, 351–416.
3.Andersen, T. G., and T. Bollerslev, 1998, “Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts,” International Economic Review,39, 885–905.
4.Bakshi, G., C. Cao, and Z. Chen, 1997, “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, 52, 2003–2049.
5.Bakshi, G., C. Cao, and Z. Chen, 2000, “Pricing and Hedging Long-Term Options,” Journal of Econometrics, 94, 277–318.
6.Beckers, S.,1981, “Standard Deviations Implied In Option Prices as Predictors of Futures Stock Price Variability”, Journal of Banking and Finance, Vol. 5,363-382.
7.Black, F., and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 81, 637–659.
8.Blair, B. J., S. Poon, and S. J. Taylor, 2001, “Forecasting S&P100 Volatility: The Incremental Information Content of Implied Volatilities and High-frequency Index Retruns,” Journal of Econometrics, 105, 5-26.
9.Britten-Jones, M., and A. Neuberger, 2000, “Option Prices, Implied Price Processes, and Stochastic Volatility,” Journal of Finance, 55, 839–866.
10.Canina, L., and S. Figlewski, 1993, “The Informational Content of Implied Volatility,” Review of Financial Studies, 6, 659–681.
11.Chiras, D. P., and M. Steven, 1978, “The information content of option prices and a test of market efficiency.” Journal of Financial Economics, June-Sep, 213-234.
12.Christensen, B. J., and N. R. Prabhala, 1998, “The Relation between Implied and Realized Volatility,” Journal of Financial Economics, 50, 125–150.
13.Christensen,B.J., C.S. Hansen, and N.R. Prabhala, 2001, “The Telescoping Overlap Problem in Options Data,” Working paper, University of Aarhus and University of Maryland.
14.Copeland, Maggie M and Copeland, Thomas E, “Market timing: Style and size rotation using the VIX. ” Financial Analysts Journal, 55(2),1999,73-81
15.Corrado, C. J., & Miller, T. W. ,2005 “The Forecast Quality of CBOE Implied Volatility Index” Journal of Futures Markets Vol.25(4) 339-373
16.Cox, J., S. Ross, and M. Rubinstein, 1979, “Option Pricing: A New Approach,” Journal of Financial Economics, 7, 229-264.
17.Day, T. E., and C. M. Lewis, 1988, “The Behavior of the Volatility Implicity in the Price of Stock Index Option,” Journal of Finance Economics, 22, 103-122.
18.Day, T. E., and C. M. Lewis, 1992, “StockMarket Volatility and the Information Content of Stock Index Options,” Journal of Econometrics, 52, 267–287.
19.Demeterfi K., E. Derman, M. Kamal and J. Z. Zou, 1999, “A guide to Volatility and Variance Swaps,” Journal of Derivatives, summer ,pp.9-32
20.Demeterfi K., E. Derman, M. Kamal and J. Z. Zou, “More Than You Ever Wanted To Know About Volatility Swaps,” Goldman Sach & Co. manuscript, 1999.
21.Dumas, B., J. Fleming, and R. E. Whaley, 1998, “Implied Volatility Functions: Empirical Tests,” Journal of Finance, 53, 2059–2106.
22.Ederington, Louis H. and Wei Guan., 2002, "Is Implied Volatility an Informationally Efficient and Effective Predictor of Future Volatility?" Journal of Risk, 4, 3, 29-46.
23.Feinstein, S. P. 1989, “Forecasting Stock Market Volatility Using Options on Index Futures,” Economic Review, Federal Reserve Bank of Atlanta, Vol 74, 12-30.
24.Figlewski, S. 1997, “Forecasting Volatility, ” Financial Markets, Institutions, and Instruments Vol.6(1) 1-88.
25.Fitzgerald, D., 1999, “Trading Volatility,” Risk Mangement and Analysis. Vol. 2: New Market and Products, Edited by C. Alexander, 261-291.
26.Fleming Jeff, Barbara Ostdiek, and Robert E. Whaley, “Predicting Stock Market Volatility:A New Measure.” Journal of Futures Markets, Vol.15, No.3, 1995,pp.265-302
27.Fleming, J., 1998, “The Quality of Market Volatility Forecast Implied by S&P 100 Index Option Prices,” Journal of Empirical Finance, 5, 317–345.
28.French, K., G.W. Schwert, and R. Stambaugh, “Expected Stock Returns and Volatility.” Journal of Financial Economics, Vol.19, No.1, Sep. 1987, pp.3-30.
29.Giot Pierre. “The information content of implied volatility indices for forecasting volatility and market risk” working paper, Namur of University, Dec. 2002
30.Giot, Pierre., “Relationships Between Implied Volatility Indexes and Stock Index Returns. ” Journal of Portfolio Management, 31, 3(2005), 92-100.
31.Guo, Dajiang. 1996. "The Predictive Power of Implied Stochastic Variance from Currency Options," Journal of Futures Markets 16:8, pp. 91542.
32.Hamid, Shaikh. 1998. "Efficient Consolidation of Implied Volatilities and a Test of Intertemporal Averaging,"Derivatives Quart. 4:3, pp. 3549.
33.Hansen, P. R., and A. Lunde, 2004, “Realized Variance and Market Microstructure Noise,” forthcoming Journal of Business and Economic Statistics.
34.Jiang, G. J. and Y.S. Tian, 2007, “Extracting Model-Free Volatility from Option Price: An Examination of the VIX Index.” Journal of Derivatives, Spring(2007), 35-60.
35.Jiang, G. J. and Y.S. Tian, 2005, “The Model-Free Implied Volatility and Its Information Content.” Review of Financial Studies, 18, 1306-1342.
36.Latane and Rendleman, “Standard Deviations of Stock Price Ratios Implied In Option Prices”, Journal of Finance,31, 1976, 369-381.
37.Li, Kai. 2002. "Long-Memory versus Option-Implied Volatility Prediction," Journal of Deriuatiues 9:3, pp. 9-25
38.Martens M. and J. Zein, “Predicting Financial Volatility: High-Frequency Time-Series Forecasts vis-a-vis Implied Volatility. ” Journal of Futures Markets, 24, 11(2004),1005-1028.
39.Poon S. H. and C. W. J. Granger, 2003, “Forecasting Volatility in Financial Market : A Review,” Journal of Economic Literature, 41, 478-539.
40.Poteshman, d i n M. 2003 "Forecasting Future Volatility from Option Prices," work. paper, U. Illinois Urbana-Cham aign
41.Randolph William L. and Mohammad Najand 1991. "A Test of Two Models in Forecasting Stock Index Futures Price Volatility," Journal of futures Markets 11:2, pp.179-90.
42.Simon D., and R. Wiggins (2001), “S&P Futures and Contrary Sentiment Indicators,” Journal of Futures Market, Vol.21, No.5, 447-462
43.Traub, Heydon, Luis Ferreira, Maria McArdle and Mauro Antognelli, “Fear and Greed in Global Asset Allocation.” Journal of Investing, Vol.9, No. 1, Spring 2000 pp.21-37.
44.White, H., 1980, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 48, 817–838.
45.Whaley, R. E., “The Investor Fear Gauge. ” Journal of Portfolio Management, 26(2000), 12-17.
46.Whaley Robert E. 1993“Derivatives on Market Volatility:Hedging Tools Long Overdue” The Journal of Derivatives, Vol.1 No.1, Fall ,pp.71-84
47.Zhou, B., 1996, “High-Frequency Data and Volatility in Foreign-Exchange Rates,” Journal of Business and Economic Statistics, 14, 45–52.
48.Zhou, B., 1996, “High-Frequency Data and Volatility in Foreign-Exchange Rates,” Journal of Business and Economic Statistics, 14, 45–52.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-06-19公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信