§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0608201218460700
DOI 10.6846/TKU.2012.00251
論文名稱(中文) 鈷含量對碳化鎢磨削特性及表面性狀影響之研究
論文名稱(英文) Investigation of the effect of cobalt concentration on the grindability of cemented carbide
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 彭揚景
研究生(英文) Yang-Ching Peng
學號 698371365
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-10
論文頁數 72頁
口試委員 指導教授 - 趙崇禮
關鍵字(中) 磨削加工
碳化鎢
表面粗糙度
關鍵字(英) Grinding
WC
Surface roughness
第三語言關鍵字
學科別分類
中文摘要
玻璃模造製程(GMP)在大量生產高精度光學元件,如球面及非球面玻璃透鏡及自由曲面光學元件,是非常具有前景的一項技術。然而,只有極少數的材料可以承受在玻璃模造成形時,產生的化學反應、機械應力及高溫等影響,而這類的模具材料大多是難加工的材料。致使要將這類的材料加工到次微米等級的形狀精度及奈米等級的表面粗糙度是相當困難且耗費成本。而在可選擇的材料為數不多的情形下,碳化鎢(WC)是目前業界最常應用於玻璃模造的模具材料之一。碳化鎢,是由碳化鎢與結合劑鈷燒結成的材料,為碳化鎢顆粒及鈷結合成的複合材料。鈷含量對於碳化鎢的機械性質扮演著很重要的角色。因此本研究的目的為探討不同鈷含量對於碳化鎢的磨削特性之影響。而本研究所選用的加工參數為主軸轉速、切削深度與進給,了解此加工條件對加工後表面所造成的影響。研究發現,較低的鈷含量其碳化鎢有著較高的硬度值及較佳的表面粗糙度(Ra)。在本研究中,鈷含量0%至3%的碳化鎢其表面粗糙度值可達到5nm,其結果優於鈷含量6%至13%的10nm。
英文摘要
Glass molding process (GMP) is regarded as a very promising technique for mass producing high precision optical components such as spherical/aspheric glass lenses and free-form optics. However, only a handful of materials can sustain the chemical reaction, mechanical stress and temperature involved in the glass molding process and almost all of these mold materials are classified as hard-to-machine materials. This makes the machining of these materials to sub-micrometer form accuracy and nanometer surface finish a rather tough and expensive task. Amongst those handful choices, tungsten carbide (WC) is by far the most commonly used mold material in GMP industry. WC, also known as sintered/cemented WC with cobalt (Co) binder, is a metal matrix composite of WC particles and Co matrix. Cobalt concentration plays an important role in shaping mechanical properties of the obtained WC/Co materials. This research aimed to investigate the effect of Co concentration on the grindability of WC/Co materials. Efforts have been made to correlate grinding parameters such as spindle speed, cut depth and feed to the obtained surfaces. It is found that, despite of higher hardness values, better surface finish can be achieved on WC/Co specimen of lower Co concentration. In the present study, surface roughness (Ra) values better than 5nm and 10nm were obtained on WC/Co specimens of 0~3% and 6~13% Co concentrations respectively.
第三語言摘要
論文目次
目錄
致謝 ................................. I
中文摘要...........................II
英文摘要...................................III
目錄 ............................................ V
圖目錄 ................................... VII
表目錄 ...................................... X
第一章緒論...............................................1
1-1 前言.................................................1
1-2 研究背景.............................................2
1-3 研究動機與目的.......................................5
第二章 文獻回顧與理論基礎................................6
2-1硬脆材料特性..........................................6
2-1-1碳化鎢..............................................6
2-2 表面粗糙度分析.......................................9
2-2-1 表面組織定義.......................................9
2-2-2 定義表面粗糙度的方法..............................11
2-3 壓痕探討............................................12
2-3-1 壓痕理論探討......................................13
2-3硬脆材料製造方法.....................................18
第三章 實驗設備與實驗步驟...............................23
3-1 實驗目的............................................23
3-2 實驗規劃............................................23
3-3實驗流程圖...........................................24
3-4 實驗設備與方法......................................25
3-4-1 加工材料..........................................25
3-4-2 砂輪、加工參數....................................25
3-4-2 超精密加工機......................................26
3-4-3 微硬度機..........................................28
3-4-4 雷射共軛焦顯微鏡..................................28
3-4-5 光學顯微鏡........................................30
3-4-6 掃描式電子顯微鏡..................................30
3-4-7 切削油............................................31
第四章 結果與討論.......................................32
4-1壓痕實驗.............................................32
4-1-1 WC-Co硬度值實驗...................................32
4-1-2 WC-Co破裂韌性	.....................................34
4-2磨削加工參數選擇與表面分析...........................36
4-2-1不同進給量影響	.....................................36
4-2-2不同切削深度影響...................................48
4-2-3不同含鈷量的碳化鎢影響.............................58
4-3不同含鈷量碳化鎢工件移除量與砂輪磨耗實驗.............59
4-3-1 凹痕實驗..........................................59
4-3-1角度磨削研究.......................................61
4-3-1磨削比實驗.........................................65
第五章 結論.............................................67
參考文獻................................................69

圖目錄
圖1-1光學透鏡熱壓成形流程圖................................1
圖1-2光學透鏡模具模具與光學透鏡成品........................3
圖1-3砂輪磨耗及破裂模式結構圖..............................5
圖2-1碳化鎢結晶組成........................................7
圖2-2碳化鎢微結構圖........................................8
圖2-3具有相同不規則高度但間隔不同之表面....................9
圖2-4粗糙度及波紋所形成的表面.............................10
圖2-5表面外形代表粗糙度、波紋及形式.......................11
圖2-6Ra與Rq示意圖.........................................12
圖2-7波峰與波谷最大高度示意圖.............................12
圖2-8壓痕實驗.............................................15
圖2-9微壓痕產生中央、徑向裂痕與橫向裂痕示意圖.............16
圖2-10磨削脆性材料產生延性磨削機制........................19
圖2-11刀具與工件接觸結果示意圖(a)傳統切削(b)磨削(c)超精密加工(d)刮痕滑動.............................................19
圖2-12加工示意圖..........................................20
圖2-13磨削陶瓷材料時的熱量分佈............................22
圖3-1實驗規劃流程圖.......................................24
圖3-2碳化鎢工件...........................................25
圖3-3NACHi ASP01超精密加工機..............................26
圖3-4超精密加工示意圖.....................................27
圖3-5微小維克氏硬度試驗機FUTURE-TECH FM-300e..............28
圖3-6雷射共軛焦顯微鏡 Keyence VK-9700.....................29
圖3-7 Olympus BX51M 光學顯微鏡............................30
圖3-8掃瞄式電子顯微鏡HITACHI S-2600H......................31
圖3-9場發射掃瞄式電子顯微鏡 LEO 1530 FE-SEM...............31
圖4-1加工示意圖...........................................32
圖4-2微壓痕菱形D1與D2量測示意圖...........................33
圖4-3硬度值折線圖.........................................34
圖4-4微壓痕產生橫向裂痕與量測示意圖.......................35
圖4-5橫向裂痕長度垂直方向與平行方向影響...................36
圖4-6加工參數與加工位置...................................37
圖4-7進給量對WC-Co表面粗糙度影響Ra(切深=1.5μm)...........38
圖4-8不同進給量對WC-Co0%表面粗糙度影響(a)f=2μm/rev.、(b)f=5μm/rev.與(c)f=10μm/rev..................................39
圖4-9不同進給量對WC-Co6%表面粗糙度影響(a)f=2μm/rev.、(b)f=5μm/rev.與(c)f=10μm/rev..................................41
圖4-10不同進給量對WC-Co13%表面粗糙度影響(a)f=2μm/rev.、(b)f=5μm/rev.與(c)f=10μm/rev...............................43
圖4-11粗糙度值示意圖......................................44
圖4-12WC-Co0%,(a)(b)f=2μm/rev.、(c)(d)f=5μm/rev.與(e)(f)f=10μm/rev.之SEM圖與OM圖.................................45
圖4-13WC-Co6%,d=1.5μm,(a)(b)f=2μm/rev.、(c)(d)f=5μm/rev.與(e)(f)f=10μm/rev.之SEM圖與OM圖...................46
圖4-14WC-Co13%,d=1.5μm,(a)(b)f=2μm/rev.、(c)(d)f=5μm/rev.與(e)(f)f=10μm/rev.之SEM圖與OM圖...................47
圖4-15切削深度對WC-Co表面粗糙度影響Ra(進給=2μm/rev.).....48
圖4-16不同切削深度對WC-Co0%表面粗糙度影響(a)d=0.3μm、(b)d=0.7μm與(c)d=1.5μm.....................................50
圖4-17不同切削深度對WC-Co6%表面粗糙度影響(a) d=0.3μm、(b) d=0.7μm與(c)d=1.5μm.....................................52
圖4-18不同切削深度對WC-Co13%表面粗糙度影響(a) d=0.3μm、(b) d=0.7μm與(c)d=1.5μm.....................................54
圖4-19WC-Co0%,f=2μm/rev.,(a)(b) d=0.3μm,(c)(d)d=0.7μm,及(e)(f)d=1.5μm之SEM圖與OM圖..........................55
圖4-20WC-Co6%,f=2μm/rev. (a)(b) d=0.3μm,(c)(d)d=0.7μm,及(e)(f)d=1.5μm之SEM圖與OM圖.............................56
圖4-21WC-Co13%,f=2μm/rev. (a)(b) d=0.3μm,(c)(d)d=0.7μm,及(e)(f)d=1.5μm之SEM圖與OM圖..........................57
圖4-22不同鈷含量碳化鎢工件比較(切深=0.7μm)...............58
圖4-23凹痕實驗加工示意圖..................................59
圖4-24相同切削深度的移除截面圖WC-Co(a)0%(b)6%(c)13%.......60
圖4-25磨削角度示意圖......................................61
圖4-26磨削加工位置示意圖..................................61
圖4-27碳化鎢工件Level 0動作表示...........................62
圖4-28Level 0要求精度.....................................62
圖4-29磨削角度45°之橫截面.................................63
圖4-30磨削角度45°砂輪磨耗示意圖...........................63
圖4-31磨削角度15°之橫截面.................................63
圖4-32磨削角度15°砂輪磨耗示意圖...........................64
圖4-33磨削角度75°之橫截面.................................64
圖4-34磨削角度75°砂輪磨耗示意圖...........................65
圖4-35磨削比..............................................66
 
表目錄
表3-1磨削加工參數.........................................25
表3-2超精密加工機NACHi ASP01規格表........................27
表3-3雷射共軛焦顯微鏡 Keyence VK-9700規格表...............29
表4-1WC-Co硬度量測值......................................33
表4-2加工參數與分析結果...................................35
參考文獻
【1】	精密儀科中心, “ 光學元件精密製造與檢測”, 初版, 新竹:儀科中心, (2007).
【2】	L. Yin, A.C. Spowage, K. Ramesh, H. Huang, J.P. Pickering, E.Y.J. Vancoille, “Influence of microstructure on ultra precision grinding of cemented carbides”, International Journal of Machine Tools & Manufacture 44 (2004), pp.533–543.
【3】	NACHI , “http://www.nachi.com/”
【4】	E. Paul Degarmo, J.T. Black, Ronald A. Kohser, ”Matererials and Processes in Manufacturing”, Ninth Edition (2006), pp. 509-515
【5】	J.W. Gardener, H.T. Hingle, “From Instrμmentation to Nanotechnology”, Gordon and Breach Science Publishers, USA, (1991).
【6】	J. Gurland, “New Scientific Approaches to Development of Tool Materials”, Int. Mater. Rev., 33, No.3, 151 (1988)
【7】	C.S. Kim, ” Microstructural-Mechanical Property Relationships in WC-Co composites”, Ph. D. Thesis,Carnegie Mellon University Pittsburgh, PA 15213, USA
【8】	R.R. Reeber, K. Wang, “Thermophysical Properties of a-Tungsten Carbide”, J. Am. Ceram. Soc., 82, No. 1, 129 (1999)
【9】	王廷飛, “表面組織解說”, 前程出版社, (1984).
【10】	Z.W. Zhong,”Ductile or partial ductile mode machining of brittle materials” , Int J Adv Manuf Technol (2003), pp.579-585.
【11】	V. Weiss, ”Application of Fracture Mechnical to Design”, Sagamore Army Materials Reserch Conference Proceedings, (1975), pp.1-22.
【12】	B. R. Lawn, D.B. Marshall, “Hardness, Toughness and Brittleness: An Indentation Analysis”, Journal Am. Ceram Soc, Vol. 62(1979), pp.347-349
【13】	A. Duszova, ”Hardness and Fracture Toughness of Cemented Carbides” , (2011), pp.532-534
【14】	B.R. Lawn, “Measurement of Thin-Layer Surface Stress by Indentation Fracture”, Journal Material Sci, Vol. 19(1984), pp.4061-4067.
【15】	B.R. Lawn, M.V. Swain, ”Microfracture Beneath Point Indentations in Brittle Solids”, J Mater Sci, 10 (1975) , pp.113.
【16】	H.H.K. Xu, “Influence of Microstructure on Indentation and Machining of Dental Glass-Ceramics”, Journal of Materials Research 11 (9) (1996), pp.2325-2337.
【17】	A.G. Evans, D.B. Marshall, ”Wear Mchanisms in Ceramics”, American Society of Metals, Metal Park, OH(1981), pp.439-452.
【18】	T.G. Bifano, T.A. Dow, R.O. Scattergood, ”Ductile-Regime Grinding: A New Technology for Machining Brittle Materials”, ASME Journal of Engineering for Industry 113 (5) (1991) pp.184-189
【19】	V.C. Venkatesh, L. Inasaki, H.K. Toenshof, ” Observations on Polishing and Ultraprecision Machining of Semiconductor Substrate Materials”, Annals of The CIRP 44 (2) (1995) pp.611–618.
【20】	D. Christopher, S.D. Kenny, R. Smith, “Nanoscratching of Silver (100) With A Diamond Tip”, Nucl. Instrμm. Methods Phys. Res. B202 (2003), pp.294-299.
【21】	H.Q. Sun, R. Irwan, H. Huang, ”Effect of Microstructure on Mechanical Properties and WearCharacteristics of Cemented Tungsten Carbides”, Advanced Materials Research Vols. 76-78 (2009), pp.609-612
【22】	S. Ndlovu, K. Durst, M. Goken, ”Investigation of The Slidin Contact Properties of WC-Co Hard Metals Using Nanoscratch Testing”,	 Wear 263 (2007) , pp.1602-1609
【23】	J. Pirso, M. Viljus, S. Letunovits, ” Friction and Dry Sliding Wear Behavior of Cermets”, Wear 260 (2005), pp.815-824.
【24】	J.W. Gardener, H.T. Hingle, “From Instrμmentation to Nanotechnology”, Gordon and Breach Science Publishers, USA, (1991).
【25】	A.V. Gopal, P. V. Rao, ” Selection of Optimμm Conditions for Maximμm Material Removal Rate with Surface Finish and Damage as Constraints in SiC Grinding”, International Journal of Machine Tools & Manufacture 41 (2001), pp.1831-1843
【26】	P.S. Sreejith, B.K.A. Ngoi, ”Material Removal Mechanisms in Precision Machining of New Materials”, International Journal of Machine Tools & Manufacture 41 (2001), pp.1831-1843
【27】	W.K. Chen, T. Kuriyagawa, H. Huangc, N. Yosihara , ” Machining of micro aspherical mould inserts” Precision Engineering 29 (2005), pp.315-323
【28】	廖怜怡, “單點車削碳化鎢之研究”, 台灣大學機械工程學系碩士論文, 民國一百年
【29】	J. Yan , Z. Zhang, T. Kuriyagawa ,” Tool wear control in diamond turning of high-strength mold materials by means of tool swinging”,CIRP Annals - Manufacturing Technology 59 (2010), pp.109-112
【30】	J. Li, J.C.M. Li, ”Temperature Distribution in Workpiece During Scratching and Grinding”, Materials Science and Engineering A 409 (2005),  pp.108-119
【31】	H.A. Abdel-Aal, S.T. Smith, J.A. Patten, ”On The Development of Surface Temperature in Precision Single Point Diamond Abrasion of Semiconductors”, Int. Comm.Heat MassTransfer, Vol.24, No.8 (1997), pp.1131-1140
【32】	范偉華, “精密加工硬脆材料之表面性狀研究”, 淡江大學機械與機電工程學系博士論文, 民國一百年
【33】	S. Kalpakjian, S.R. Schmid, ”Manufacturing Enginneering and Technology”, Fifth Edition in SI Units (2006), pp.798-799
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信