淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0702201216005400
中文論文名稱 應用有限元素頻域分析探討多孔樑與多孔結構耦合之脈衝響應
英文論文名稱 Impulse Response of Porous Beams Coupled with Porous Structures by Finite Element Frequency-Domain Analysis
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 100
學期 1
出版年 101
研究生中文姓名 林益誠
研究生英文姓名 Yi-Cheng Lin
學號 698370680
學位類別 碩士
語文別 中文
口試日期 2012-01-06
論文頁數 66頁
口試委員 指導教授-蔡慧駿
委員-柯德祥
委員-盧永華
委員-李經綸
委員-葉豐輝
委員-蔡慧駿
中文關鍵字 脈衝響應  多孔樑  多孔結構  有限元素頻域分析 
英文關鍵字 Impulse Response  Porous Beams  Porous Structures  Finite Element Frequency-Domain Analysis 
學科別分類 學科別應用科學機械工程
中文摘要 本文應用Biot多孔彈性理論,於尤拉樑及平面應力假設下推導多孔樑與多孔板之彎曲振動統御方程組。並於拉普拉斯域下推導多孔樑、多孔板以及多孔介質元素的剛性矩陣。再藉由衝擊負荷與彈性支撐邊界限制進行多孔樑、多孔板、多孔介質之有限元素頻域分析。探討多孔樑、多孔板、多孔介質、加肋多孔板、多孔樑與多孔介質耦合等耦合系統之動態行為,以期契合實際之應用狀態。
多孔樑、多孔板以及多孔介質因內含之流體與固體架構交互作用而有特殊之動態消散特性。由含飽和多孔樑與多孔板模態振幅衰減之現象可發現流體黏滯係數越大時其消散特性影響相對增加,而流體體積模數主要影響多孔樑和板之模態頻率。因此藉由流體之改變可調整多孔樑與多孔板之模態頻率與振幅。由加肋多孔板模態頻率變動可明顯觀察到,孔洞率提高時消散係數及模態頻率也相對增高。故藉由孔洞率及流體改變可精確的調整加肋多孔板之動態反應。另多孔樑與空間聲場耦合分析結果顯示空間聲場內可同時觀察到多孔樑及聲場耦合的模態頻率且空間聲場內模態頻率和振幅均有顯著改變。
英文摘要 Under the assumptions of Euler beam and plane stress, this study formulates the governing equations of flexural vibrations for the porous beam and plate using Biot’s poroelastic theory. Then, the stiffness matrices of the porous beam, plate and medium elements are derived in Laplace domain. Thereafter, using the impulsive loading and the elastic boundary conditions, the finite element frequency domain analyses are performed to study the dynamic behaviors of porous beams, plates, and mediums. In order to match the application condition, the dynamic behaviors of stiffened porous plates (porous beam coupled with porous plate) and porous beam coupled with porous medium are also evaluated.
The porous beam, plate, and medium present a typical dissipation effect due to the interaction between the saturated fluid and the solid skeleton. Upon examining the reduction of modal amplitudes of the saturated porous beam and plate, the dissipation effect is found growing with the increase of the fluid’s viscosity, and the bulk modulus of the fluid has major effect on their modal frequencies. Therefore, by changing of the saturated fluid, the modal frequency and amplitude of the porous beam and plate can be adjusted. From the modal frequency fluctuations of the stiffened porous plate, the increase of both dissipation coefficient and modal frequency are clearly observed with the raise of porosity. Hence, the dynamic behavior of the stiffened porous plate can be precisely adjusted by the changes of the porosity and the saturated fluid. In addition, the analysis results of the coupling of a porous beam with an acoustic field show that the coupled modal frequencies of the porous beam and the acoustic field can be simultaneously observed, as well as the remarkable changes on the modal frequencies and amplitudes.
論文目次 目 錄
中文摘要 I
英文摘要 II
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.4 研究內容 4
第二章 多孔樑與多孔板彎曲振動統御方程組 5
2.1 Biot多孔彈性理論 5
2.1.1應力、應變及位移 5
2.1.2 Biot多孔彈性係數 7
2.2多孔材料參數 7
2.2.1孔洞率 8
2.2.2多孔材料有效密度 8
2.2.3流體體積模數 9
2.2.4消散係數 9
2.3多孔樑與多孔板之彎曲振動 9
2.3.1固體與流體之應力與應變關係 11
2.3.2流體壓力差 15
2.3.3動能與消耗能 16
2.3.4應變能與功 16
2.3.5彈簧能 18
2.3.6多孔樑與多孔板彎曲振動統御方程組 19
第三章 有限元素頻域分析 23
3.1多孔樑與多孔板有限元素頻域分析 23
3.1.1多孔樑與多孔板直角坐標系元素 24
3.1.2多孔介質直角坐標系矩形元素 28
第四章 有限元素頻域分析結果比較 32
4.1彈性樑與彈性板以及加肋彈性板動態行為驗證 32
4.2多孔樑與多孔板之有限元素頻域分析 38
4.3橫向加肋板參數變異之影響 53
4.4多孔吸音樑與多孔介質耦合分析 55
4.4.1二維聲場之聲響特性 55
4.4.2含多孔吸音樑二維聲場之聲響特性 56
第五章 結論與未來展望 59
5.1結論 59
5.2 未來展望 60
參考文獻 62

圖目錄
圖2-1 多孔樑受分佈壓力負荷示意圖 10
圖2-2 多孔板受分佈壓力負荷示意圖 11
圖2-3 多孔樑彈性邊界限制示意圖 18
圖2-4 多孔板彈性邊界限制示意圖 19
圖3-1 直角坐標系多孔樑元素示意圖 25
圖3-2 直角坐標系多孔板矩形元素示意圖 26
圖4-1 加肋彈性板示意圖 38
圖4-2 兩邊固定之含飽和水砂岩樑受1Pa均佈衝擊壓力負荷後
樑中心點撓度頻域響應圖 40
圖4-3 兩端固定之含飽和空氣泡棉樑受1Pa均佈衝擊壓力負荷
後樑中心點撓度頻域響應圖 40
圖4-4 兩邊簡支撐之含飽和空氣砂岩樑受1Pa均佈衝擊壓力負
荷後樑中心點撓度頻域響應圖 41
圖4-5 兩邊簡支撐之含飽和水砂岩樑受1Pa均佈衝擊壓力負荷
後樑中心點撓度頻域響應圖 41
圖4-6 兩邊簡支撐之含飽和砂岩樑受1Pa均佈衝擊壓力負荷後
樑中心點撓度頻域響應圖 42
圖4-7 兩邊簡支撐之含飽和空氣泡棉樑受0.1Pa均佈衝擊壓力
負荷後樑中心點撓度頻域響應圖 42

圖4-8 兩邊簡支撐之含飽和空氣泡棉樑受點衝擊力10N後樑(x=0.15m)點上撓度頻域響應圖 43
圖4-9 兩邊簡支撐之含飽和水樑受0.1Pa均佈衝擊壓力負荷後
樑中心點撓度頻域響應圖 43
圖4-10 懸臂砂岩-泡棉耦合樑示意圖 44
圖4-11 含飽和空氣砂岩-泡棉樑於懸臂下受1Pa均佈衝擊壓力負
荷後樑中心點與端點撓度頻域響應圖 44
圖4-12 含飽和水砂岩-泡棉樑於懸臂下受1Pa均佈衝擊壓力負荷
後樑中心點與端點撓度頻域響應圖 45
圖4-13 含飽和空氣泡棉-砂岩樑受1Pa均佈衝擊壓力負荷後樑中
心點與端點撓度頻域響應圖 45
圖4-14 含飽和水泡棉-砂岩樑受1Pa均佈衝擊壓力負荷後樑中心
點與端點撓度頻域響應圖 46
圖4-15 四邊固定之含飽和水砂岩板受0.1Pa均佈衝擊壓力負荷後
板中心點撓度頻域響應圖 48
圖4-16 四邊固定之含飽和空氣泡棉板受0.1Pa均佈衝擊壓力負荷
後板中心點撓度頻域響應圖 48
圖4-17 四邊簡支撐之含飽和空氣砂岩板受1400Pa均佈衝擊壓力
負荷後板中心點撓度頻域響應圖 49
圖4-18 四邊簡支撐之含飽和水砂岩板受1400Pa均佈衝擊壓力負
荷後板中心點撓度頻域響應圖 49
圖4-19 四邊簡支撐之砂岩板受1400Pa均佈衝擊壓力負荷後板中
心點撓度頻域響應圖 50
圖4-20 四邊簡支撐之含飽和空氣泡棉板受0.1Pa均佈衝擊壓力負
荷後板中心點撓度頻域響應圖 50
圖4-21 四邊簡支撐之含飽和空氣泡棉板受10N點衝擊力負荷後(x=0.15m, y=0.1m)點上撓度頻域響應圖 51
圖4-22 四邊簡支撐之泡棉板受0.1Pa均佈衝擊壓力負荷後板中心
點撓度頻域響應圖 51
圖4-23 懸臂砂岩-泡棉耦合板示意圖 52
圖4-24 含飽和空氣砂岩-泡棉板於懸臂下受1Pa均佈衝擊壓力負荷
後板中心點與端點撓度頻域響應圖 52
圖4-25 孔洞率變異於動態消散係數的影響圖 54
圖4-26 二維聲場之網格及邊界條件圖 55
圖4-27 二維聲場之位移頻域響應圖 56
圖4-28 含多孔吸音樑二維聲場之網格及邊界條件圖 57
圖4-29 含多孔吸音樑二維聲場之位移頻域響應圖 57
圖4-30 二維聲場側邊含多孔吸音樑之位移頻域響應圖 58

表目錄
表4-1 含飽和水砂岩與含飽和空氣泡棉之材料性質 33
表4-2 砂岩彈性樑邊界受簡支撐限制之模態頻率 34
表4-3 砂岩彈性樑邊界受固定支撐限制之模態頻率 34
表4-4 砂岩彈性樑邊界為懸臂態之模態頻率 34
表4-5 泡棉彈性樑邊界受簡支撐限制之模態頻率 35
表4-6 泡棉彈性樑邊界受固定支撐限制之模態頻率 35
表4-7 泡棉彈性樑邊界為懸臂態之模態頻率 35
表4-8 砂岩彈性板四邊受簡支撐限制之模態頻率 35
表4-9 砂岩彈性板四邊受固定支撐限制之模態頻率 36
表4-10 砂岩彈性板對邊受簡支撐之模態頻率 36
表4-11 泡棉彈性板四邊受簡支撐限制之模態頻率 36
表4-12 泡棉彈性板四邊受固定支撐限制之模態頻率 36
表4-13 泡棉彈性板對邊受簡支撐之模態頻率 37
表4-14 加肋砂岩方板四邊受固定支撐限制之模態頻率
37
表4-15 加肋砂岩方板四邊受簡支撐限制之模態頻率 37
表4-16 不同孔洞率固定支撐加肋水砂岩方板之模態頻率 53
表4-17 不同孔洞率簡支撐加肋水砂岩方板之模態頻率 54

參考文獻 參考文獻
1. M. A. Biot, “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, Vol. 12, pp. 155-164, 1941.
2. M. A. Biot, “Theory of Elasticity and Consolidation for a Porous Anisotropic Solid”, Journal of Applied Physics, Vol. 26, No. 2, pp. 182-185, 1955.
3. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range”, The Journal of the Acoustical Society of America, Vol. 28, No. 2, pp. 179-191, 1956.
4. M. A. Biot, “Theory of Buckling of a Porous Slab and Its Thermoelastic Analogy”, Journal of Applied Mechanics, Vol. 31, pp. 194-198, 1964.
5. R. de Boer, “Highlights in the Historical Development of the Porous Media Theory:Toward a Consistent Macroscopic Theory”, Applied Mechanics Reviews, Vol. 49, No. 4, pp. 201-262, 1996.
6. O. C. Zienkiewicz, AHC Chan, and M. Pastor, “Simple Models for Soil Behaviour and Applications to Problems of Soil Liquefaction”, Proceedings of the Sixth International Conference on Numerical Methods in Geomechanics, Innsbruck, Austria, pp. 169-180, 1988.
7. O. C. Zienkiewicz, K. H. Leung, and M. Pastor, “Simple Model for Transient Soil Loading in Earthquake Analysis. I. Basic Model and its Application”, International Journal for Numerical and Analytical Method in Geomechanics, Vol. 9, No. 5, pp. 453-476, 1985.
8. O. C. Zienkiewicz, K. H. Leung, and M. Pastor, “Simple Model for Transient Soil Loading in Earthquake Analysis. II. Non-Associative Models for Sands”, International Journal for Numerical and Analytical Method in Geomechanics, Vol. 9, No. 5, pp. 477-498, 1985.
9. J. H. Prevost, “Nonlinear Transient Phenomena in Saturated Porous Media”, Computer Methods applied Mechanics and Engineering, Vol. 30, No. 1, pp. 3-18, 1982.
10. L. P. Li and K. Scholgasser, “Buckling of Poroelastic Columns with Axial Diffusion”, International Journal of Mechanical Sciences, Vol. 39, No. 4, pp. 409-415, 1997.
11. L. P. Li and K. Scholgasser, “A Finite Element Model for Poroelastic Beams with Axial Diffusion”, Computers and Structures, Vol. 73, pp. 595-608, 1999.
12. G. W. Scherer, J. H. Prevost, and Z. H. Wang, “Bending of a Poroelastic Beam with Lateral Diffusion”, International Journal of Solids and Structures, Vol. 46, pp. 3451-3462, 2009.
13. P. Leclaires, K. V. Horoshenkov, and A. Cummings, “Transverse Vibrations of a Thin Rectangular Porous Plate Saturated by a Fluid”, Journal of Sound and Vibration, Vol. 247, No. 1, pp. 1-18, 2001.
14. H. S. Tsay and H. B. Kingsbury, “Influence of Inertia and Dissipative Forces on the Dynamic Response of Poroelastic Materials”, International Journal Solids Structure, Vol. 29, No. 5, pp. 641-652, 1992.
15. H. S. Tsay and F. H. Yeh, “Finite Element Frequency-Domain Acoustic Analysis of Open-Cell Plastic Foams”, Finite Element in Analysis and Design, Vol. 42, pp. 314-339, 2006.
16. H. S. Tsay and F. H. Yeh, “Analysis of Mode Shapes of a Rigidly Backed Cylindrical Foam”, Applied Acoustics, Vol. 69, No. 9, pp. 778-788, 2008.
17. P. Manfredini, G. Cocchetti, G. Maier, A. Redaelli, and F. M. Montevecchi, “Poroelastic Finite Element Analysis of a Bone Specimen under Cyclic Loading”, Journal of Biomechanics, Vol. 32, pp. 135-144, 1999.
18. G. Cederbaum, “Post-buckling Behavior of Poroelastic Columns”, International Journal of Mechanical Sciences, Vol. 42, pp. 771-783, 2000.
19. Y. Kameoa, T. Adachia, and M. Hojoa, “Transient Response of Fluid Pressure in a Poroelastic Material under Uniaxial Cyclic Loading”, Journal of the Mechanics and Physics of Solids, Vol. 56, pp. 1794-1805, 2008.
20. L. P. Li, G. Cederbaum, and K. Schulgasser, “Theory of Poroelastic Plates with In-Plane Diffusion”, International Journal Solids Structure, Vol. 34, pp. 4515-4530, 1997.
21. M. Etchessahar, S. Sahraoui, and B. Brouard, “Bending Vibrations of a Rectangular Poroelastic Plate”, Comptes Rendus de l' Academie des Sciences, Vol. 329, No. 8, pp. 615-620, 2001.
22. G. Belloncle, H. Franklin, F. Luppe, and J. M. Conoir, “Normal Modes of a Poroelastic Plate and Their Relation to the Reflection and Transmission Coefficients“, Ultrasonics, Vol. 41, pp. 207-216, 2003.
23. K. Fakhar, Y. Cheng, X. Ji, and X. Li, “Lie Symmetry Analysis and some New Exact Solutions for Rotating Flow of a Second-Order Fluid on a Porous Plate,” International Journal of Engineering Science, Vol. 44, pp. 889-896, 2006.
24. E. Magnucka-Blandzi, “Axi-Symmetrical Deflection and Buckling of Circular Porous-Cellular Plate”, Thin-Walled Structures, Vol. 46, pp. 333-337, 2008.
25. T. Senjuntichai and Y. Sapsathiarn, “Time-Dependent Response of Circular Plate in Multi-Layered Poroelastic Medium”, Computers and Geotechnics, Vol. 33, pp. 155-166, 2006.
26. J. H. Wang, X.L. Zhou, and J.F. Lu, “Dynamic Response of Pile Groups Embedded in a Poroelastic Medium”, Soil Dynamics and Earthquake Engineering, Vol. 23, pp. 235-242, 2003.
27. P. M. Reddy and M. Tajuddin, “Exact Analysis of the Plane-Strain Vibrations of Thick-Walled Hollow Poroelastic Cylinders”, International Journal of Solids and Structures, Vol. 37, pp. 3439-3456, 2000.
28. P. S. Nair and M. S. Rao, “On Vibration of Plates with Varying Stiffener Length”, Journal of Sound and Vibration, Vol. 95, No. 1, pp. 19-29, 1984.
29. J. R. Wu and W. H. Liu, “Vibration of Rectangular Plates with Edge Restraints and Intermediate Stiffeners”, Journal of Sound and Vibration, Vol. 123, No. 1, pp. 103-113, 1988.
30. L. X. Peng, K. M. Liew, and S. Kitipornchai, “Buckling and Free Vibration Analyses of Stiffened Plates Using the FSDT Mesh-Free Method”, Journal of Sound and Vibration, Vol. 289, pp. 421-449, 2006.
31. H. Xu, J. Du, and W. L. Li, “Vibrations of Rectangular Plates Reinforced by any Number of Beams of Arbitrary Lengths and Placement Angles”, Journal of Sound and Vibration, Vol. 329, pp. 3759-3779, 2010.
32. 蔡慧駿、葉豐輝,“有限長度多孔性吸音平板之動態音響阻抗分析與量測”, 行政院國家科學委員會專題研究計畫成果報告,計畫編號:NSC86-2212-E-032-005,pp. 1-107,1997。
33. H. S. Tsay and F. H. Yeh, “Frequency Response Function for Prediction of Planar Cellular Plastic Foam Acoustic Behavior”, Journal of Cellular Plastics, Vol. 41, pp. 101-131, 2005.
34. J. F. Allard, C. Depollier, and A. L’Esperance, “Observation of the Biot Slow Wave in a Plastic Foam of High Flow Resistance at Acoustical Frequencies”, Journal of Applied Physics, Vol. 59, No. 10, pp. 3367-3370, 1986.
35. 蔡慧駿、葉豐輝、陳央澤,“應用頻域有限元素法於多孔彈性薄樑受彈性支撐之彎曲振動分析”,中華民國力學學會第三十二屆全國力學會議,H023,2008年。
36. L. Dozio and M. Ricciardi, “Free Vibration Analysis of Ribbed Plates by a Combined Analytical-Numerical Method”, Journal of Sound and Vibration, Vol. 319, pp. 681-697, 2009.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-02-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-02-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信