§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0607201614594900
DOI 10.6846/TKU.2016.00197
論文名稱(中文) 上升氣泡行為之不可壓縮多相流模式的數值模擬
論文名稱(英文) Numerical Simulation of Rising Gas Bubble Behaviors Using an Incompressible Multi-Fluid Flow Model
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 翁嘉宏
研究生(英文) Chia-Hung Weng
學號 603430181
學位類別 碩士
語言別 英文
第二語言別
口試日期 2016-06-23
論文頁數 68頁
口試委員 指導教授 - 牛仰堯(sonicwave711@gmail.com)
委員 - 薛克民(shyue@math.ntu.edu.tw)
委員 - 周逸儒(yjchouiam.ntu.edu.tw)
關鍵字(中) 氣泡上升
多相流模式
預處理
體積佔有率
界面壓縮
關鍵字(英) bubble rising
multi-fluid model
preconditioning
VOF
sharp interface technique
第三語言關鍵字
學科別分類
中文摘要
我們採用了預處理不可壓縮多相體模式加上界面壓縮模型來模擬氣泡上升的問題,本文中的人工壓縮法是採用Chorin所發表方法再進一步推展到不可壓縮多相Navier-Stokes雙曲線方程式。為了界面更加明確,我們在模擬氣泡上升的界面處理結合了THINC介面壓縮函數,使其結果使界面更加明確清晰。我們成功使用上述方法來研究氣泡上升在不同邦德(Bond)數和阿基米德(Archimedes)數對終端速度及氣泡外型的影響。
英文摘要
This paper first applies pre-conditioning incompressible multi-fluid flow model based on sharp interface technique to simulate the bubble rising flow problems. Here, the preconditioning matrix modified from Chorin’s artificial compressibility concept is used to make the incompressible multi-fluid Navier-Stokes equations to be hyperbolic. Therefore, a simple convection-pressure flux-splitting method with the THINC formulation for volume fraction function compressed reconstruction is used to maintain the preservation of sharp interface evolutions of bubble rising flow simulation. The revolution of a rising bubble at different Bond number and Archimedes number is shown and discussed.
第三語言摘要
論文目次
Table of Contents
Nomenclature	iii
List of Figure	vi
1.	Introduction	1
1.1.	Background	1
1.2.	Numerical Algorithm Review	2
1.3.	Bubble Rising Review	5
2.	Numerical Models	11
2.1.	Governing Equations	11
2.2.	Numerical Methodology	15
2.3.	Time Discretization	16
2.4.	Numerical Flux	19
2.5.	Interface Compression	22
2.6.	Surface Tension	24
3.	Result of 2D Bubbles Rising in Viscous Liquids	34
3.1.	Grid Independence	35
3.2.	Comparison with Experiment	37
3.3.	The Simulated Bubble Shapes	41
3.4.	Bubble Rising Velocity	42
3.5.	The Evolution of Bubble Rising	44
4.	Conclusions	45
5.	References	46
Appendix	58
Figure 2.1 The diagrams for the interfaces across grid points	26
Figure 2.2 Computational domain for surface tension	27
Figure 2.3 Diagrams of the curvature of interface	29
Figure 2.4 Numerical discretization of volume fraction for diagram (c)	32
Figure 2.5 (a) Simulated surface tension by J. U. Brackbill et al.[60] (b) the current simulated vector of surface tension (Bo=166)	33
Figure 3.1 The regime map of experimental rising bubble shape in liquids [4]	35
Figure 3.2 Effect of mesh sizes on the simulated bubble shape respectively.	37
Figure 3.3 Comparison of terminal bubble shapes observed in experiments [1] and predicted under various Reynolds and Bond numbers. (Re=Ar x U*)	39
Figure 3.4 Comparison of terminal bubble shapes observed in experiments [1] and predicted under various Reynolds and Bond numbers (Re=Ar x U*)	40
Figure 3.5 The predicted bubble shapes at different Archimedes and Bond numbers. The ratios of density and viscosity are pl/pg  = 10 and ul/ug = 10,	42
Figure 3.6 The rising velocity vs. time at the different Archimedes number. (Bo=116)	43
Figure 3.7 The rising velocity vs. time at different Bond numbers. (Ar=20)	44
Figure 3.8 The evolution of bubble rising	45
參考文獻
[1]	Davies, R.M., Taylor, F.I., The mechanism of large bubbles rising through extended liquids and through liquids in tubes, Proc. R. Soc. London, Ser. A 200, 375–390 (1950).
[2]	R.A. Hartunian, W.R. Sears, On the instability of small gas bubbles moving uniformly in various liquids, J. Fluid Mech. 3 27–47 (1957).
[3]	Clift R, Grace JR, Weber M., Bubbles, drops, and particles, New York: Academic Press (1978).
[4]	Bhaga D, Weber ME., Bubbles in viscous liquids: shapes, wakes and velocities, J Fluid Mech 105:61–85 (1981).
[5]	D.W. Moore, The rise of a gas bubble in viscous liquid, J. Fluid Mech. 6  113–130 (1959).
[6]	T.D. Taylor, A. Acrivos, On the deformation and drag of a falling viscous drop at low Reynolds number, J. Fluid Mech. 18 466–476. (1964).
[7]	R.M. Davies, F.I. Taylor, The mechanism of large bubbles rising through extended liquids and through liquids in tubes, Proc. RoyalSoc. Lond. A 200  375–390 (1950).
[8]	H. B. Stewart, B. Wendroff, Two-phase flow: models and methods, Journal of Computational Physics 56 363–409 (1984).
[9]	W. Hirt, B. D. Nichols, “Volume of fluid method for the dynamics of free boundaries”, Journal of Computational Physics 39 201–225 (1981).
[10]	C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) methods for the dynamics of free boundaries, Journal of Computational Physics 39, pp. 201-225 (1981).
[11]	O. Ubbink, R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics 153 26-50 (1999).
[12]	E. Puckett, A. Almgren, J. Bell, D. Marcus, W. Rider, A high-order projection method for tracking fluid interfaces in variable density incompressible flows, Journal of Computational Physics 130, 269-282 (1997).
[13]	J. Pilliot, E.G. Puckett, Second order accurate volume-of-fluid algorithms for tracking material interfaces, Journal of Computational Physics 199, 465-502 (2004).
[14]	D. Pan, C. H. Chang, The capturing of free surfaces in incompressible multi-fluid flows, International Journal for Numerical Methods in Fluids 33 203–222 (2000).
[15]	F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, International Journal of Numerical Methods in Fluids 48 1023-1040 (2005).
[16]	K. Yokoi, Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm, Journal of Computational Physics 226, 1985-2002 (2007).
[17]	D.A. Cassidy, J.R. Edwards, M. Tian, An Investigation of Interface Sharpening Schemes for Multiphase Mixture Flows, Journal of Computational Physics 123 5628-5649 (2009).
[18]	Y.Y. Niu, Simple Conservative Flux Splitting for Multi-component Flow Calculations, Numerical Heat Transfer, Part B, Vol.38 No. 2 203-222 (2000).
[19]	R. J. Leveque, K. M. Shyue, Two-dimensional front tracking based on high resolution wave propagation methods, Journal of Computational Physics 123 354–368 (1996).
[20]	M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions of  incompressible two-phase flows, Journal of Computational Physics 114 146–159 (1994).
[21]	J. A. Sethian, P. Smereka, “Level set methods for fluid interfaces”, Annu. Rev. Fluid Mech. 35 341–7223 (2003). 
[22]	E. Olsson, G. Kreiss, “A conservative level set method for two phase flow”, Journal of Computational Physics 210 225–246 (2005).
[23]	M. Sussman, E.G. Puckett, A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162 301-337 (2000).
[24]	G. Son, Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows, Numerical Heat Transfer, Part B, Fundamentals 43 No.6 549-565 (2003).
[25]	R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), Journal of Computational Physics 152 457-492 (1999).
[26]	J. Chorin, A numerical method for solving incompressible Navier-Stokes equations, Journal of Computational Physics 2 12-26 (1967).
[27]	M.S. Liou, A sequel to AUSM, Part II, AUSM+-UP for all speeds, Journal of Computational Physics 214 137-170 (2006).
[28]	C.H. Chang, M.S. Liou, A New Approach to the Simulation of Compressible Multifluid Flows with AUSM+Up Scheme, Journal of Computational Physics, Volume 227,  Issue 8  Pages 840-873 (2008).
[29]	M.D. Neaves, Edwards, J.R., All-speed time-accurate underwater projectile calculations using a preconditioning algorithm, Journal of Fluids Engineering 128 284-296 (2006).
[30]	Stewart, C.W., Bubble interaction in low-viscosity liquids, Int. J. Multiphase Flow 21, 1037–1046 (1995).
[31]	Garnier, C., Lance, M., Marie, J.L., Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26, 811–815 (2002).
[32]	Simonnet, M., Gentric, C., Olmos, E., Midoux, N., Experimental determination of the drag coefficient in a swarm of bubbles. Chem. Eng. Sci. 62, 858–866 (2007).
[33]	J. Ma, G. L. Chahinea, C.T. Hsiaoa, Spherical Bubble Dynamics in a Bubbly Medium using an Euler-Lagrange Model, Chemical Engineering Science128 64–81 (2015).
[34]	Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, J., Rise velocity of a swarm of large gas bubbles in liquids. Chem. Eng. Sci. 54, 171–183 (1999).
[35]	Roghair, I., Lau, Y.M., Deen, N.G., Slagter, H.M., Baltussen, M.W., van SintAnnaland, M., Kuipers, J.A.M., On the drag force of bubble swarms at intermediate and high Reynolds numbers, Chem. Eng. Sci. 66 3204–3211 (2011).
[36]	Smolianski, A., Haario, H., Luukka, P., Numerical study of dynamics of single bubbles and bubble swarms, Appl. Math. Model. 29, 615–632 (2008).
[37]	Yu, Z., Yang, H., Fan, L.-S., Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method. Chem. Eng. Sci. 66, 3441–3451 (2011).
[38]	Y. Shi, G.H. Tang, Y. Wang, Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver, Journal of Computational Physics 314 228–243 (2016).
[39]	Y. Wang, C. Shu, H.B. Huang, C.J. Teo, Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio, J. Comput. Phys. 280 404–423 (2015).
[40]	Hua, J., Stene, J.F., Lin, P., Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J. Compute. Phys. 227, 3358–3382 (2008).
[41]	K.L. Pan, Z.J. Chen, Simulation of bubble dynamics in a microchannel using a front-tracking method, Computers and Mathematics with Applications 67 290–306 (2014).
[42]	Yan, K., Che, D., A coupled model for simulation of the gas–liquid two-phase flow with complex flow patterns. Int. J. Multiphase Flow 36, 333–348 (2010).
[43]	Yan, K., Che, D., Hydrodynamics and mass transfer characteristics of slug flow in a vertical pipe with and without dispersed small bubbles. Int. J. Multiphase Flow 37, 299–325 (2011).
[44]	Hänsch, S., Lucas, D., Krepper, E., Höhne, T., A multi-field two-fluid concept for transitions between different scales of interfacial structures. Int. J. Multiphase Flow 47, 171–182 (2012).
[45]	G. Huber, S.Tanguy, Jean-Christophe Béra, B. Gillesc, A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves, Journal of Computational Physics 302 439–468 (2015).
[46]	X. Hou, J. Rigola a, O. Lehmkuhl, A. Oliva, Simulation of the two-fluid model on incompressible flow with Fractional Step method for both resolved and unresolved scale interfaces, International Journal of Heat and Fluid Flow 52  15–27 (2015).
[47]	Daly BJ. Numerical study of two fluid Rayleigh–Taylor instability. Physics of Fluids 10(2): 297–307 (1967).
[48]	S. Chandrasekhar, Hydrodynamics and Hydromagnetics Stability. Oxford University Press: London, 428–447 (1961).
[49]	Rudman M. Volume-tracking methods for interfacial flow calculations. International Journal for NumericalMethods in Fluids 24:671– 691 (1997).
[50]	J. C. Martin, W. J. Moyce. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. Roy. Soc. London A, 244:312–324, (1952).
[51]	P. N. Shankar, M. D. Deshpande, Fluid mechanics in driven cavity, Annual Review of Fluid Mechanics, Vol. 32: 93-136 (2000).
[52]	P. U. Ghia, K. N. Ghia, C. Shih, High-Re solution for incompressible flow using Navier-Stokes Equations and a multigrid method, J. Comput. Physics, 48,387-411 (1982).
[53]	D. Pan, S. R. Chakravarthy, Unified Formulation for Incompressible Flows, AIAA 89-0122 (1989).
[54]	S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics 100 25-37 (1992).
[55]	B. Bunner, G. Tryggvason, Dynamics of homogenous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles, J. FluidMech. 466 17–52 (2002).
[56]	S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, (1980).
[57]	G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, New York, 1967).
[58]	R. T. Knapp, J. W. Daily, and F. G. Hammitt, Cavitation (McGraw–Hill, New York, 1970).
[59]	Y. Lecoffre, Cavitation Bubble Trackers (Balkema, Brookfield, VT, 1999).
[60]	C.EBrennen, Fundamentals of Multiphase Flow. Cambridge University Press (2005)
[61]	J. U. Brackbill, D. B. Kothe, C. Zemach, A Continuum Method for Modeling Surface Tension, Journal of Computational Physics 100 335-354 (1992).
[62]	B. LaFaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, Journal of Computational Physics 113 134–147 (1994).
[63]	Y.Y. Niu and J. R. Edwards, A simple incompressible flux splitting for sharp free surface capturing, Int. J. Numer. Meth. Fluids (2011).
[64]	R.F. Kunz, D.A. Boger, D.R. Stinebring, T.S. Chyczewski, J.W. Lindau, H.J. Gibeling,S.Venkateswaran, T.R. Govindan, A preconditioned Navier±Stokes method for two-phase flows with application to cavitation prediction, Computers & Fluids 29 849-875 (2000).
[65]	K.M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, Journal of Computational Physics 268 326–354 (2014).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信