淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0608201215260400
中文論文名稱 凝膠衍生(P/Si)-TiO2膜光電性質的研究
英文論文名稱 Study on photovoltaic properties of the gel-derived (P/Si)-TiO2 films
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 王昶文
研究生英文姓名 Chang-Wen Wang
學號 698400172
學位類別 碩士
語文別 中文
口試日期 2012-07-17
論文頁數 57頁
口試委員 指導教授-余宣賦
委員-尹庚鳴
委員-張正良
委員-余宣賦
中文關鍵字 染料敏化太陽能電池  二氧化鈦  溶膠-凝膠法  水熱法  光電轉換效率 
英文關鍵字 Dye-sensitized solar cells  Titanium dioxide  Sol-gel method  Hydrothermal method  Photoelectric conversion efficiency 
學科別分類
中文摘要 本實驗利用溶膠-凝膠法和/或水熱法來製備TiO2、P-TiO2和 (P/Si)-TiO2膜。實驗過程中,添加磷與矽元素於TiO2結構中並比較不同的製備程序來看其TiO2膜結晶的相態、晶粒尺寸、膜厚、染料吸附量、膜表面形態、可見光穿透率、電化學交流阻抗以及光電轉換效率的影響。以溶膠-凝膠法所製備含磷與矽元素的銳鈦礦TiO2膜在染料(N719)的吸附量上明顯的比市售粉體P25所製備出的膜吸附量還高且所組裝的DSSCs元件呈現較高的光電轉換效率(提高約60%)。結合溶膠-凝膠法和水熱法所製得含磷與矽元素的銳鈦礦TiO2膜其對光敏化染料的吸附能力則更進一步提高,且當膜厚為20 μm左右時所組裝的DSSCs元件具光電轉換效率6.12%,而其所相對應的開環電壓為0.68V、短路電流為13.92 mA/cm2和填充因子為0.65。
英文摘要 The (P/Si)-TiO2 films for DSSCs application were synthesized by the sol-gel method and/or hydrothermal methods. Effects of calcination temperatures on phase contents, grain growth, film thickness, dye loading, surface morphology, visible light transmittance, electrochemical impedance and photoelectric conversion efficiency of the (P/Si)-TiO2 films were examined. Doping P and Si elements in the anatase-TiO2 can improve dye (N719) loading of the TiO2 particles. The photoelectric conversion of DSSCs using the (P/Si)-TiO2 film prepared by the sol-gel method gave better photoelectric conversion than that using a commercial TiO2, Degussa P25, film. By combining the sol-gel and hydrothermal methods, the obtained (P/Si)-TiO2 films absorbed more N719 than that prepared by solely the sol-gel method. The DSSCs using the (P/Si)-TiO2 film of 20-μm thickness prepared by the sol-gel and hydrothermal methods can give a photoelectric conversion of 6.12% with Voc = 0.68V, Jsc = 13.92 mA/cm2 and f.f.= 0.65.
論文目次 目錄
中文摘要………………………………………………………………....I
英文摘要………………………………………………………………...II
目錄……………………………………………………………………..III
圖目錄…………………………………………………………………...V
表目錄………………………………………………………………...VIII
第一章 緒論……………………………………………………………..1
第二章 文獻回顧………………………………………………………..4
2-1 染料敏化太陽能電池……………………………………………….5
2-2 TiO2結構…………………………………………………………….7
2-3 TiO2膜……………………………………………………………….8
2-4光電轉化效率的提升………………………………………………..9
第三章 實驗步驟與特性分析…………………………………………14
3-1 實驗用藥品………………………………………………………...14
3-2 DSSCs電極層的製備……………………………………………...15
3-3 DSSCs元件之組合………………………………………………...20
3-4 分析儀器…………………………………………………………...21
3-4-1 X-射線繞射分析……………………………………….....22
3-4-2 掃描式電子顯微鏡……………………………………….23
3-4-3 紫外光-可見光光譜儀……………………………………24
3-4-4 電化學交流阻抗光譜儀………………………………….25
3-4-5 太陽光模擬器…………………………………………….25
3-4-6 表面輪廓儀……………………………………………….26
3-5 電轉化效率值之計算………………………………………….......26
第四章 結果與討論……………………………………………………28
4-1 凝膠衍生各式TiO2膜的特性分析………………………………..28
4-2 結合溶膠-凝膠法和水熱法所製備出TiO2膜之特性分析……….36
4-3 sh-P/Si-TiO2-z膜的特性分析……………………………………...43
第五章 結論……………………………………………………………50
參考文獻………………………………………………………………..52

圖目錄
圖1-1 DSSCs電池組裝示意圖…………………………………………2
圖2-1 染料敏化太陽能電池的工作原理示意圖………………………6
圖2-2 染料和TiO2表面形成C-O-Ti鍵示意圖………………………...9
圖3-1 凝膠衍生(a) TiO2, (b) P- TiO2和(c) (P/Si)-TiO2奈米粉體之製備流程圖…………………………………………………………………..18
圖3-2 溶膠-凝膠法: TiO2, P- TiO2和(P/Si)-TiO2膜之製備流程圖…18
圖3-3 結合溶膠-凝膠法和水熱法: (P/Si)-TiO2膜之製備流程圖………………………………………………………………………..19
圖3-4 DSSCs元件組合之示意圖……………………………………..20
圖3-5 X光對晶格所產生之繞射……………………………………...22
圖3-6 太陽光模擬器原理架構示意圖………………………………..25
圖3-7 光電轉化元件之I-V曲線圖……………………………………27
圖4-1-1 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3膜的XRD圖…..29
圖4-1-2 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3膜中TiO2晶粒的尺寸…………………………………………………………………..29
圖4-1-3 (a)P25、(b) s-o-TiO2-3、(c) s-P-TiO2-3和(d) s-P/Si-TiO2-3膜的SEM圖……………………………………………………………….31
圖4-1-4 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3膜在紫外光-可見光下的光穿透圖譜…………………………………………………..32
圖4-1-5 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3的染料吸附量和膜厚圖………………………………………………………………..33
圖4-1-6 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3膜組裝成電池的電化學交流阻抗圖譜………………………………………………..34
圖4-1-7 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3的I-V曲線圖…35
圖4-2-1 不同製備程序(P/Si)-TiO2膜的XRD圖譜…………………...37
圖4-2-2 比較不同製程(P/Si)-TiO2粉體和膜的晶粒尺寸……………38
圖4-2-3 (a) s-P/Si-TiO2-3和(b) sh-P/Si-TiO2-3膜的SEM俯視圖……39
圖4-2-4 s-P/Si-TiO2-3和sh-P/Si-TiO2-3膜的紫外光-可見光穿透圖譜………………………………………………………………………..39
圖4-2-5 為s-P/Si-TiO2-3和sh-P/Si-TiO2-3膜其染料吸附量和膜厚圖………………………………………………………………………..40
圖4-2-6 為s-P/Si-TiO2-3和sh-P/Si-TiO2-3膜的I-V曲線圖………….41
圖4-2-7 比較s-P/Si-TiO2-3和sh-P/Si-TiO2-3膜組裝成電池的電化學交流阻抗圖譜…………………………………………………………..43
圖4-3-1 sh-P/Si-TiO2-z (z: 3-6)膜的XRD圖譜……………………….44
圖4-3-2 sh-P/Si-TiO2-z (z: 3-6)膜中TiO2晶粒的尺寸……………......44
圖4-3-3 為(a) sh-P/Si-TiO2-3、(b) sh-P/Si-TiO2-4、(c) sh-P/Si-TiO2-5和(d) sh-P/Si-TiO2-6膜的SEM俯視圖………………………………...45
圖4-3-4 為sh-P/Si-TiO2-z (z: 3-6)膜的可見光穿透圖譜……………..46
圖4-3-5 為sh-P/Si-TiO2-z (z: 3-6)膜其染料吸附量和膜厚圖………..47
圖4-3-6 sh-P/Si-TiO2-z (z: 3-6)膜的I-V曲線圖………………………48
圖4-3-7 為sh-P/Si-TiO2-z (z: 3-6)膜組裝成電池的電化學交流阻抗圖譜………………………………………………………………………..49
表目錄
表 2-1 TiO2結晶相態與物性…………………………………………...8
表3-1 實驗所使用的主要化學藥品…………………………………..14
表4-1 比較 P25、s-o-TiO2-3、s-P-TiO2-3和s-P/Si-TiO2-3膜於DSSCs表現的行為……………………………………………………………..36
表4-2 比較不同製程的(P/Si)-TiO2膜於DSSCs表現的行為………42
表4-3 sh-P/Si-TiO2-z (z: 3-6)膜於DSSCs表現的行為……………….48

參考文獻 1. 羅欣蓮,奈米二氧化鈦薄膜的微觀組織結構及其染料敏化太陽電池,北京科技大學碩士學位論文,(2004)。
2. 藍鼎,羅欣蓮,萬發榮等,TiO2薄膜的製備方法及其對染料敏化太陽電池性能的影響,感光科學與光學,(2003)。
3. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis.” Chem. Rev., 95, 69-96 (1995).
4. Y. Ohko, K. Hashimoto, A. Fujishima, “Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films.” J. Phys. Chem. A, 101, 8057-8062 (1997).
5. A. Fujishima, T.N. Rao, D.A. Tryk, “Titanium dioxide photo- catalysis.” J. Photochem. Photobiol. Chem., 1, 1-21 (2000).
6. J.C. Yu, J. Yu, L. Zhang, W. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders.” J. Photochem. Photobiol. A, 148, 263-271(2002).
7. R. Arroyo, G. Córdoba, J. Padilla, V.H. Lara, “Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process.” Mater. Lett., 54, 397-402(2002).
8. C.P. Sibu, S. Rajesh Kumar, P. Mukundan, K.G.K. Warrier, “Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol-Gel Nanosized Titanium Oxide.” Chem. Mater., 14, 2876-2881 (2002).
9. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, “Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties.” J. Mater. Chem., 13, 2261-2265 (2003).
10. Z.M. Shi, W.G. Yu, X. Bayar, “Study of crystallization behavior of Ce4t-modified titania gels.” Scripta Mater., 50, 885-889 (2004).
11. Y. Miyake, H. Tada, “Photocatalytic degradation of methylene blue with metal-doped mesoporous titania under irradiation of white light.” J. Chem. Eng. Jpn., 37, 630-635 (2004).
12. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, “Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2.” J. Solid State Chem., 177, 3490-3498(2004).
13. A. Burns, G. Hayes, W. Li, J. Hirvonen, J. Derek Demaree, S. Ismat Shah, “Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures.” Mater. Sci. Eng. B, 111, 150-155 (2004).
14. M.A. Barakat, G. Hayes, S. Ismat Shah, “Effect of Cobalt Doping on the Phase Transformation of TiO2 Nanoparticles.” J. Nanosci. Nanotech., 5, 759(2005).
15. E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig, “NIOBIUM-DOPED TITANIA NANOPOWDERS FOR GAS SENSOR APPLICATIONS.” J. Optoelec. Adv. Mater., 7, 1395-1398 (2005).
16. K.V. Baiju, C.P. Sibu, K. Rajesh, P. Krishna Pillai, P. Mukundan, K.G.K. Warrier, W. Wunderlich, “An aqueous sol–gel route to synthesize nanosized lanthanadoped titania having an increased anatase phase stability.” Mater. Chem. Phys., 90, 123-127(2005).
17. H. Yu, Z. Zhang, F. Hu, “Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV–vis light irradiation.” J. Alloys Compd., 465, 484(2008).
18. S.K. Samantaray, K. Parida, “Studies on anion-promoted titania 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania.” J. Mol. Catal. A, 176, 151-163 (2001).
19. K. Nukumizu, J. Nunoshige, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, "TiNxOyFz as a stable photocatalyst for water oxidation in visible light(<570nm)." Chem. Lett., 32, 196-197 (2003).
20. T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, “Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2.” Chem. Lett., 32, 330-331 (2003).
21. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light.” Appl. Catal. A, 265, 115-121 (2004).
22. H. Irie, Y. Watanabe, K. Hashimoto, “Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst.” Chem. Lett., 32, 772-773 (2003).
23. J.C. Yu, L. Zhang, Z. Zheng, J. Zhao, “Synthesis and Chara- cterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activityv.” Chem. Mater., 15, 2280-2286 (2003).
24. T. Ohno, T. Tsubota, K. Nishjima, Z. Miyamoto, “Degradation of Methylene Blue on Carbonate Species-doped TiO2 Photocatalysts under Visible Light.” Chem. Lett., 33, 750-751 (2004).
25. H. Tokudome, M. Miyauchi, “N-doped TiO2 Nanotube with Visible Light Activity.” Chem. Lett., 33, 1108-1109 (2004).
26. L. KŐrösi, I. Dékány, “Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide.” Colloids Surf., 280, 146-154 (2006).
27. H. Yu, “Photocatalytic abilities of gel-derived P-doped TiO2.” J. Phys. Chem. Solids, 68, 600-607 (2007).
28. H. Yu, “Phase development and photocatalytic ability of gel-derived P-doped TiO2.” J. Mater. Res., 22, 2565-2572 (2007).
29. H. Yu, S. Yang, “Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements.” J. Alloys Compd., 492, 695-700 (2010).
30. M. Sun, W. Fu, H. Yang, Y. Sui, B. Zhao, G. Yin, Q. Li, H. Zhao, G. Zou, “One-step synthesis of coaxial Ag/TiO2 nanowire arrays on transparent conducting substrates: Enhanced electron collection in dye-sensitized solar cells.” Electrochem. Commun., 13, 1324-1327 (2008).
31. J. Chae, D.Y. Kim, S. Kim, M. Kang, “Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials.” J. Ind. Eng. Chem., 16, 906-911(2010).
32. A. Kitiyanan, S. Ngamsinlapasathian, S. Pavasupree, S.Yoshikawa, “The preparation and characterization of nanostructured TiO2–ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells.” J. Solid State Chem., 178, 1044-1048(2005).
33. Y. Lee, J. Chae, M. Kang, “Comparison of the photovoltaic efficiency on DSSC for nanometer sized TiO2 using a conventional sol–gel and solvothermal methods.” J. Ind. Eng. Chem., 16, 609-614 (2010).
34. K.M. Lee, V. Suryanarayananb, K.C. Ho, “A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells.” Sol. Energy Mater. Sol. Cells, 91, 1416-1420 (2007).
35. K.M. Lee, V. Suryanarayananb, K.C. Ho, “The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells.” Sol. Energy Mater. Sol. Cells, 90, 2398-2404 (2006).
36. V.S. Saji, M. Pyo, “Dye sensitized solar cell of TiO2 nanoparticle/ nanorod composites prepared via low-temperature synthesis in oleic acid.” Thin Solid Films, 518, 6542-6546 (2010).
37. T.K. Yun, S.S. Park, D. Kim, Y.K. Hwang, S. Huh, J.Y. Bae, Y.S. Won, “Pore-size effect on photovoltaic performance of dye- sensitized solar cells composed of mesoporous anatase-titania.” J. Power Sources, 196, 3678-3682 (2011).
38. C.M. Chen, Y.C. Hsu, S.J. Cherng, “Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells.” J. Alloys Compd., 509, 872–877 (2011).
39. W.L. Bragg, “The diffraction of short electromagnetic waves by a crystal.” Proceeding of the Cambridge Philosophical Society, 17, 43-57 (1914).
40. H. Yu, S. Yang, “Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements.” J. Alloys Compd., 492, 695-700 (2010)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信