§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0609201013565600
DOI 10.6846/TKU.2010.00187
論文名稱(中文) 以掃流透析過濾及透析濃縮葡萄糖/木糖水溶液
論文名稱(英文) Use of cross-flow diafiltration & dialysis for glucose-xylose concentration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 陳冠忠
研究生(英文) Kuan-Chung Chen
學號 697400140
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-21
論文頁數 99頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 陳水田(bcchen@gate.sinica.edu.tw)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 黃國楨(hwang@mail.tku.edu.tw)
關鍵字(中) 透析過濾
透析
葡萄糖
分離效率
關鍵字(英) Diafiltration
Dialysis
Glucose
Separation Efficiency
第三語言關鍵字
學科別分類
中文摘要
本研究是以平板式掃流透析過濾與透析來分離稻稈酵素水解後溶液中的糖類。以孔徑0.025um之醋酸纖維膜與5kD、10kD再生纖維膜進行透析與過濾實驗,探討過濾方式、膜的種類與膜孔的大小對過濾速度、過濾阻力、糖的阻擋率與產率的影響。首先以孔徑0.025um與0.1um之醋酸纖維膜進行單成份葡萄糖的過濾,探討掃流速度與透膜壓差對過濾性能的影響;實驗結果顯示:影響濾速的主要阻力來源為薄膜的阻力,而對糖的阻擋率皆小於百分之十。經由濃度極化膜式的解析,可以獲得模式中的參數,並得以預估濾速。若以稻稈酵素水解過後的水解液來進行過濾,實驗結果顯示:以5kD再生纖維膜進行透析過濾時,濾速過低,所以濾液中糖的產率不高;若改用10kD再生纖維膜進行透析過濾,則操作3小時後產率可提高2.5%。分析不同的掃流速度與透膜壓差下的各種過濾阻力可知:薄膜的阻力仍是主要的阻力來源,且糖的產率低於3%。若改用0.025um之醋酸纖維膜來進行過濾,結果發現濾速與糖的產率並沒有提高,這是因為薄膜表面有酵素的結垢層產生所致。經由阻力分析可知:主要的過濾阻力為結垢層造成的阻力,佔了總阻力的72%,改變掃流速度從0.1到0.5m/s時阻力從66%到72%,改變過濾壓差阻力從44%到72%,主要的影響為過濾壓差的影響。若以0.025um之醋酸纖維膜與10kD再生纖維膜進行透析實驗,結果發現醋酸纖維膜表面不會形成結垢層,而且掃流速度越快,收集到糖的總量也就越多,但在60分鐘內即可達平衡。比較相同掃流速度下透析過濾與透析的產率,在操作3小時(時間)內,使用再生纖維膜進行透析過濾可以獲得較高的糖產率,但由於薄膜的阻力,所以糖的產率還是低於3%。
英文摘要
In this study, sugars produced by enzyme hydrolysis of rice straw are separated by cross-flow diafiltration and dialysis. Three kinds of membranes, made of mixed cellulose ester with a mean pore size of 0.025 um and made of regenerated cellulose with MWCO of 5 kD and 10 kD, are used in experiments. The effects of filtration mode, membrane type and pore size, cross-flow velocity and filtration pressure on the filtration rate, sugar rejection and yield are discussed. In the first part, 0.025 um and 0.1 um membrane made of mixed cellulose ester are used to filter pure glucose suspension. Experimental results show that major filtration resistances are caused by the membrane, and the sugar rejections are less than 10% within the operating conditions of this study. Concentration polarization model, which parameters can be obtained using experimental data, is employed to estimate the filtration rate. In the second part, the suspension obtained from rice straw hydrolysis is used in diafiltration and dialysis after a pretreatment. The results show that the filtration rate in diafitration using 5 kD regenerated cellulose membrane is very low, the sugar yield in the filtrate is therefore low. When 10 kD regenerated cellulose membrane is used in diafitration, the sugar yield increases to 2.5% in 3 hours operation. The membrane resistances are the main resistance source under various cross-flow velocities and filtration pressure, and the yield of sugar is still lower than 3%. On the other hand, the results of filtration using 0.025 um mixed cellulose ester membrane indicate that no obvious improvements on the filtration rate and sugar yield can be found due to the formation of a fouled layer on the membrane surface. The resistance due to this fouled layer is as high as 72% of the total resistance. The filtration resistance increases from 66% to 72% as cross-flow velocity increases from 0.1 to 0.5 m/s. Filtration pressure plays more effects on the resistance, the resistance changes from 44% to 72% of the total resistance in the conditions of this study. In the dialysis experiments using 0.025 um mixed cellulose ester membrane, no fouled layer is formed on the membrane, and the collected sugar increases with increasing cross-flow velocity. The pseudo-steady state will be reached in 60 min. Comparing the yields obtained in diafitration and dialysis under the same cross-flow velocity, the diafitration using 10 kD regenerated cellulose membrane yields more sugars in 3 hours operations. However, the yield of sugar is lower than 3% due to the fouling resistance.
第三語言摘要
論文目次
目錄
中文摘要                                                  I                                                 
英文摘要                                                II                                                  
目錄                                                     IV
圖目錄                                                 VIII                                                   
表目錄                                                   XI   
第一章 緒論	1
1-1前言	1
1-2研究動機與目標	5
第二章 文獻回顧	6
2-1酵素水解稻桿	6
2-2葡萄糖	7
2-2-1葡萄糖簡介	7
2-2-2葡萄糖的製備	8
2-3木糖	8
2-3-1木糖簡介	8
2-3-2木糖的製備	9
2-4糖類測定方法與應用	10
2-4-1糖類測定方法	10
2-4-2糖類之應用	12
2-4-3糖類的過濾	12
2-5透析過濾	14
2-6透析	15
第三章  理論	17
3-1 掃流過濾阻力串聯模式:	17
3-2阻擋率(Rejection)的定義:	18
3-3產率(Yield)的定義:	19
3-4擬穩定濾速之預測:	20
3-5濃度極化模式	22
3-6大分子之阻擋機構	24
第四章 實驗裝置與步驟	27
4-1實驗裝置	27
4-1-1透析過濾裝置	27
4-1-2透析裝置	29
4-2實驗物料	31
4-2-1實驗藥品	31
4-2-2實驗濾膜	32
4-3實驗設備與分析儀器	33
4-3-1實驗設備	33
4-3-2分析儀器	34
4-4實驗步驟	35
4-4-1稻桿前處理	35
4-4-2稻桿水解實驗:	35
4-4-3過濾前處理:	35
4-4-4透析過濾:	35
4-4-5透析:	37
4-4-6實驗後再生纖維膜之清洗:	38
4-4-7 3,5-dinitrosalicylic acid(DNS)配置方法:	39
4-4-8糖類濃度之測量方法:	39
第五章  實驗結果與討論	41
5-1葡萄糖單成份之透析過濾	41
5-1-1壓力對濾速及阻力的影響	41
5-1-2掃流速度對濾速及阻力的影響	43
5-1-3濃度對濾速及阻力的影響	46
5-1-4濃度對阻擋率及產率的影響	49
5-1-5不同膜孔徑對濾速及阻力的影響	51
5-1-6不同孔徑對阻擋率及產率的影響	54
5-2水解液透析過濾	57
5-2-1 5kD再生纖維膜對濾速及阻力的影響	57
5-2-2 10kD再生纖維膜對濾速及阻力的影響	60
5-2-3 0.025μm醋酸纖維膜對濾速及阻力的影響	63
5-2-4膜的種類與孔徑大小對濾速的影響	65
5-2-5壓力對阻擋率及產率的影響	67
5-2-6掃流速度對阻擋率及產率的影響	70
5-3水解液透析	74
第六章  結論	79
符 號 說 明	81
參考文獻	84
附錄	89
附錄A 實驗藥品之詳細資料	89
附錄B 實驗設備與儀器之詳細資料	91
附錄C 濾膜之詳細資料	92
附錄D 濾液中纖維酵素的量測	95
附錄E  10kD再生纖維膜阻力的量測	98
圖目錄
Fig.1-1 The filtration spectrum.	3
Fig.1-2 Schematics of dead-end filtration and cross-flow filtration.	4
Fig.2-1 The color reaction of glucose.	10
Fig.3-1 A schematic diagram around the cake membrane surface in a cross-flow microfiltration.	26
Fig.4-1 A schematic diagram of cross-flow diafiltration system.	28
Fig.4-2 A schematic diagram of dialysis system.	30
Fig.4-3 The absorbance vs. concentrations of Glucose.	40
Fig.5-1Time courses Filtration flux in cross-flow diafiltration of glucose under different filtration pressures.	   42
Fig.5-2 Filtration resistances of glucose in cross-flow diafiltration under different filtration pressures.	43
Fig.5-3 Time courses Filtration flux in cross-flow diafiltration of glucose under different cross-flow velocities.	44
Fig.5-4 Filtration resistances of glucose in cross-flow diafiltration under different cross-flow velocities.	45
Fig.5-5 Time courses Filtration flux in cross-flow diafiltration	46
Fig.5-6 Filtration resistances of glucose in cross-flow diafiltration under different cross-flow velocities.	47
Fig.5-7 Cross-flow velocities courses of pseudo steady state filtration rates in cross-flow diafiltration under various concentrations.	48
Fig.5-8 Effect of cross-flow velocities and concentrations on the rejection of Glucose.	50
Fig.5-9 Effect of cross-flow velocities and concentrations on the yield of Glucose.	51
Fig.5-10 Time courses Filtration flux in cross-flow diafiltration of glucose under different filtration pressures.	52
Fig.5-11 Filtration resistances of glucose in cross-flow diafiltration under different filtration pressures.	53
Fig.5-12 Filtration pressures courses of pseudo steady state filtration rates in cross-flow diafiltration under various pore sizes.	54
Fig.5-13 Effect of filtration pressures and pore sizes on the rejection of Glucose.	55
Fig.5-14 Effect of filtration pressures and pore sizes on the yield of Glucose.	56
Fig.5-15 Time courses Filtration flux in cross-flow diafiltration of	58
Fig.5-16 Filtration resistances of hydrolysis suspension in cross-flow diafiltration under different filtration pressures and cross-flow velocities.	59
Fig.5-17 Time courses Filtration flux in cross-flow diafiltration of	61
Fig.5-18 Filtration resistances of hydrolysis suspension in cross-flow diafiltration under different filtration pressures and cross-flow velocities.	62
Fig.5-19 Time courses Filtration flux in cross-flow diafiltration of	64
Fig.5- 20 Filtration resistances of hydrolysis suspension in cross-flow diafiltration under different filtration pressures and cross-flow velocities.	65
Fig.5-21 Filtration pressures courses of pseudo steady state filtration rates in cross-flow diafiltration under various pore sizes.	66
Fig.5-22 Cross-flow velocities courses of pseudo steady state filtration rates in cross-flow diafiltration under various pore sizes.	67
Fig.5-23 Effect of filtration pressures and pore sizes on the rejection of hydrolysis suspension.	68
Fig.5-24 Effect of filtration pressures and pore sizes on the yield of hydrolysis suspension.	69
Fig.5-25 Effect of cross-flow velocities and pore sizes on the rejection of hydrolysis suspension.	71
Fig.5-26 Effect of cross-flow velocities and pore sizes on the yield of hydrolysis suspension.	72
Fig.5-27 After 3 hour diafiltration of 10kD RC membrane.	73
Fig.5-28 After 3 hour diafiltration of 0.025μm membrane.	73
Fig.5-29 Time courses concentration in cross-flow dialysis of hydrolysis   suspension under different cross-flow velocities.	74
Fig.5-30 Time courses concentration in cross-flow dialysis of hydrolysis   suspension under different cross-flow velocities.	75
Fig.5-31 Effect of cross-flow velocities on the yield of  hydrolysis suspension.	76
Fig.5-32 Effect of cross-flow velocities on the yield of hydrolysis suspension.	77
Fig.5-33 After 3 hour dialysis of 10kD RC membrane.    78
Fig.5-34 After 3 hour dialysis of 0.025μm membrane.	78
Fig.C-1 The top view of the 0.025 um mixed cellulose ester membrane.	       92
Fig.C-2 The side view of the 0.025 mixed cellulose ester membrane.	           93
Fig.C-3 The side view of the Regenerated Cellulose membrane.                94
Fig.E-1 Filtration resistance of membrane in cross-flow diafiltration under 
      various immersion time in the water.                                98
Fig.E-2 Filtration resistance of membrane in cross-flow diafiltration under 
      various immersion time in the hydrolysis suspension.                   99
表目錄
Table 4-1 The operating conditions used in this study.	37
Table 4-2 The operating conditions used in this study.	38
參考文獻
Abbas M. and V. P. Tyagi, “Analysis of a Hollow-fibre Artificial
Kidney Performing Simultaneous Dialysis and Ultrafiltration,”
Chem. Eng. Sci. 42, 133 (1987)

Bowen, W.R. and A.W. Mohammad, “Diafiltration by nanofiltration: Prediction and optimization,” AIChE J., 44, 1799-1812 (1998).

Cheng, T. W., H. M. Yeh, and C. T. Gau, “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol., 33, 2295-2309 (1998).

Cho, C.W., D.Y. Lee and C.W. Kim, “Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system,” Carbohydrate Polymers, 54, 21-26 (2003).

Cooney, D. O., S. S. Kim and E. J. Davis, “ Analysis of Mass
Transfer in Hemodialyzers of Laminar Blood Flow and
Homogeneous Dialysate,” Chem. Eng. Sci., 29, 1731 (1974)

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith,
F. (1956). Colorimetric method for determination of sugars and
related substances. Anal. Chem, 28:350-356.

Fayed, A.E., Z.H. Zidan, A.A.K. Abou-Arab and M.N.I. Magdoub, “Ultrafiltration membrane permeability of some milk contaminants”, International Dairy Journal, 5, 569-576 (1995).

Foley, G. and J. Garcia, “Ultrafiltration flux theory based on viscosity and osmotic effects: application to diafiltration optimization,” J. Membr. Sci., 176, 55-61 (2000).

Gostoli C., and A. Gatta, “ Mass Transfer in a Hollow Fiber
Dialyzer,” J. Membrane Sci. 6, 133 (1980)

Goulas, A.K., P. G. kapasakalidis, H. R. Sinclair, R.A. Rastall and A. S. Crandison, “Purification of oligosaccharides by nanofiltration,” J. Membr. Sci., 209, 321-335 (2002).
García-Molina, V., S. Esplugas, T. Wintgens, and T. Melin, "Ultrafiltration of aqueous solutions containing dextran", Desalination, 188, (1-3), 217-227 (2006). 
Grimsurd, L. and A. L. Bavv, “ Velocity and Concentration Profiles
for Laminar Flow of Newtonian Fluid in a Dialyzer,” Chem. Eng.
Prog. Ser., 62(66), 20 (1966)

Grimsurd, L. and A. L. Babb, “Velocity and Concentration Profiles for Laminar Flow of a Newtonian Fluid in a Dialyzer,” Chem. Eng. Prog. Symp. Ser., 62, 20 (1966).

Hwang, K. J. and K. P. Lin, "Cross-flow microfiltration of dual-sized submicron particles", Sep. Sci. Technol., 37, (10), 2231-2249 (2002). 
Hwang, K. J. and Y. H. Cheng, "The role of dynamic membrane in cross-flow microfiltration of macromolecules", Sep. Sci. Technol., 38, (4), 779-795 (2003). 
Hwang, K. J., Y. H. Cheng, and K. L. Tung, "Modeling of cross-flow microfiltration of fine particle/macromolecule binary suspension", J. Chem. Eng. Jpn., 36, (12), 1488-1497 (2003). 
Hwang, K. J. and H. C. Hwang, "The purification of protein in cross-flow microfiltration of microbe/protein mixtures", Sep. Purif. Technol., 51, (3), 416-423 (2006). 
Jagannathan R. and U. R. Shettigar, “ Analysis of a Turblar
Hemodialyser-Effect of Ultrafiltration and Dialysate
Concentration,” Med. & Biol. & Comput. 15, 134 (1977)

Jaffrin, M.Y. and J.Ph. Charrier, “Optimization of ultrafiltration and diafiltration processes for albumin production,” J. Membr. Sci., 97, 71-81 (1994).


Krstić, D.M., M. N, Tekić, Z. Z. Zavargo, M.S. Djurić and G.M. Ćirić, “Saving water in a volume-decreasing diafiltration process,” Desalination, 165, 283-288 (2004).

Martinez-Ferez, A., A. Guadix and E.M. Guadix, “Recovery of caprine milk oligosaccharides with ceramic membranes,” J. Membr. Sci., 276, 23-30 (2006).

Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428 (1959).

Moreno-Villoslada, I., V. Miranda, M. Jofré, P. Chandía, J.M. Villatoro, J. L. Bulnes, M. Cortés, S. Hess and B. L. Rivas,“Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration,” J. Membr. Sci., 272, 137-142 (2006).


Nataraj, S., R. Schomäcker, M. Kraume, I. M. Mishra, and A. Drews, "Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration", J. Membr. Sci., 308, (1-2), 152-161 (2008). 
Popvich Robert P., T. Graham Christopher and Albert L. Babb, “The
Effect of Membrane Diffusion and Ultrafiltration Properties on
Hemodialyzer Design and Performance,” Chem. Eng. Symp. Ser.
67, 105 (1971)
Polotsky, A. E. and A. N. Cherkasov, "On the mechanism of flexible chain polymer ultrafiltration", Sep. Sci. Technol., 41, (9), 1773-1787 (2006). 
Susanto, H. and M. Ulbricht, "Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans", J. Membr. Sci., 266, (1-2), 132-142 (2005). 
Susanto, H., H. Arafat, E. M. L. Janssen, and M. Ulbricht, "Ultrafiltration of polysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling control by membrane surface modification", Sep. Purif. Technol., 63, (3), 558-565 (2008). 
Tu, J. W. and C. D. Ho, “Mass Transfer Modeling of Conjugated Graetz
Problem in Multi-Pass Mass Exchangers with External Recycle,”
Tamkang J. Sci. Eng. 9, 331 (2006).
Vernhet, A. and M. Moutounet, "Fouling of organic microfiltration membranes by wine constituents: importance, relative impact of wine polysccharides and polyphenols and incidence of membrane properties", J. Membr. Sci., 201, (1-2), 103-122 (2002). 
Ye, Y., P. L. Clech, V. Chen, and A. G. Fane, "Evolution of fouling during cross-flow filtration of model EPS solutions", J. Membr. Sci., 264, (1-2), 190-199 (2005). 
Ye, Y., P. Le Clech, V. Chen, A. G. Fane, and B. Jefferson, "Fouling mechanisms of alginate solutions as model extracellular polymeric substances", Desalination, 175, 7-20 (2005). 
Zator, M., M. Ferrando, F. López, and C. Güell, "Membrane fouling characterization by confocal microscopy during filtration of BSA/dextran mixtures", J. Membr. Sci., 301, (1-2), 57-66 (2007).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信