§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0608201416121500
DOI 10.6846/TKU.2014.00177
論文名稱(中文) 有機高分子Ph-LPPP在高壓下的光學與電子特性
論文名稱(英文) The Optical and Electronic Properties of Conjugated Polymer(ladder-type poly para-phenylene) Ph-LPPP under Hydrostatic Pressures
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系博士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 許喆閎
研究生(英文) Che-Hung Hsu
學號 897210026
學位類別 博士
語言別 英文
第二語言別
口試日期 2014-07-17
論文頁數 87頁
口試委員 指導教授 - 楊淑君
委員 - 唐建堯
委員 - 鄭振益
委員 - 張淑美
委員 - 高柏青
關鍵字(中) 螢光光譜
吸收光譜
光調制光譜
拉曼光譜
靜水壓
共軛高分子
關鍵字(英) PL
absorption
photo-modulaion spectrum
Raman scattering
hydrostatic pressure
conjugated polymer
第三語言關鍵字
學科別分類
中文摘要
本論文主要是測量掺雜金屬的階梯型有機共軛高分子(ladder type poly para-phenylene)Ph-LPPP粉末態與薄膜態的樣品在不同壓力下的吸收光譜、螢光光譜、光調制光譜和拉曼光譜等光學特性。在壓力增加的情況下,我們可以看到所有光譜譜線有紅位移和變寬的現象。共軛高分子的pi-pi*電子特性使得分子鍵間距因壓力增加而縮短,導致能隙變小,因而使光譜有紅位移。除此之外,分子的聚集作用造成電子雲層相互干擾,使得分子鏈間的交互作用增強,因此所有的譜線變寬。三重態激子和光漂白的生命期也被描述。由所有的光譜特性可發現壓力會造成分子的平面化,此效應可增加分子間的交互作用,因此增長其有效共軛長度,使得三重態未定域化。透過這份研究,我們可以了解Ph-LPPP的單重態、三重態、震動特性和其有效共軛長度之間的關係。
英文摘要
The optical properties, such as absorption, photoluminescence, photo-modulation and Raman scattering spectra, of blue light-emitting organic conjugated polymer, ladder-type poly(para-phenylene) (Ph-LPPP) with trace-concentration of metallic impurities, both in the powder form and in film form under various pressures were measured. Red-shift and broadening effects were found in all spectra with increasing pressure. Due to the pi-pi* character of conjugated polymers, the distance between bonds decreasing under pressure made the energy gap smaller resulting in the red shifts of spectra. Besides, the aggregates would affect the interfering between electronic clouds, such that the inter-chain coupling was stronger and resulted in the broadening of all spectra of polymer. The lifetimes of the triplet excitions and the photo-bleaching were also reported. The planarization of Ph-LPPP under pressure was discovered through all spectral features, which increases the intermolecular interaction, therefore, the effective conjugated length of the polymer, and causes the delocalization of triplet state. Through this work, we could understand the relationship between the singlet and triplet transitions, as well as the vibronic properties, of Ph-LPPP and its effective conjugated length.
第三語言摘要
論文目次
CONTENTS
ACKNOWLEDGEMENTS	i
ABSTRACT	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix

1 INTRODUCTION	1
 1-1 Prologue	1
 1-2 Introduction to Conjugated Polymer Development	2
 1-3 Introduction to Polymer 	4
1-3.1 The Fundamental Principles of Conjugated Polymers	5 

2 FUNDAMENTAL OF THEORY	9 
2-1 Motivation for Using Optical Spectroscopy	9
2-2 Absorption Spectra	10
2-2.1 Optical Absorption in Semiconductor	10
2-2.2 Absorptance	11 
2-2.3 Wavelength Dependence of α	13
 2-3 Photoluminescence Spectra	13
2-3.1 The Theory of Photoluminescenc	13
2-3.2 Organic semiconductors light-emitting and electronic energy band	14
2-3.3 The Optical Properties of Polymer	 16
 2-4 Photo-Modulation Spectra	18
 2-5 Raman Scattering Spectra	19
2-5.1 The Theory of Raman Scattering	22

3 EXPERIMENTS AND INSTRUMENTATION	27
3-1 The Diamond Anvil Cell	27
3-1.1 The Calibration of Faces of Diamond	29
     3-1.2 Gasket Production	31
     3-1.3 Pressure Calibration	32
3-2 The Setup of Experiments	35
3-2.1 The Experimental Setup for Absorption Spectrum 	35
3-2.2 The Experimental Setup for Photo-Modulation Spectrum	35
3-2.3 The Experimental Setup for Raman Scattering	37

4 INTRODUCTION TO SAMPLE	38
4-1 Properties of PPP	38
 4-2 Properties and Structure of LPPP	40
 4-3 Synthesis and Properties of Ph-LPPP	42
4-4 Loading Polymer Films	44

5 RESULTS AND DISCUSSION	46
5-1 Early Work in Ph-LPPP	46
5-2 Absorption and Photoluminescence	52
5-3 Photo-Modulation spectroscopy	56
5-4 Raman Spectroscopy	66
5-4.1 Raman Spectrum of Ph-LPPP at Atmospheric Pressure	.67
5-4.2 Raman Spectra of Ph-LPPP Under High Pressure	71

6 CONCLUSION	75
REFERENCES	77










LIST OF TABLES
Table5.1: The shift rates of PL and absorption peaks under pressure	50
Table5.2: The triplet-triplet absorption maxima energies for conjugated polymers	58
Table5.3: The shift rates of TT and PB under pressure	62
Table5.4: The peak positions of three vibration peaks in backbone of Ph-LPPP and Me-LPPP 	70
Table5.5: The shift rates of the peaks at 1600、1564 cm-1 and 1311 cm-1 with pressures	72
 
LIST OF FIGURES
Figure 1-1: Structure of ladder-type poly(para-phenylene) with a phenyl side chain at R2	1
Figure 1-2: The light-emitting layer of Alq3 nano-film 	3
Figure 1-3: Schematic diagram of LED structure	4
Figure 1-4: Chemical structure of common conjugated polymer	4
Figure 1-5:The shape of the σ-bonds	6
Figure 1-6:The diagrams of molecular orbitals and energy level for side-by-side combination  between neighboring π orbitals. 	7
Figure 2-1: The process of optical absorption in a semiconductor	11
Figure 2-2: The status of shinning light on a sample	12
Figure 2-3: The theory of electroluminescence	15
Figure 2-4: The theory of photoluminescence	15
Figure 2-5: Scheme of electronic states in conjugated molecules	17
Figure 2-6: The quantum energy transitions for Rayleigh and Raman Scattering	21
Figure 2-7: The spectrum of Rayleigh and Raman Scattering	21
Figure 3-1: Sectional view of the Piston Cylinder type DAC	27
Figure 3-2: Schematics diagram of the core of a diamond anvil cell	28
Figure 3-3: The graphic of AgI of concentric circles in 1bar and 100kbar 	30
Figure 3-4: The graphic of AgI of non-parallel diamond faces	30
Figure 3-5: Schematic diagram of the prepressing notch of gasket	31
Figure 3-6: Schematic diagram of the Electric Discharge Machine (EDM)	32
Figure 3-7: Schematic diagram of the energy level and the fluorescence of ruby	34
Figure 3-8: The fluorescence spectra of ruby in various pressure	34
Figure 3-9: The experimental setup for absorption measurements	35
Figure 3-10: The schematic experimental setup for photo-modulation spectrum	36
Figure 3-11: The experimental setup for Raman scattering measurements	37
Figure 4-1: Synthesis of soluble PPP (R=alkyl)	39
Figure 4-2: The chemical structure of LPPP	41
Figure 4-3: The synthetic scheme for the formation of ladder-type poly (para-phenylene) Ph-LPPP	42
Figure 5-1: PL spectra of Ph-LPPP powder and film at various pressures at 300K	47
Figure 5-2: The PL spectra of Ph-LPPP film with different thickness	48
Figure 5-3: Pressure dependence of the PL peak position in Ph-LPPP powder and Ph-LPPP film at 300K	50
Figure 5-4: FWHM of the PL peaks of Ph-LPPP powder and film	51
Figure 5-5: PL and Absorbance of Ph-LPPP film at 1bar at room temperature	53
Figure 5-6: The Absorption of the Ph-LPPP film at various pressures at 300K	54
Figure 5-7: Pressure dependence of absorption peaks position in Ph-LPPP film at 300K	55
Figure 5-8: The PL spectra of Ph-LPPP film at different temperature at 1bar	56
Figure 5-9: The photo-modulation spectrum   of a Ph-LPPP film in vacuum at 13K. Inset figure provides the PL of Ph-LPPP film in vacuum at 13K.	57
Figure 5-10: The triplet-triplet absorption of a Ph-LPPP film in vacuum at 13K in the pressure range 1.1kbar to 51kbar	59
Figure 5-11: The photobleaching of the fundamental absorption of a Ph-LPPP film in vacuum at 13K in the pressure range 1.1kbar to 51kbar	60
Figure 5-12: The peak positions of TT of Ph-LPPP film as functions of pressure	61
Figure 5-13: The peak positions of PB of Ph-LPPP film as functions of pressure	62
Figure 5-14: The PB and TT at various chopper-wheel frequencies	65
Figure 5-15: The lifetimes of the PB and TT at various chopper-wheel frequencies	65
Figure 5-16: Raman spectrum of Ph-LPPP at atmospheric pressure and 300K	67
Figure 5-17: Molecular Structure and bonding relative Raman spectrum of Ph-LPPP	69
Figure 5-18: Raman spectra of Ph-LPPP at various pressures at 300K	71
Figure 5-19: The rate of I1169/I1311 of Ph-LPPP with pressure up to 20 kbar	74
參考文獻
REFERENCES
﹝1﹞J. H. Burroughes et al., Nature 347, 539 (1990).
﹝2﹞H. Sirringhaus et al., Nature 401, 685 (1999).
﹝3﹞R. Hoofman et al., Nature 392, 54 (1998).
﹝4﹞U. Scherf, K. Mullen, Makromol. Chem. Rapid Comm., 1911, 12, 489.
﹝5﹞M. Pope, H.P. Kallmann, P. Magnante, J. Chem. Phy, 38, 2042 (1963).
﹝6﹞H. Shirakawa, K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phy. Rev. Lett. 1977,1098.
﹝7﹞C. W. Tang, S. A. Vanslyke. Appl. Phys. Lett, 51, 913 (1987)
﹝8﹞A. L. Burin, M. A. Ratner, J. Phys. Chem. A, 104, 4704 (2000).
﹝9﹞Y. Furukawa, H. Yonezu and A. Wakahara, 〝Monolithic integration of light-emitting devices and silicon transistors〞, 19 November 2007, SPIE Newsroom.
﹝10﹞R. D. McCullough, Adv. Mater. 1998, 10, 93.
﹝11﹞M. Yoon, K. Suh, H. Kim, Y. Kim, N. Selvapalam and P. K. Kim, Angewandte Chemie Volume 123, Issue 34, pages 8016–8019, August 16, 2011.
﹝12﹞J. H. Burroughes, D. D. C.Bradley, A. R. Brown, R. N. Marks, K. Mackay,R. H. Friend, P.L. Burns&A.B. Holmes, ”Light-emitting diodes based on conjugated polymers”, Nature, Vol.347,11 October(1990),p.539-541.
﹝13﹞G.Solomons,”Fundamedtals of Organic Chemistry”,3rd  Edition, chap.1(1990).
﹝14﹞M. J. Stanitski, L. Conrad, J. C. Peter, Principles of chemistry: The Molecular Science.
﹝15﹞Bond length and σ-bond multiplicity: Π-bond prevents short bonds Eluvathingal D. Jemmis, B. Pathak, R. B. King, F. Henry. Schaefer  Chemical Communications, 2006, 2164-2166. 
﹝16﹞J. Clark, 2100, Helping you to understand Chemistry. Chemguide, Retrieved September 12,2010.
﹝17﹞J. A. Barltrop and J. D. Coyle, Principles of Photochemistry(John Wiley & Sons, New York 1978) p. 3.
﹝18﹞Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model, ed. by N.S. Sariciftci(World Scientific , Singapore 1996).
﹝19﹞C. K. Chiang, C. R. Fincher, Y. W. Parks, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. J. MacDiarmid, Phys. Rev. Lett. 39, 1098(1977)
﹝20﹞C. Ambrosch-Draxl, J. A. Majewski, P. Vogl, and G. Leising, Phys. Rev. B 51, 9668(1995).
﹝21﹞A. Yassar , J. Roncali , F. Garnier, Macromolecules, 1989, 22 (2), pp 804–809.
﹝22﹞S. Guha, W. Graupner , S. Yang, M. Chandrasekhar,H. R. Chandrasekhar, Approaches to Polar Order; Glaser, R., Kaszynski, P., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, 2001; Vol. 798, p 127.
﹝23﹞R. Herrmann, C. Onkelinx (1986). "Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry ". Pure and Applied Chemistry 1986, 58 (12): 1737–1742. 
﹝24﹞C. Stanley; S. Douglas A. (2007). Principles of instrumental analysis. Australia: Thomson Brooks/Cole. ISBN 0-495-01201-7.
﹝25﹞K. Pakbaz, C R. Chance, and R. Silbey, Phys. Rev. B26, 5843(1982).
﹝26﹞S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and photoluminescence Spectroscopy (Academic press, San Diego 1993), pp. 27.
﹝27﹞Chapters 5.7 of S.O Kasap. Electrical Engineering Materials and Devices. Irwin 1997.
﹝28﹞G. Grem, G. Leising,  Synth. Met. 1993, 55-57, 4105.
﹝29﹞Fluorescence Qqenching of Pyrene Excited States. Http://femtolab.chem.nthu.edu.tw/.
﹝30﹞Luminescence and photoinduced absorption in ytterbium-doped optical fibres A. A. Rybaltovsky et al 2011 Quantum Electron. 41 1073.

﹝31﹞A. Smekal. (1923). "Zur Quantentheorie der Dispersion". Naturwissenschaften 11(43):873-875. 
﹝32﹞C. V. Raman, 〝 A new radiation〞Indian J. PHYS 2: 387-398. Retrieved 14 April 2013.
﹝33﹞B. Schrader,  Infrared and Raman Spectroscopy; Schrader, B. ed., VCH Publishers Inc.: New York, 1995; Chapter 4.
﹝34﹞Shang-Chi Tsai . "Raman Sacctring of PMMS polymer under hydrostatic pressure". Tamkang University (2004).
﹝35﹞A. Jayaraman, Rev. Modern Phys. 55, 65 (1983).
﹝36﹞M. Sekar, N. Kumar, PCh Sahu, NV. C. Shekar, N.Subramanian, Rev Sci Instrum. 2008 Jul;79(7):076103. 
﹝37﹞T. H. Maiman, “Optical and microwave-optical experiments in ruby,”Phys. Rev. Lett. 4:564,1960.
﹝38﹞H. K. Mao,J. Xu, P. M. Bell, Journal of Geophysical Research: Solid Earth (1978–2012) Vol 91, Issue B5, pages 4673–4676, 10 April 1986.
﹝39﹞D. Y. Kim, H. N. Cho, C. Y. Kim, Prog. Polym. Sci,. 2000, 25, 1089.
﹝40﹞S.Sax, N. Rugen-Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List and K.Mullen, Advanced Materials Vol 22, Issue 18, pages 2087–2091, May 11, 2010.
﹝41﹞D. Y.  Kim, H. N. Cho, C. Y. Kim - Progress in Polymer Science, 2000 – Elsevier.
﹝42﹞ G. Grem, G. Leditzky, B. Ullrich, G. Leising, Synth. Met., 1992,51,383.
﹝43﹞ G. K. Noren, J. K. Stille, Macromol. Rev., 1971, 5, 385.
﹝44﹞ R. H. Baughman, J. L. Bredas, R. R. Chance, R. I. Elsenbaumer, L. W. Shacklette, Chem. Rev., 1982, 82, 209.
﹝45﹞ S. A. Patil, 〝Ladder Polymers for Photonic Applications〞, Wuppertal, im Februar 2004.
﹝46﹞ L. Bian, E. Zhu, J. Tang, W. Tang, F. Zhang, Progress in Polymer Science 37 (2012) 1292-1331.
﹝47﹞ A-D. Schlutter, Synthesis of poly(para-phenylene) in Handbook of Conducting Polymers (T. Skothem, eds.), Marcel Dekker, New York, 1998,p.209.
﹝48﹞ A-D. Schlutter, Acta Polym., 1993,44,59.
﹝49﹞ U. Scherf, J. Mater. Chem., 1999, 9, 1853-1864.
﹝50﹞ G. Gerullo, S. Stafira, M. Nisoli, S. De Silvestri, G. Lanzani, G. Kranzelbinder, W. Graupner, and G. Leising, Phys. Rev. B 57, 12806 (1998).
﹝51﹞  J. M. Tour, J. J. S. Lamba, J. Am. Chem. Soc. 1993,115,4935.
﹝52﹞ D. S. Boudreaux, R. R. Chance, J. F. Wolf, L. W. Shacklette, J. L. Bredas, B. Themans, J. M. Andre, R. J. Silbey, Chem. Phys., 1986,85,4584.
﹝53﹞S. A. Patil, 〝Ladder Polymers for Photonic Applications〞, Wuppertal, im Februar 2004.
﹝54﹞G. Leising, S. Tasch, F. Meghdadi, L. Athouel, G. Froyer, U. Scherf, Synthetic Metals Vol 81, Issues2-3, 15 August 1996, Pages 185–189.
﹝55﹞A-D Schluter, Adv. Mater., 1991,3, 282.
﹝56﹞U.Scherf, K. Mullen, Polymer, 1992,33, 2443.
﹝57﹞E. Holder, N. Tessler and A. L. Rogach, J. Mater. Chem., 2008,18, 1064-1078.
﹝58﹞Gispert, J.R. (2008). Coordination Chemistry. Wiley-VCH. P. 483. ISBN 3-527-31802-X.
﹝59﹞W. Graupner, S. Eder, K. Petrisch, G. Leising, and U. Scherf, Synth. Met. 84, 507 (1997).
﹝60﹞U. Scherf , J. Mater. Chem. 9, 1853, (1999).
﹝61﹞J. M. Lupton , A. Pogantisch , T. Piok , E.J.W. List , S. Patil , U. Scherf , Phy. Rev. Lett. 89, 16, 16401, (2002).
﹝62﹞Y. Gao, Surface analytical studies of interfaces in organic semiconductor devices. Materials Science and Engineering: R: Reports, 2010. 68(3): p. 39-87.
﹝63﹞K. Petritsch, W. Graupner, G. Leising, and U. Scherf, Synth. Met. (1997).
﹝64﹞S. Tasch, A. Niko, G. Leising, and U. Scherf, Appl. Phys. Lett. 68, 1090 (1996)
﹝65﹞C. Ambrosch Draxl, J. A. Majewski, P. Vogl, and G. Leising, Phys. Rev. B 51, 9669 (1995).
﹝66﹞J. Stampfl, S. Tasch, G. Leising, and U. Scherf, Synth. Met. 71,2125 (1995).
﹝67﹞G. Leising, S. Tasch, W. Graupner, in: T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds.), Hb of Conducting Polymers,Marcel Dekker,New York, 1998,pp.847-880.
﹝68﹞ K. Paudel, H. Knoll, M. Chandrasekhar, and S. Guha, J. Phys. Chem. A 2010, 114, 4680–4688.
﹝69﹞A. Amirav, U. Even, Joshua Jortner, Chemical Physics Letters Volume 67, Issue 1,
 1 November 1979, Pages 9–12.
﹝70﹞J. O. Romano, M. Hoffmann, M. P. De Haas, L. D. A. Siebbeles, J. M. Warman, Nature, 1998,392,54.
﹝71﹞Lin, Young-Xiang,Chang, Shu-Mei Synthesis and Emission Device Fabrication of Benzothiazole Contained Pendent PPV Polymers, June,2004.
﹝72﹞C. Clementi, F. Rosi, A. Romani, R. Vivani, BG. Brunetti, C. Miliani, APPLIED SPECTROSCOPY Volume 66, Number 10, 2012.
﹝73﹞T. Q. Nguyen, V. Doan, B. J. Schwartz , J. Chem. Phys. 110, 4068 (1999).
﹝74﹞B. J. Campo, J Duchateau, C. R. Ganivet, B. Ballesteros, J. Gilot, M. M. Wienk, W. D. Oosterbaan, L. Lutsen, TJ. Cleij, Gema de la Torre, Rene’ A. J. Janssen, D. Vanderzande and T. Torres, Dalton Transactions Cite this: Dalton Trans., 2011, 40, 3979.
﹝75﹞D. A. Halliday, P. L. Burns, R. H. Friend, D. D. C. Bradely, A. B. Holmes, and A. Kraft, Synth. Met. 55-77, 954(1993)
﹝76﹞T. W. Hagler, K. Pakbaz, K. Voss, and A.F. Heeger, Phys. Rev. B 44, 8652 (1991).
﹝77﹞D. C. Hannah, J. Yang, P. Podsiadlo, M. K. Y. Chan, A. Demortier̀e, D. J. Gosztola, V. B. Prakapenka, G. C. Schatz, U. Kortshagen, and R. D. Schaller, American Chemical Society Nano Lett. 2012, 12, 4200-4205.
﹝78﹞M. Knaapila, Z. Konoˆpkova’, M. Torkkeli, D. Haase, H.-P. Liermann, S. Guha, and U. Scherf, PHYSICAL REVIEW E 87, 022602 (2013).
﹝79﹞ H.G. Drickamer and C.W. Frank, Electronic Transitions and the High Pressure Chemistry and Physics of Solids, Chapman and Hall , 1973.
﹝80﹞ S. Guha , W. Graupner , S. Yang , M. Chandrasekhar 1, H. R. Chandrasekhar , G. Leising  “Optical Properties of Poly(Para-Phenylenes) under High Pressure” Physica Status Solidi B, Vol. 211, 177 1999. (p 177-188).
﹝81﹞ S. Guha , Jun Zhou, Zhiguo Xia, Mengxia Yang and Kai Shen ,J. Mater. Chem., 2012, 22, 21935-21941.
﹝82﹞ M. Chandrasekhar, S.Guha, W.Graupner, AdV. Mater. 2001, 13, 613.
﹝83﹞ Grem, G. ; Leising, G. Synth. Met. 1993, 55-57, 4105.
﹝84﹞ Gruner, J. Adv.Mater. 1994, 6. 748.
﹝85﹞ I. B. Berlman, J. Chem. Phys. 52, 5616(1970).
﹝86﹞ K. Uchida, S. Sato, and Y. Takahashi, J. Luminescence 48 &49, 377 (1991).
﹝87﹞ T. W. Hagler, K. Pakbaz, J. Moulton, F. Wudl, P. Snith, and A. J. Heeger, Polymer Communcation 32, 339 (1991).
﹝88﹞R.A.J. Janssen, L. Smilowitz, N. S. Sariciffic and D. Moses, J. Chem. Phys. 101 (3), 1 August 1994.
﹝89﹞ K. Yoshono, K. Nakao, M. Onoda, and R. Sugimoto, J. Phys. Cond. Matt. 1, 1009 (1989).
﹝90﹞ H.D. Burrows, M. da G. Miguel, A.P. Monkman, I. Hamblett, S. Navaratnam, Journal of Molecular Struture 563-564 (2001) 41-50.
﹝91﹞ A.P. Monkman, H.D. Burrows. M. da G. Miguel, I. Hamblett, S. Navaranam, Chem. Phys. Lett.307 (1999) 303.
﹝92﹞ M. A. Baldo, D.F. O,Brien, M.E. Thompson, S.R. Forrest, Phys. Rev. B 60 (1999) 14 422.
﹝93﹞ T. Q. Nguyen, V. Doan, B. J. Schwartz, J. Chem. Phys. 110 (1999) 4068.
﹝94﹞ J. B. Coon, R.E. DeWames, C.M. Loyd,  Journal of Molecular Spectroscopy Vol. 8, 1962, Pages 285–299.
﹝95﹞ Y. Liu, S. Jiang, K. Glusac, D. H. Powell, D. F. Anderson, and K. S. Schanze, J. AM. CHEM. SOC. 2002, 124, 12412-12413.
﹝96﹞C. H. Hsu, C. Y. Chen and S. C Yang, “The Photoluminescence of Ph-LPPP Polymer Under Hydrostatic Pressure”, 2014.
﹝97﹞Birks, J. B., Ed. Organic Molecular Photophysics; J. Wiley: New York, 1973.
﹝98﹞ (a) Kober, E. M.; Caspar, J. V.; Lumpkin, R. S.; Meyer, T. J. J. Phys. Chem. 1986, 90, 3722. (b) Strouse, G. F.; Schoonover, J. R.; Duesing, R.; Boyde, S.; Jone, W. E., Jr.; Meyer, T. J. Inorg. Chem. 1995, 34, 473.
﹝99﹞ R. D’Amato, T. Sone, M. Tabata, Y. Sadahiro, M. V. Russo, and A. Furlani, Macromolecules 1998, 31, 8660-8665.
﹝100﹞M. Tabata, T. Sone, Y. Sadahiro, K. Yokota, Y. Nozaki, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 36, 217–223 (1998).

﹝101﹞ D.Beljonne, J. Cornil, R. H. Friend, R. A. J. Janssen, and J. L. Bredas, J. Am. Chem. Soc. 118, 6453 (1996).
﹝102﹞W. Graupner, G. Cerullo, M. Nisoli, S. De Silvestri, G. Lanzani, E. J. W. List, G. Leising, U. Scherf, Phys.l Rev. Lett. 81, 3259-3262 (1998).
﹝103﹞W. Graupner et al., Phys. Rev. Lett. 77, 2033 (1996).
﹝104﹞ P. Vogl and D. K. Campbell, Phys. Rev. Lett. 62, 2012 (1989).
﹝105﹞ L. Cuff, M. Kertesz, U. Scherf, K. Mu‥llen, Synth. Met. 69 (1995) 683.
﹝106﹞ L. Cuff, M. Kertesz, J. Phys. Chem. 98 (1994) 12223.
﹝107﹞C. Godon, J.P. Buisson, S. Lefrant, J. Sturm, M. Klemenc, W.Graupner, G. Leising, M. Mayer, A.D. Schlu‥ter, U. Scherf, Synth.Met. 84 (1997) 673.
﹝108﹞D. Somitsch, F.P. Wenzl, U. Scherf, G. Leising, P. Knoll, Macromol.Symp. 181 (2002) 389.
﹝109﹞D. Somitsch, F.P. Wenzl, E.J.W. List, P. Wilhelm, U. Scherf, G.Leising, P. Knoll, Macromol. Symp. 183 (2002) 383.
﹝110﹞D. Somitsch, F.P. Wenzl, J. Kreith, M. Pressl, R. Kaindl,U. Scherf , G. Leising, P. Knoll, Synthetic Metel 138 (2003) 39-42.
﹝111﹞Chih-Yuan Chen , Shu-Chun Yang, Raman Scattering of M-LPPP Polymer Under Hydrostatic Pressure,June,2008.
﹝112﹞K. N. Baker, A. V. Fratini, T. Resch, H. C. Knachel, W. W.Adams, E. P. Socci, and B. L. Farmer, Polymer 34, 1571(1993).
﹝113﹞L. A. Carreira and T. G. Towns, J. Mol. Struct. 41, 1(1977).
﹝114﹞R. J. Hemley, “ Effects of high pressure on molecules,”Annual Review of Phys. Chem. Vol. 51, pp. 763-800,2000.
﹝115﹞M. Chandrasekhar, S. Guha, W. Graupner, AdV. Mater. 2001, 13, 613.
﹝116﹞Q.G. Zeng, Z.J. Ding, X.D. Tang, Z.M. Zhang, J. of Lumin., 115, 32-38(2005).
﹝117﹞E. Mulazzi, A. Ripamonti, J. Wery, B. Dulieu, S. Lefrant, Phys. Rev. B60 (1999).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信