§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0607201801230100
DOI 10.6846/TKU.2018.00200
論文名稱(中文) 利用X光能譜和中子散射技術研究單晶材料鍶鐵氧和鎳錳鈦氧之電子和磁結構
論文名稱(英文) The Electronic and Magnetic Structures of SrFeO3-δ and Ni0.4Mn0.6TiO3 Single Crystals Studied by X-ray Spectroscopy and Neutron Scattering
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系博士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 謝尚憲
研究生(英文) Shang-Hsien Hsieh
學號 601210122
學位類別 博士
語言別 英文
第二語言別
口試日期 2018-07-02
論文頁數 165頁
口試委員 指導教授 - 彭維鋒(wfpong@mail.tku.edu.tw)
委員 - 林宏基
委員 - 杜昭宏
委員 - 薛宏中
委員 - 邱昭文
關鍵字(中) X光吸收近邊結構能譜術
X光線偏振二向性能譜術
X光發射能譜術
共振非彈性X光散射
衍生X光吸收精細結構
彈性和非彈性中子散射
小角度中子散射
關鍵字(英) XANES
XLD
XES
RIXS
EXAFS
ENS
INS
SANS
第三語言關鍵字
學科別分類
中文摘要
由同步輻射光所衍生出來的X光相關能譜實驗技術提供了具備元素針對性的電子、原子結構資訊於基礎科學研究、材料研發及產業應用上,包括針對晶格結構的X射線繞射分析(X-ray Diffraction, XRD)、電子或軌域結構的X光吸收近邊結構(X-ray Absorption Near Edge Structure, XANES)和X光線偏振二向性能譜術(X-ray Linear Dichroism, XLD)、佔據態及其交互作用的X光發射能譜術(X-ray Emission Spectroscopy, XES)和共振非彈性X光散射能譜術(Resonant Inelastic X-ray Scattering, RIXS)及局部原子結構的衍生X光吸收精細結構(Extended X-ray Absorption Fine Structure, EXAFS)等;另外,中子相關散射實驗技術能對分析磁結構提供最直接的形貌和證據,包括針對自旋磁矩間交互作用和動態的彈性和非彈性中子散射(Elastic and Inelastic Neutron Scattering, ENS and INS)及磁簇間交互作用的小角度中子散射(Small Angle Neutron Scattering, SANS)等。這些實驗技術被是為探討具備特殊磁結構之新穎單晶材料複雜耦合機制的有力工具。
    本文第一部分針對龐磁阻單晶材料SrFeO3-δ的巨觀物理現象和微觀電子與原子結構的關係做探討。SrFeO3-δ因為其特殊的磁結構而在電性量測上有熱滯現象,但最近發現其熱滯現象在材料為單晶型態時有異向性的行為。為了探究其物理機制,利用XANES、XLD、EXAFS來探討SrFeO3-δ在不同方向上的軌域優先態、鐵和氧之間的鍵長、結構有序度。實驗結果顯示,在升降溫過程其鐵氧八面體扭曲之行為有所不同,造成了在升降溫過程時鐵的軌域優先態3d3z2-r2轉變為3dx2-y2,進而導致了熱滯現象異向性的發生。此外,我們將價電帶光電子能譜(Valence-Band Photoemission Spectroscopy, VB-PES)和X光吸收光譜(X-ray Absorption Spectroscopy, XAS)的結果做結合更進一步確認了SrFeO3-δ的相對能隙在不同方向及不同升降溫過程時有所改變,為SrFeO3-δ有電荷密度波的假說提供了最直接的證據。我們完整地揭開SrFeO3-δ局部電子、原子與能帶結構之間的物理機制,期望拓展其潛在應用價值。
    第二部分針對XY-like自旋玻璃單晶材料Ni0.4Mn0.6TiO3(NMTO)之特殊磁結構做詳盡的分析。NMTO在近年被認為其磁結構應是準二維的XY-like自旋玻璃態,而非以往所認為的Heisenberg自旋玻璃態。利用ENS和INS探討其自旋磁矩的空間動態和交互作用,將其在自旋玻璃態時不同溫度和方向之自旋相干長度、生命週期計算出來。其結果為NMTO是XY-like自旋玻璃態一說提供了直接的證據。
    最後,近年更發現NMTO其自旋玻璃態可以利用外加電場或磁場來調控並成為新的硬碟和記憶體潛力材料,其調控機制被用toroidal glass模型解釋。我們利用SANS揭開NMTO外加磁場下磁結構的形貌和相圖,為toroidal glass一說提供了直接的證據。並利用XANES、XLD、EXAFS、RIXS針對NMTO的電子和原子結構做完整的分析,期許能開發NMTO在更多方面的應用可能性。實驗結果顯示,在自旋玻璃態時,NMTO在ab平面上有局部晶格對稱性降低的現象發生,進而造成鎳的軌域優先態從3d3z2-r2轉變為3dx2-y2。
英文摘要
The synchrotron radiation based spectroscopic techniques provide element-specific information of electronic and atomic structures for fundamental researches, material studies and industrial applications. Techniques include X-ray diffraction (XRD) for lattice structure, X-ray absorption near edge structure (XANES) and X-ray linear dichroism (XLD) for electronic and orbital structures, X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) for information of the occupied states and inherent elementary excitations, extended X-ray absorption fine structure (EXAFS) for local atomic structure. In addition, neutron scattering related techniques provide direct evidence and texture of magnetic structure, such as elastic and inelastic neutron scattering (ENS and INS) for spatial correlations and dynamics of spin moments, small angle neutron scattering (SANS) for spatial correlations of magnetic clusters. These techniques are considerable and powerful techniques for the study of various complex couplings in novel single crystal materials with special magnetic structure. 
  In the first part of this thesis, the local electronic and atomic structures of the high-quality single crystal of SrFeO3-δ were studied using temperature-dependent x-ray absorption (XAS) and valence-band photoemission spectroscopy (VB-PES) to investigate the origin of anisotropic resistivity in the ab-plane and along the c-axis close to the region of thermal hysteresis (near temperature for susceptibility maximum, Tm~78 K). All experiments herein were conducted during warming and cooling processes. The Fe L3,2-edge XLD results show that during cooling from room temperature to below the transition temperature, the unoccupied Fe 3d eg states remain in persistently out-of-plane 3d3z2-r2 orbitals. In contrast, in the warming process below the transition temperature, they change from 3d3z2-r2 to in-plane 3dx2-y2 orbitals. The nearest-neighbor (NN) Fe-O bond lengths also exhibit anisotropic behavior in the ab-plane and along the c-axis below Tm. The anisotropic NN Fe-O bond lengths and Debye-Waller factors stabilize the in-plane Fe 3dx2-y2 and out-of-plane 3d3z2-r2 orbitals during warming and cooling, respectively. Additionally, a VB-PES study further confirms that a relative band gap opens at low temperature in both the ab-plane and along the c-axis, providing the clear evidence of the charge-density-wave nature of SrFeO3-δ single crystal.
  In the second part, ENS and INS experiments were performed on a single crystal of Ni0.4Mn0.6TiO3 (NMTO) to study the spatial correlations and dynamics of spins in the XY-like spin-glass (SG) state. Magnetization measurements reveal signatures of SG behavior in NMTO with a freezing temperature of TSG ~ 9.1 K. The ENS experiments indicated that the intensity of magnetic diffuse scattering starts to increase around 12 K, which is close to TSG. Also, spin-spin correlation lengths (ξ) at 1.5 K are approximately 21.05±0.6 and 72.99±1.6 Å in the interlayer and the in-plane directions, respectively, demonstrating that magnetic correlations in NMTO exhibit quasi two-dimensional-like antiferromagnetic order. INS results show quasi-elastic neutron scattering (QENS) profiles below TSG. The life-time of dynamic correlations (τ), obtained from the QENS profiles, are approximately 16.27±0.8 and 15.88±1.9 psec at 10 K for two positions (0.00, 0.00, 1.52) and (0.01, 0.01, 1.50), respectively. Therefore, our experimental findings demonstrate that short-range-ordered antiferromagnetic clusters with short-lived spin correlations are present in the XY-like SG state of NMTO at a temperature of approximately TSG.
  In final part, SANS, RIXS, and XAS experiments on the single crystal of NMTO have been carried out to study the role of electronic and atomic properties in the XY-like SG state. SANS presents the texture of toroidal glass and phase diagram of NMTO. RIXS experiments provide the evidence of crystal field (d-d) excitations at Ni and Mn L3-edge. However, spin-flip excitations are only observable which are prominent at Ni L3-edge RIXS. Using temperature dependent XANES, XLD and EXAFS studies along with RIXS, it has been shown that symmetry breaking/ lattice distortion occurs at low temperature near SG phase transition due to the local disorder in Ni-O bond lengths, and further induced the orbital preference occupation charge from out-of-plane state (3d3z2-y2) to in-plane state (3dx2-y2). We therefore believe that XY-like SG state of NMTO is associated with the unoccupied in-plane (3dx2-y2) states.
第三語言摘要
論文目次
Acknowledgement ....................................................................................................... i
Abstract ...................................................................................................................... ii
Table of Contents ...................................................................................................... vi
List of Figures ......................................................................................................... viii
List of Tables .......................................................................................................... xvii
Chapter 1 	Introduction
1.1	Strongly Correlated Electron System ................................................................ 1
1.2	Necessity for X-ray Spectroscopic and neutron scattering Studies ............... 3
Chapter 2 	Experimental Techniques
2.1	Synchrotron Radiation ................................................................................... 8
2.2	X-ray Diffraction (XRD) ............................................................................. 10
2.3	X-ray Absorption Spectroscopy (XAS) ...................................................... 13
2.4	X-ray Linear Dichroism (XLD) .................................................................. 17
2.5	Normal/Resonant X-ray Emission Spectroscopy (N/RXES) ...................... 19
2.6	Elastic/Inelastic Neutron Scattering (ENS/INS) ......................................... 24
2.7	Small Angle Neutron Scattering (SANS) .................................................... 29
Chapter 3 	Anisotropy in the thermal hysteresis of resistivity and charge density wave nature of single crystal SrFeO3-δ
3.1	Introduction ................................................................................................. 33
3.2	Experimental ............................................................................................... 37
3.3	Results and Discussion ................................................................................ 39
3.4	Conclusion ................................................................................................... 68
Chapter 4 	Correlations and dynamics of spins in an XY-like spin-glass Ni0.4Mn0.6TiO3 single crystal system
4.1	Introduction ................................................................................................. 70
4.2	Experimental ............................................................................................... 74
4.3	Results and Discussion ................................................................................ 75
4.4	Conclusion ................................................................................................... 90
Chapter 5 	Role of electronic and atomic properties in an XY-like spin-glass system Ni0.4Mn0.6TiO3
5.1	Introduction ................................................................................................. 92
5.2	Experimental ............................................................................................... 96
5.3	Results and Discussion ................................................................................ 97
5.4	Conclusion ................................................................................................. 129
Chapter 6 	Summary ............................................................................................ 131
Reference ................................................................................................................ 135
Appendix ................................................................................................................. 155
List of Figures
Figure 1-1 The scheme of the coupling between charge, orbit, lattice and spin in strongly correlated system. .......................................................................................... 2
Figure 2-1 Bragg’s law which shows the condition of diffraction. .......................... 11
Figure 2-2 Q is the vectorial difference between the incoming wave vector kin and the outgoing wave vector kout. The magnitudes of kin and kout are equal to 2π/λ. ........................................................................................................................... 12
Figure 2-3 Left panel shows the process of XAS that X-ray beam promotes core-level electrons to unoccupied valence-state levels and thereby probes these upper states by varying the incident photon energy. Right panel exhibits the name of the absorbing edges from core levels with variously principal quantum numbers. .................................................................................................................... 14
Figure 2-4 Regions of XAS data. ............................................................................. 15
Figure 2-5 The mean free path (Λ) of electrons in condensed matter. It depends strongly on the kinetic energy of electron. ................................................................ 16
Figure 2-6 XANES spectra of the format radical absorbed on the Cu(110) surface change according to the orientation of the x-ray polarization vector (P) relative to the molecule. Strongly polarization-dependent π and σ features indicate the efficient absorption while the orientation is the same between polarization and orbits. ......................................................................................................................... 18
Figure 2-7 The decay process after (a) XAS (ionization). The excited state can decay by (b) Auger electron and (b) emitted photon. .......................................................... 20
Figure 2-8 The decay process of RIXS after (a) XAS (resonant). The excited state can be unexcited by (b) elastic mode and (c) inelastic mode. ................................... 22
Figure 2-9 2-D map of the RIXS measurement of Cu L3 edge. ................................ 23
Figure 2-10 The general energy transfer range of these various interactions in RIXS. ......................................................................................................................... 24
Figure 2-11 Various applications of INS in terms of energy and momentum transfer. The region inside the trapezoidal box is the approximate range probed by three-axis instruments. ................................................................................................................ 25
Figure 2-12 2-D representation of reciprocal space showing the Ewald circle and the vector representation for ENS and INS. Here G is a reciprocal-lattice vector and q the momentum transfer within the first Brillouin zone. .................................................. 26
Figure 2-13 Vector diagrams of inelastic scattering for (a) neutron energy loss (kf < ki), (b) neutron energy gain (kf > ki). 0 represents the origin of reciprocal space. ... 28
Figure 2-14 Schematic diagram of SANS. ............................................................... 31
Figure 3-1(a) Observed (red dots), calculated (black line) and difference (bottom green line) patterns of SrFeO2.81, obtained using Lebail refinement of synchrotron X-ray powder diffraction data. Vertical check marks above difference profiles indicate Bragg reflections. Insets magnify selected pseudocubic reflections, (b) crystalline structure of SrFeO2.81; valence Fe4+ is attributed to Fe(1), Fe(3) and Fe3.5+ is attributed to Fe(2), based on previous work,1 (c) FeO5 square pyramidal, (d) FeO6 distorted octahedra, and (e) FeO6 octahedra. ............................................................. 40
Figure 3-2 Temperature-dependence of resistivity of a single crystal of SrFeO2.81, measured in ab-plane and along c-axis. Top inset shows temperature-dependence of magnetic susceptibility (χ) measured along c-axis in ZFC and FC runs in a magnetic field of 1 Tesla, and bottom inset presents room-temperature x-ray diffraction profile showing (004) Bragg peak obtained in θ-scan. ........................................................... 42
Figure 3-3(a)-(d) The temperature-dependent Fe K-edge XANES spectra of single crystal SrFeO2.81 measured at two different angles of incidence θ= 0o (with electric field E parallel to the ab-plane) and 70o (with electric field E nearly parallel to the c-axis) on warming and cooling process. Corresponding spectra were obtained for FeO, Fe3O4, and Fe2O3 powder samples at room temperature with angle θ= 0o for reference. ................................................................................................................... 47
Figure 3-4(a) and (b) Temperature-dependence of normalized Fe L3,2-edge XANES spectra of single crystal of SrFeO2.81 at two angles of incidence θ= 0o and 70o during warming and cooling. Bottom panels show corresponding XLD spectra. ................ 50
Figure 3-5 Schematic representation to elucidate out-of-plane and in-plane 3d states. The direct hybridization of Fe 3dx2-y2-O 2px, y (in-plane) and Fe 3d3z2-r2-O 2pz (out-of-plane) are probed by electric field E parallel to the ab-plane (angle of incidence, θ= 0) and electric field E nearly parallel to the c-axis (angle of incidence, θ= 70), respectively. .................................................................................................. 52
Figure 3-6 The magnitude of the FT spectra of the temperature dependent Fe K-edge EXAFS (a) and (b): in a k range from 2.65 to 11.51 Å-1 at angle of incidence θ= 0o (E//ab-plane); (c) and (d): in a k range and from 2.65 to 11.51 Å-1 at angle of incidence θ= 70o (E//c-axis) on warming and cooling process. Three main FT features A, B and C, which correspond to the nearest-neighbor Fe-O, Fe-Sr and Fe-Fe bond distances for SrFeO2.81 are marked with vertical lines. Insets show the k2χ dependence as a function of k. ....................................................................................................... 54
Figure 3-7 Temperature-dependence of the main FT feature A (corresponding to the NN Fe-O bond distance) of Fe K-edge EXAFS for (a, b) E//ab-plane and (c, d) E//c-axis in the warming and cooling process. ........................................................... 57
Figure 3-8 Variation of (a) DW factors and (b) NN Fe-O bond lengths with temperature, obtained by fitting temperature-dependent Fe K-edge EXAFS for R from 1.15 to 1.96 Å with angle of incidence θ=0o, and R from 1.04 to 1.77 Å with angle of incidence θ=70o. ........................................................................................................ 61
Figure 3-9(a)-(d) Normalized VB-PES and O K-edge XANES spectra of a single crystal SrFeO2.81 at two angles of incidence θ= 0o (E//ab-plane) and 70o (E//c-axis) during warming and cooling. VB-PES spectra are obtained at photon energy of 58 eV. Insets display linear fits to VB-PES and O K-edge XANES spectra at various temperatures and relative band gaps. ......................................................................... 66
Figure. 4-1 Magnetic structures of (a) NiTiO3 (A-type) with magnetic wave vector, q= (0, 0, 1.5) and (b) MnTiO3 (G-type) with magnetic wave vector, q= (0, 0, 0) after Yamaguchi et al. [Ref. 13]. (c) Observed (red dots), calculated (black continuous line) and difference (blue continuous line) patterns obtained following Rietveld refinement of room-temperature x-ray power diffraction pattern of NMTO. Vertical bars indicate Bragg positions. Small peak at 2θ~ 270 indicated by * represents impurity in form of rutile phase of TiO2. ................................................................................................... 72
Figure 4-2(a) Temperature-dependence of the inverse χ of polycrystalline NMTO in H=10 kOe under FC conditions. Red continuous line represents Curie-Weiss fit from 120-300K. Upper inset: XRD profile of (113) reflection of single crystal NMTO, Lower inset: temperature-dependence of ZFC and FC χ of polycrystalline sample in H=5.0 Oe, (b) Variation of real component χ’ for H // Y-axis and Z-axis (H=5.0 Oe) at 10, 100 and 1000 Hz frequencies for single crystal NMTO and (c) Neutron powder diffraction patterns obtained at 1.6 and 20 K. Arrow indicates intense diffuse scattering at Q ≈ 0.67 Å-1 at 1.6 K. Small peak at Q ≈ 1.41 Å-1 marked with * arise from λ/2 contamination from PG monochromator. ................................................... 77
Figure 4-3 Mesh scans around (0, 0, 1.5) reciprocal lattice point at (a) 1.5 K and (b) 30 K at Ef = 5.5 meV. To remove nonmagnetic contributions, 30 K data were subtracted from 1.5 K data and results are shown in (c). .......................................... 80
Figure 4-4 Temperature-dependence of ENS spectra in (a) the inter-layer/plane direction ([0, 0, L]) and (b) in-plane direction ([H, H, 1.5]) between 1.5 and 30 K. Continuous lines through dots represent Lorentzian curve fitting, discussed in text. Insets show correlation lengths and integrated intensities in the two directions. Dotted lines through data points are guide to eyes while continuous lines through the integrated intensities corresponds to the power-law fit, I∼ (TSG − T)2β. .................... 82
Figure 4-5 INS spectra as a function of energy transfer (E) for NMTO from 1.5 to 50 K in (a) (0, 0, 1.52) and (b) (0.01, 0.01, 1.50) positions. Insets in Figures, (a) and (b) show magnified view that show QENS at temperatures from 1.5 to 12 K, indicated by arrows. ....................................................................................................................... 85
Figure 4-6 Results of fitting of INS spectra for (a) (0, 0, 1.52) and (b) (0.01, 0.01, 1.50) positions at 1.5 K, using a combination of Gaussian and Lorentzian functions (continuous green line) with constant background; continuous pink line represents Gaussian component at 1.5 K. At 50 K, profile is Gaussian so a single Gaussian function (shaded blue region) is fitted to data, owing to incoherent scattering from the sample. ....................................................................................................................... 86
Figure 4-7 Temperature-dependence of half width at half maximum (ΓL and ΓG) and integrated intensities of Lorentzian (QENS) and Gaussian (central elastic) components in (a, c) (0, 0, 1.52) and (b, d) (0.01, 0.01, 1.50) positions. Integrated intensity of Lorentzian components due to QENS is zero at 20, 30 and 50 K. Error bars size for integrated intensity are comparable to data points. ............................... 88
Figure 5-1 Schematic representation of setup for SANS. The magnetic field can be applied along X- or Y-axis with neutron beam direction along c-axis of crystal. The vortex-like arrays of (Ni, Mn)2+ spins lie effectively in the XY-plane of the hexagonal unit cell. ..................................................................................................................... 99
Figure 5-2 The temperature and magnetic dependent SANS images before subtracting background. ........................................................................................... 100
Figure 5-3 (a)-(f) SANS images obtained at 5K under respective magnetic field of 5Oe, 100Oe, 0.5T, and 7T applied along [110] of the crystal with incident neutron beam direction along c-axis. (g) Proposed phase diagrams of NMTO deduced from the SANS patterns and intensities. The inset shows the partial enlarged region of 30~170 Oe at 5~7K, which presents a new phase of toroidal glass of NMTO. (h) shows the SANS images at 5K with ZFC process after subtracting the result shown on (i) as background. ............................................................................................... 101
Figure 5-4 (a) and (e) Ni and Mn RIXS spectra of NMTO at 300K and 13K with selected incident energies C1, C2, and C3 corresponding to the 300K Ni and Mn L3-edge XAS shown by vertical bars on inset, respectively. (b)-(d) and (f)-(h) show Ni and Mn RIXS spectra in an energy range near the elastic peak with selected incident energies C1 to C3, respectively. The spin-flip excitation is observed as marked by red arrow on (b) and (c). All RIXS spectra have been collected for two geometrical configurations with E//ab-plane and E//c-axis. ................................... 104
Figure 5-5 (a) Features in the RIXS spectrum of NMTO with excitation energy C2=854.2 eV close to Ni L3-edge and (b) Tanabe-Sugano diagram for 10Dq=0.90 eV, dotted line correspond to 10Dq=0.90 eV. ............................................................... 107
Figure 5-6 Normalized Ni L3,2-edge XANES spectra of NMTO for two geometrical configurations with E//ab-plane and E//c-axis at 300K and at 7K. The bottom panels show corresponding XLD (difference=E//ab - E//c) spectra. ................................. 113
Figure 5-6 Normalized Mn L3,2-edge XANES spectra of NMTO for two geometrical configurations with E//ab-plane and E//c-axis at 300K and at 7K. The bottom panels show corresponding XLD (difference=E//ab - E//c) spectra. ................................. 114
Figure 5-8 (a) and (b) RXD feature of NMTO for ab-plane and along c-axis at 8.5K. (c) and (d) The mapping RXD of NMTO for ab-plane and along c-axis at 8.5K. .. 116
Figure 5-9 (a)-(d) The magnitude of Fourier transform (FT) spectra of the temperature dependent EXAFS (a) and (b) Ni K-edge EXAFS along with E//ab-plane and E//c-axis in a k range from 2.717 to 10.000 Å-1 and from 2.704 to 10.200 Å-1, respectively. (c) and (d) Mn K-edge EXAFS along with E//ab-plane and E//c-axis in a k range from 2.714 to 11.151 Å-1 and from 3.009 to 10.942 Å-1, respectively. A magnified view of Ni/Mn-O feature and variation of k-space data have been shown in the right and left insets, respectively. All EXAFS spectra have been analyzed with phase correction. ...................................................................................................... 117
Figure 5-10 Schematic representation of local atomic structure of NMTO at room temperature. All bond lengths information are from Lebail refinements of x-ray powder diffraction patterns that performed using the Fullprof software package. . 119
Figure 5-11 Variation of (a) DW factors and (b) NN Fe-O bond lengths with temperature, obtained by fitting temperature-dependent Ni K-edge EXAFS for R from 1.00 to 2.20 Å with E//ab-plane and E//c-axis. ...............................................122
Figure 5-12 (a) the schematic representation of PPS experiment set up. (b) Temperature and delay time dependence of ΔR/R in NMTO single crystal from 15 K to 290 K. Inset: From 7 K to 15 K. (c) Temperature dependence of the frequency of oscillation component in ΔR/R along b- and c-axes from 24 K to 290 K.  Inset: From 7 K to 24 K. .....................................................................................................124
Figure 5-13 ΔR/R in NMTO single crystal at 290K along b-axis. Left inset: The oscillation component obtained by subtracting the relaxation background (blue curve). Right inset: The Fourier transform spectra obtained from the left inset. The red curve represents the Lorentz fitting for determining the central frequency of oscillation component. ...............................................................................................................126
Figure 5-14 Schematic representation of (a) preferential occupation eg state of NMTO is out-of-plane state (3d3z2-y2) on paramagnetic state, and (b) in-plane state (3dx2-y2) on XY-like SG. (c) Effect of antisymmetric DM interaction. (d) Schematic representations of top view of ab-plane while phonon softening onset at SG state. ..........................................................................................................................127
List of Tables
Table 3-1 Parameters used in atomic multiplet calculations (in units of eV). .......... 60
Table 5-1 Best fit parameters obtained from the fitting of Ni K-edge EXAFS data in the R-space mode from 1.00 to 2.20 Å for E//ab-plane and E//c-axis. Nab, σ2ab, and Rab & Nc, σ2ab, and Rc correspond to number of nearest neighbor (NN) oxygen ions around central Ni ion, square of Debye-Waller factor for Ni-O, and average Ni-O bond length in the ab-plane and c-axis, respectively. .............................................. 123
參考文獻
[1]	Y. Yamaguchi, T. Nakano, Y. Nozue, and T. Kimura, Physical review letters 108, 057203 (2012).
[2]	Y. Yamaguchi and T. Kimura, Nature communications 4, 2063 (2013).
[3]	A. Lebon, P. Adler, C. Bernhard, A. V. Boris, A. V. Pimenov, A. Maljuk, C. T. Lin, C. Ulrich, and B. Keimer, Physical review letters 92, 037202 (2004).
[4]	A. P. Ramirez, Journal of Physics: Condensed Matter 9, 8171 (1997).
[5]	L. M. Rodriguez-Martinez and J. P. Attfield, Physical Review B 54, R15622 (1996).
[6]	E. Dagotto, J. Burgy, and A. Moreo, Solid State Communications 126, 9 (2003).
[7]	E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer Berlin Heidelberg, 2013).
[8]	J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, Journal of Applied Physics 55, 2078 (1984).
[9]	M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, Journal of Applied Physics 55, 2083 (1984).
[10]	J. Hemberger, A. Krimmel, T. Kurz, H. A. Krug von Nidda, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Physical Review B 66, 094410 (2002).
[11]	R. Maezono, S. Ishihara, and N. Nagaosa, Physical Review B 57, R13993 (1998).
[12]	R. Maezono, S. Ishihara, and N. Nagaosa, Physical Review B 58, 11583 (1998).
[13]	C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Physical Review B 60, 12191 (1999).
[14]	T. Akimoto, Y. Maruyama, Y. Moritomo, A. Nakamura, K. Hirota, K. Ohoyama, and M. Ohashi, Physical Review B 57, R5594 (1998).
[15]	Y. Moritomo, T. Akimoto, A. Nakamura, K. Ohoyama, and M. Ohashi, Physical Review B 58, 5544 (1998).
[16]	L. Malavasi, M. C. Mozzati, I. Alessandri, L. E. Depero, C. B. Azzoni, and G. Flor, The Journal of Physical Chemistry B 108, 13643 (2004).
[17]	Y. Ogimoto, M. Nakamura, N. Takubo, H. Tamaru, M. Izumi, and K. Miyano, Physical Review B 71, 060403 (2005).
[18]	Y. Suzuki, H. Y. Hwang, S.-W. Cheong, and R. B. v. Dover, Applied Physics Letters 71, 140 (1997).
[19]	J. N. Eckstein, I. Bozovic, J. O’Donnell, M. Onellion, and M. S. Rzchowski, Applied Physics Letters 69, 1312 (1996).
[20]	Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, and Y. Tokura, Journal of the Physical Society of Japan 68, 3790 (1999).
[21]	M. A. López-Quintela, L. E. Hueso, J. Rivas, and F. Rivadulla, Nanotechnology 14, 212 (2003).
[22]	J. Curiale, R. D. Sánchez, H. E. Troiani, C. A. Ramos, H. Pastoriza, A. G. Leyva, and P. Levy, Physical Review B 75, 224410 (2007).
[23]	J. Curiale, M. Granada, H. E. Troiani, R. D. Sánchez, A. G. Leyva, P. Levy, and K. Samwer, Applied Physics Letters 95, 043106 (2009).
[24]	D. Pan, A. H. Schmieder, S. A. Wickline, and G. M. Lanza, Tetrahedron 67, 8431 (2011).
[25]	T. Wang and C. Wang, Accounts of Chemical Research 47, 450 (2014).
[26]	F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, and H. C. Pollock, Physical Review 71, 829 (1947).
[27]	D. Attwood, A. Sakdinawat, and L. Geniesse, X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 2017).
[28]	P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (Wiley, 2011).
[29]	M. Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley, 2006).
[30]	J. Stöhr, NEXAFS Spectroscopy (Springer, 1992).
[31]	J. J. Rehr and R. C. Albers, Reviews of Modern Physics 72, 621 (2000).
[32]	J. J. Rehr and A. L. Ankudinov, Coordination Chemistry Reviews 249, 131 (2005).
[33]	B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer Berlin Heidelberg, 2012).
[34]	A. Puschmann, J. Haase, M. D. Crapper, C. E. Riley, and D. P. Woodruff, Physical Review Letters 54, 2250 (1985).
[35]	H. B. Huang and T. Jo, Journal of the Physical Society of Japan 73, 2480 (2004).
[36]	A. Kotani and S. Shin, Reviews of Modern Physics 73, 203 (2001).
[37]	F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, 2008).
[38]	H. A. Kramers and W. Heisenberg, Zeitschrift für Physik 31, 681 (1925).
[39]	L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Reviews of Modern Physics 83, 705 (2011).
[40]	B.-Y. Wang et al., Carbon 107, 857 (2016).
[41]	G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge University Press, 2002).
[42]	L. Barré, in X-ray and Neutron Techniques for Nanomaterials Characterization, edited by C. S. S. R. Kumar (Springer Berlin Heidelberg, Berlin, Heidelberg, 2016), pp. 665.
[43]	P. Adler, A. Lebon, V. Damljanović, C. Ulrich, C. Bernhard, A. V. Boris, A. Maljuk, C. T. Lin, and B. Keimer, Physical Review B 73, 094451 (2006).
[44]	J. Blasco, B. Aznar, J. García, G. Subías, J. Herrero-Martín, and J. Stankiewicz, Physical Review B 77, 054107 (2008).
[45]	M. Abbate, G. Zampieri, J. Okamoto, A. Fujimori, S. Kawasaki, and M. Takano, Physical Review B 65, 165120 (2002).
[46]	Y. M. Zhao, R. Mahendiran, N. Nguyen, B. Raveau, and R. H. Yao, Physical Review B 64, 024414 (2001).
[47]	Y. M. Zhao and P. F. Zhou, Journal of Magnetism and Magnetic Materials 281, 214 (2004).
[48]	Y. Tsujimoto et al., Nature 450, 1062 (2007).
[49]	G. V. M. Williams, E. K. Hemery, and D. McCann, Physical Review B 79, 024412 (2009).
[50]	L. Seinberg et al., Inorg Chem 50, 3988 (2011).
[51]	L. Kienle, P. Adler, J. Strempfer, B. Keimer, V. Duppel, and F. Phillipp, Journal of Physics and Chemistry of Solids 68, 73 (2007).
[52]	Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando, Journal of Solid State Chemistry 63, 237 (1986).
[53]	J. P. Hodges, S. Short, J. D. Jorgensen, X. Xiong, B. Dabrowski, S. M. Mini, and C. W. Kimball, Journal of Solid State Chemistry 151, 190 (2000).
[54]	S. H. Lee, T. W. Frawley, C. H. Yao, Y. C. Lai, C.-H. Du, P. D. Hatton, M. J. Wang, F. C. Chou, and D. J. Huang, New Journal of Physics 18 (2016).
[55]	M. Reehuis, C. Ulrich, A. Maljuk, C. Niedermayer, B. Ouladdiaf, A. Hoser, T. Hofmann, and B. Keimer, Physical Review B 85, 184109 (2012).
[56]	W. Bao, J. D. Axe, C. H. Chen, and S. W. Cheong, Physical Review Letters 78, 543 (1997).
[57]	J. H. Park, T. Kimura, and Y. Tokura, Physical Review B 58, R13330 (1998).
[58]	S. Chi et al., Proceedings of the National Academy of Sciences 104, 10796 (2007).
[59]	V. Capogrosso, M. Malvestuto, I. P. Handayani, P. H. M. van Loosdrecht, A. A. Nugroho, E. Magnano, and F. Parmigiani, Physical Review B 87, 155118 (2013).
[60]	J. Herrero-Martin, G. Subias, J. Garcia, J. Blasco, and M. Concepción Sánchez, Physical Review B 79, 045121 (2009).
[61]	Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature 380, 141 (1996).
[62]	M. Imada, A. Fujimori, and Y. Tokura, Reviews of Modern Physics 70, 1039 (1998).
[63]	Z. Fang, I. V. Solovyev, and K. Terakura, Physical Review Letters 84, 3169 (2000).
[64]	C. C. Chen, J. Maciejko, A. P. Sorini, B. Moritz, R. R. P. Singh, and T. P. Devereaux, Physical Review B 82, 100504(R) (2010).
[65]	X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Physical review letters 102, 117005 (2009).
[66]	E. M. Julia, I. A. Vladimir, N. M. Oleg, and J. F. Arthur, Journal of Physics: Condensed Matter 14, 4533 (2002).
[67]	L. Liu et al., Physical Review B 92, 094503 (2015).
[68]	A. Maljuk, J. Strempfer, C. Ulrich, A. Lebon, and C. T. Lin, Journal of Crystal Growth 257, 427 (2003).
[69]	A. Le Bail, H. Duroy, and J. L. Fourquet, Materials Research Bulletin 23, 447 (1988).
[70]	J. Rodríguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993).
[71]	J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, Journal of the American Chemical Society 113, 5135 (1991).
[72]	A. I. Frenkel, E. A. Stern, M. Qian, and M. Newville, Physical Review B 48, 12449 (1993).
[73]	C. Piamonteze, H. C. N. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, Physical Review B 71, 012104 (2005).
[74]	C. A. Perroni, V. Cataudella, G. De Filippis, G. Iadonisi, V. Marigliano Ramaglia, and F. Ventriglia, Physical Review B 68, 224424 (2003).
[75]	J. Klein, J. B. Philipp, G. Carbone, A. Vigliante, L. Alff, and R. Gross, Physical Review B 66, 052414 (2002).
[76]	Y. Lu, J. Klein, F. Herbstritt, J. B. Philipp, A. Marx, and R. Gross, Physical Review B 73, 184406 (2006).
[77]	C. Aruta, G. Ghiringhelli, A. Tebano, N. G. Boggio, N. B. Brookes, P. G. Medaglia, and G. Balestrino, Physical Review B 73, 235121 (2006).
[78]	K. Asokan et al., Applied Physics Letters 95 (2009).
[79]	H. Kong and C. Zhu, Applied Physics Letters 88 (2006).
[80]	O. Haas, U. F. Vogt, C. Soltmann, A. Braun, W. S. Yoon, X. Q. Yang, and T. Graule, Materials Research Bulletin 44, 1397 (2009).
[81]	A. E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, and M. Takano, Physical Review B 45, 1561 (1992).
[82]	R. A. Bari, Physical Review B 3, 2662 (1971).
[83]	M. S. Senn, J. P. Wright, and J. P. Attfield, Nature 481, 173 (2011).
[84]	P. D. Battle, T. C. Gibb, and A. T. Steel, Journal of the Chemical Society, Dalton Transactions, 83 (1988).
[85]	A. Piovano, G. Agostini, A. I. Frenkel, T. Bertier, C. Prestipino, M. Ceretti, W. Paulus, and C. Lamberti, The Journal of Physical Chemistry C 115, 1311 (2011).
[86]	Q. T. Islam and B. A. Bunker, Physical review letters 59, 2701 (1987).
[87]	J. D. Budai et al., Nature 515, 535 (2014).
[88]	G. Grüner, Reviews of Modern Physics 60, 1129 (1988).
[89]	A. M. Gabovich, A. I. Voitenko, J. F. Annett, and M. Ausloos, Superconductor Science and Technology 14, R1 (2001).
[90]	F. Clerc et al., Physical Review B 74, 155114 (2006).
[91]	H. Cercellier et al., Physical review letters 99, 146403 (2007).
[92]	C. Monney et al., Physical Review B 81, 155104 (2010).
[93]	V. R. Galakhov, E. Z. Kurmaev, K. Kuepper, M. Neumann, J. A. McLeod, A. Moewes, I. A. Leonidov, and V. L. Kozhevnikov, The Journal of Physical Chemistry C 114, 5154 (2010).
[94]	H. Wadati et al., Physical Review B 71, 035108 (2005).
[95]	H. Wadati et al., Journal of the Physical Society of Japan 75, 054704 (2006).
[96]	J. Matsuno, T. Mizokawa, A. Fujimori, K. Mamiya, Y. Takeda, S. Kawasaki, and M. Takano, Physical Review B 60, 4605 (1999).
[97]	C. H. Chuang et al., Sci Rep 4, 4525 (2014).
[98]	K. Binder and A. P. Young, Reviews of Modern Physics 58, 801 (1986).
[99]	K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991), Cambridge Studies in Magnetism.
[100]	J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, 1993).
[101]	E. A. Goremychkin, R. Osborn, B. D. Rainford, R. T. Macaluso, D. T. Adroja, and M. Koza, Nature Physics 4, 766 (2008).
[102]	V. K. Anand, D. T. Adroja, A. D. Hillier, J. Taylor, and G. André, Physical Review B 84, 064440 (2011).
[103]	A. P. Murani and A. Heidemann, Physical review letters 41, 1402 (1978).
[104]	W. Bao, S. Raymond, S. M. Shapiro, K. Motoya, B. Fåk, and R. W. Erwin, Physical review letters 82, 4711 (1999).
[105]	K. Motoya, S. Kubota, and S. M. Shapiro, Journal of Magnetism and Magnetic Materials 140-144, 75 (1995).
[106]	K. Motoya, Y. Muro, and T. Igarashi, Journal of the Physical Society of Japan 78, 054711 (2009).
[107]	J. S. Gardner, B. D. Gaulin, S. H. Lee, C. Broholm, N. P. Raju, and J. E. Greedan, Physical review letters 83, 211 (1999).
[108]	W. Bao, Y. Chen, Y. Qiu, and J. L. Sarrao, Physical review letters 91, 127005 (2003).
[109]	H. Kawamura, Journal of physics. Condensed matter : an Institute of Physics journal 23, 164210 (2011).
[110]	D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, and Y. Tokura, Physical review letters 90, 177203 (2003).
[111]	E. Torikai, A. Ito, I. Watanabe, and K. Nagamine, Physica B: Condensed Matter 374-375, 95 (2006).
[112]	L. P. Lévy, Physical Review B 38, 4963 (1988).
[113]	D. Petit, L. Fruchter, and I. A. Campbell, Physical review letters 88, 207206 (2002).
[114]	R. Mathieu, A. Asamitsu, Y. Kaneko, J. P. He, and Y. Tokura, Physical Review B 72, 014436 (2005).
[115]	H. Kawamura, Journal of the Physical Society of Japan 64, 711 (1995).
[116]	R. Mathieu, J. P. He, X. Z. Yu, Y. Kaneko, M. Uchida, Y. S. Lee, T. Arima, A. Asamitsu, and Y. Tokura, EPL (Europhysics Letters) 80, 37001 (2007).
[117]	S. Chi, F. Ye, H. D. Zhou, E. S. Choi, J. Hwang, H. Cao, and J. A. Fernandez-Baca, Physical Review B 90, 144429 (2014).
[118]	G. Shirane, S. J. Pickart, and Y. Ishikawa, Journal of the Physical Society of Japan 14, 1352 (1959).
[119]	N. Mufti, G. R. Blake, M. Mostovoy, S. Riyadi, A. A. Nugroho, and T. T. M. Palstra, Physical Review B 83, 104416 (2011).
[120]	H. Yamauchi, H. Hiroyoshi, M. Yamada, H. Watanabe, and H. Takei, Journal of Magnetism and Magnetic Materials 31, 1071 (1983).
[121]	H. Yoshizawa, H. Kawano, H. Mori, S. Mitsuda, and A. Ito, Physica B: Condensed Matter 180, 94 (1992).
[122]	H. Kawano, H. Yoshizawa, A. Ito, and K. Motoya, Journal of the Physical Society of Japan 62, 2575 (1993).
[123]	C. M. Wu, G. Deng, J. S. Gardner, P. Vorderwisch, W. H. Li, S. Yano, J. C. Peng, and E. Imamovic, Journal of Instrumentation 11, P10009 (2016).
[124]	T. E. Mason, B. D. Gaulin, and M. F. Collins, Physical Review B 39, 586 (1989).
[125]	S. Chi et al., Proceedings of the National Academy of Sciences of the United States of America 104, 10796 (2007).
[126]	J. Qvist, H. Schober, and B. Halle, The Journal of chemical physics 134, 144508 (2011).
[127]	B. J. Sternlieb et al., Physical Review B 41, 8866 (1990).
[128]	S. H. Lee, C. Broholm, G. Aeppli, A. P. Ramirez, T. G. Perring, C. J. Carlile, M. Adams, T. J. L. Jones, and B. Hessen, EPL (Europhysics Letters) 35, 127 (1996).
[129]	X. Lu et al., Physical Review B 90, 024509 (2014).
[130]	W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[131]	Hiroko A. Katori and A. Ito, Journal of the Physical Society of Japan 62, 4488 (1993).
[132]	V. V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, and P. M. Vilarinho, Physical review letters 101, 165704 (2008).
[133]	Y. F. Popov, A. M. Kadomtseva, G. P. Vorob’ev, V. A. Timofeeva, D. M. Ustinin, A. K. Zvezdin, and M. M. Tegeranchi, Journal of Experimental and Theoretical Physics 87, 146 (1998).
[134]	Y. F. Popov, A. M. Kadomtseva, D. V. Belov, G. P. Vorob’ev, and A. K. Zvezdin, Journal of Experimental and Theoretical Physics Letters 69, 330 (1999).
[135]	N. A. Spaldin, M. Fiebig, and M. Mostovoy, Journal of Physics: Condensed Matter 20, 434203 (2008).
[136]	I. Kornev, M. Bichurin, J. P. Rivera, S. Gentil, H. Schmid, A. G. M. Jansen, and P. Wyder, Physical Review B 62, 12247 (2000).
[137]	J. Y. Kim, T. Y. Koo, and J. H. Park, Physical review letters 96, 047205 (2006).
[138]	S. W. Chen et al., Applied Physics Letters 104, 082104 (2014).
[139]	J. W. Venderbos, M. Daghofer, J. van den Brink, and S. Kumar, Physical review letters 107, 076405 (2011).
[140]	A. Ito, H. Kawano, H. Yoshizawa, and K. Motoya, Journal of Magnetism and Magnetic Materials 104, 1637 (1992).
[141]	G. Radtke, S. Lazar, and G. A. Botton, Physical Review B 74, 155117 (2006).
[142]	R. S. Solanki, S.-H. Hsieh, C. H. Du, G. Deng, C. W. Wang, J. S. Gardner, H. Tonomoto, T. Kimura, and W. F. Pong, Physical Review B 95, 024425 (2017).
[143]	S. M. Butorin, Journal of Electron Spectroscopy and Related Phenomena 110-111, 213 (2000).
[144]	F. de Groot, Chemical Reviews 101, 1779 (2001).
[145]	S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
[146]	Y. Chen, W. Bao, Y. Qiu, J. E. Lorenzo, J. L. Sarrao, D. L. Ho, and M. Y. Lin, Physical Review B 72, 184401 (2005).
[147]	M. Mochizuki, X. Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, Nature Materials 13, 241 (2014).
[148]	S. Seki, J. H. Kim, D. S. Inosov, R. Georgii, B. Keimer, S. Ishiwata, and Y. Tokura, Physical Review B 85, 220406(R) (2012).
[149]	S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336, 198 (2012).
[150]	X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nature communications 3, 988 (2012).
[151]	X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).
[152]	M. C. Langner et al., Physical review letters 112, 167202 (2014).
[153]	G. Ghiringhelli et al., Journal of Physics: Condensed Matter 17, 5397 (2005).
[154]	A. Agui, M. Mizumaki, Y. Saitoh, T. Matsushita, T. Nakatani, A. Fukaya, and E. Torikai, Journal of Synchrotron Radiation 8, 907 (2001).
[155]	C. H. Lai et al., J Synchrotron Radiat 21, 325 (2014).
[156]	K. Kunnus et al., The journal of physical chemistry. B 117, 16512 (2013).
[157]	Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan 9, 753 (1954).
[158]	Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan 9, 766 (1954).
[159]	Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan 11, 864 (1956).
[160]	I. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Wiley, 2010).
[161]	J. S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, 1964).
[162]	G. Ghiringhelli et al., The European Physical Journal Special Topics 169, 199 (2009).
[163]	J. Zaanen, G. A. Sawatzky, and J. W. Allen, Physical review letters 55, 418 (1985).
[164]	L. A. Wray et al., Physical Review B 88, 035105 (2013).
[165]	S. H. Hsieh et al., Scientific Reports 7, 161 (2017).
[166]	S. M. Butorin, J. H. Guo, M. Magnuson, P. Kuiper, and J. Nordgren, Physical Review B 54, 4405 (1996).
[167]	B. Fromme, U. Brunokowski, and E. Kisker, Physical Review B 58, 9783 (1998).
[168]	G. Ghiringhelli, M. Matsubara, C. Dallera, F. Fracassi, A. Tagliaferri, N. B. Brookes, A. Kotani, and L. Braicovich, Physical Review B 73, 035111 (2006).
[169]	G. Ghiringhelli, M. Matsubara, C. Dallera, F. Fracassi, A. Tagliaferri, N. B. Brookes, A. Kotani, and L. Braicovich, Physical Review B 78, 117102 (2008).
[170]	F. Müller and S. Hüfner, Physical Review B 78, 117101 (2008).
[171]	V. Grasso, F. Neri, P. Perillo, L. Silipigni, and M. Piacentini, Physical Review B 44, 11060 (1991).
[172]	J. G. Cherian, T. D. Tokumoto, H. Zhou, E. S. Choi, and S. A. McGill, Physical Review B 87, 214411 (2013).
[173]	C. Aruta, M. Minola, A. Galdi, R. Ciancio, A. Y. Petrov, N. B. Brookes, G. Ghiringhelli, L. Maritato, and P. Orgiani, Physical Review B 86, 115132 (2012).
[174]	F. M. F. de Groot, P. Kuiper, and G. A. Sawatzky, Physical Review B 57, 14584 (1998).
[175]	G. Ghiringhelli et al., Physical review letters 102, 027401 (2009).
[176]	I. S. Elfimov, V. I. Anisimov, and G. A. Sawatzky, Physical review letters 82, 4264 (1999).
[177]	M. Benfatto, Y. Joly, and C. R. Natoli, Physical review letters 83, 636 (1999).
[178]	V. I. Anisimov, I. S. Elfimov, M. A. Korotin, and K. Terakura, Physical Review B 55, 15494 (1997).
[179]	G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T. T. M. Palstra, Physical Review B 67, 224423 (2003).
[180]	Q. T. Islam and B. A. Bunker, Physical review letters 59, 2701 (1987).
[181]	H. C. Shih et al., Physical Review B 80, 024427 (2009).
[182]	H. C. Shih et al., New Journal of Physics 13, 053003 (2011).
[183]	C. W. Luo et al., Physical review letters 108, 257006 (2012).
[184]	C. W. Luo et al., New Journal of Physics 14 (2012).
[185]	I. A. Sergienko and E. Dagotto, Physical Review B 73, 094434 (2006).
[186]	I. Dzyaloshinsky, Journal of Physics and Chemistry of Solids 4, 241 (1958).
[187]	T. Moriya, Physical Review 120, 91 (1960).
[188]	A. Crépieux and C. Lacroix, Journal of Magnetism and Magnetic Materials 182, 341 (1998).
[189]	A. Fert, V. Cros, and J. Sampaio, Nat Nanotechnol 8, 152 (2013).
[190]	S.-W. Cheong and M. Mostovoy, Nat Mater 6, 13 (2007).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信