淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0607201114370700
中文論文名稱 直交表於UWB天線設計上的應用
英文論文名稱 Application of Orthogonal Array to the design of UWB Antennas
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 楊尚嶧
研究生英文姓名 Shang-Yi Yang
電子信箱 shangyi0731@gmail.com
學號 698440152
學位類別 碩士
語文別 中文
口試日期 2011-06-15
論文頁數 88頁
口試委員 指導教授-李慶烈
委員-丘建青
委員-林丁丙
委員-黃中信
中文關鍵字 平面單極天線  超寬頻天線  田口法 
英文關鍵字 Planar  Monopole antenna  Ultra wide band  Taguchi method 
學科別分類 學科別應用科學電機及電子
中文摘要 本篇論文探討以直交表(Orthogonal Array,OA)進行迭代設計,目標在設計一符合FCC規格頻段要求(3.1GHz~10.6GHz)的超寬頻(UWB)單極小天線之設計,期待能在有限且少量的迭代次數內,使天線特性達到UWB頻段的要求。本研究採用平面式的結構,針對厚0.8mm的FR4基板(相對介電係數為4.4、Dielectric Loss Tangent為0.02)的環境來進行設計、模擬,並和實作結果相驗證,以快速研製一體積小、重量輕、低成本、容易製作的超寬頻帶(UWB)單極小天線。
首先依據UWB單極天線的結構,選定待設計/調控之結構參數以及每一參數之位準(level)個數,據此建立一適當的直交表。再以電磁模擬軟體進行直交表所列的部份因子實驗及少量而有限次數的迭代,針對模擬結果計算不同實驗之適應值,以進行天線參數最佳化,並規劃在少量而有限的迭代次數後,判斷是否已達到UWB頻段規格要求的目標。
與其它參數設計法則相較,直交表最大的特色在於每個參數因子的位準出現的次數均等,當以此特性來取代全因子實驗,此方法可達到降低搜尋次數、加快參數設計流程,又可維持對問題解空間的進行全域搜尋。為此,一般皆藉由直交表均勻搜尋的概念,再結合逐步縮減搜尋範圍(Range Reduction)的技巧,以落實最佳化搜尋。
本論文除了根據待定參數因子在某些選定頻率點的回應表進行最佳化的迭代搜尋,並引進隨機亂數(高斯分佈)以修正參數因子的位準(level)值,藉由此一在直交表結合引入亂數的作法,以及多段式的範圍縮減技巧等,目的在使其收斂過程更有效率及/或收斂結果更接近全域之最佳解。
英文摘要 This thesis investigates a new antenna design method by utilizing the orthogonal array (OA) for a small ultra-wideband (UWB) monopole antenna that meets the frequency band (3.1GHz~10.6GHz) of FCC requirements. By application of the OA in the design course of iterative procedure, it is found that the antenna characteristics can meet the requirements of UWB band within limited and relatively few iterations. In this study, a planar structure is tested under the enviroment of FR4 substrate with thickness of 0.8mm and relative dielectric coefficient 4.4, dielectric loss tangent 0.02. An UWB antenna is designed, simulated, and fabricated. The simulated results are verified by experimental ones. The goal is to examine a systematic approach to design an antenna structure by avoiding blind try-and -error. In this case, the objective is to quickly develop a small , light weight, low cost UWB monopole small antenna.
At first, based on the structure of the UWB monopole antenna to be examined, we can select suitable design/control parameters, and reasonable number of level for each parameter, thus an appropriate orthogonal array is established. Then through electromagnetic simulation software we can conduct the fractional factorial “experiments“ listed in the orthogonal array such that the fore-mentioned limited and relatively few number of iterations can be performed. The simulation results can then be used to calculate the fitness value of each experiment for sucessive optimization of the antenna parameters. At the end of each iteration/generation, the best canditate is updated and checked to see whether it has reached the design goal – to meet the requirements of UWB frequency band.
As compared to other methods of parameter design, the distinguished characteristic of utilizing orthogonal array for parameter design is that the number of occurrences of each parameter level is the same and/or equally-balanced for every parameter. When this method is employed to replace the full factorial experiment, it can reduce search times very effectively. In addtion to the speed up for the parameter design process, the method employed also maintain the global search for the solution space. To this end, the characteristic of uniform/balanced searching through the utilization of orthogonal array is combined with the technique of range reduction (gradual reduction of the search range iteratively) to implement the optimal search.
This thesis not only carried out the iterative optimization search for the unknown design parameters according to the response table of the design parameters at several selected frequencies, but also proposed the introduction of the random numbers (Gaussian distribution) to modify the parameters levels. By the combination of random numbers with the orthogonal array, plus multi-stage technique of range reduction, the goal is aim to make the convergence process more efficient, within limited number of iterations, and/or the convergence result is closer to the optimal solution.
論文目次 目錄

中文摘要...........................I
英文摘要........................... III
第一章 序論......................... 1
1.1 簡介......................... 1
1.2 研究背景....................... 1
1.3 論文架構....................... 7

第二章 平面寬頻單極天線之設計原理.............. 8
2.1 設計原理分析..................... 8
2.2 傳統寬頻天線的演化.................. 13
2.3 全平面正方形單極天線初始結構的計算..........17
2.4 天線接地面和金屬貼片的結構參數原理分析........19
2.5 連續直交表......................24

第三章 以連續直交表進行天線參數最佳化............29
3.1 簡介........................29
3.2 設計天線參數及位準進行連續直交表的迭代.......29
3.3 延伸連續直交表的迭代次數..............34
3.4 重新設計天線參數進行連續直交表的迭代........42
3.5 將連續直交表位準引入亂數..............63
3.6 將連續直交表位準引入三次亂數............79

第四章 結論.........................84


圖目錄

圖 1.1無線通訊技術之(a)寬頻 (b)空間訊息量比較........2
圖 2.1無窮長偶極圓錐形天線之立體結構............. 11
圖 2.2有限長度h的偶極圓錐形天線............... 12
圖 2.3(a)有限長度偶極天線(b)類比成有限長傳輸線...... 12
圖2.4 (a)λ/4單極天線(b)圓錐形天線(c)火山煙狀天線之二維結構圖............................14
圖 2.5 水滴狀天線之二維結構圖................. 14
圖 2.6水滴狀天線的演化順序................. 15
圖 2.7水滴狀天線的VSWR之頻率響應............. 15
圖2.8水滴狀天線在(a)3GHz(b)6GHz(c)9GHz(d)12GHz 之輻射場型..........................15
圖 2.9平面寬頻天線的演化圖................. 16
圖 2.10圓柱體之立體結構,半徑為r、高度為L.......... 17
圖 2.11矩形單極微帶天線的二維結構圖............. 19
圖 2.12初始正方形單極天線的結構...............21
圖 2.13接地面(ground)微小變動對S11參數之影響.........22
圖2.14金屬貼片微小變動對S11參數之影響............21
圖2.15初始正方形單極天線在間隙處由饋入線往金屬貼片端看入之阻抗圖............................23
圖2.16方形單極天線(g=0.7mm)由饋入線看入之Smith chart變化 圖............................23
圖2.17方形單極天線(g=0.7mm)之等效電路模型.........24
圖2.18田口最佳化法流程圖..................28
圖3.1初始單極天線結構示意圖.................30
圖3.2第一次迭代做驗證實驗後的反射損耗圖...........31
圖3.3第二次迭代做驗證實驗後的反射損耗圖...........31
圖3.4第三次迭代做驗證實驗後的反射損耗圖...........32
圖3.5第四次迭代做驗證實驗後的反射損耗圖...........32
圖3.6第五次迭代做驗證實驗後的反射損耗圖...........33
圖3.7五次迭代實驗之反射損耗變化圖..............33
圖3.8修改天線參數後的天線結構示意圖.............35
圖3.9第一次迭代做驗證實驗後的反射損耗圖...........36
圖3.10第二次迭代做驗證實驗後的反射損耗圖..........36
圖3.11第三次迭代做驗證實驗後的反射損耗圖..........37
圖3.12第四次迭代做驗證實驗後的反射損耗圖..........37
圖3.13第五次迭代做驗證實驗後的反射損耗圖..........38
圖3.14五次迭代實驗之反射損耗變化圖.............38
圖 3.15第六次迭代做驗證實驗後的反射損耗圖..........39
圖3.16第五次迭代做驗證實驗後的反射損耗圖..........39
圖3.17第六次迭代做驗證實驗後的反射損耗圖..........40
圖3.18第七次迭代做驗證實驗後的反射損耗圖..........40
圖3.19三次迭代實驗之反射損耗變化圖.............41
圖3.20重新設計參數後的天線結構示意圖............46
圖3.21第一次迭代做驗證實驗後的反射損耗圖..........46
圖3.22第二次迭代做驗證實驗後的反射損耗圖..........47
圖3.23第三次迭代做驗證實驗後的反射損耗圖..........47
圖3.24第四次迭代做驗證實驗後的反射損耗圖..........48
圖3.25第五次迭代做驗證實驗後的反射損耗圖..........48
圖3.26第六次迭代做驗證實驗後的反射損耗圖..........49
圖3.27第七次迭代做驗證實驗後的反射損耗圖..........49
圖3.28七次迭代實驗之反射損耗變化圖.............50
圖3.29第五次迭代(頻率點3.1GHz、6 GHz、7 GHz、8 GHz、9 GHz、10.6 GHz)做驗證實驗後的反射損耗圖...............52
圖3.30第五次迭代(頻率點6GHz、7GHz、8GHz)做驗證實驗後的反射損耗圖...........................53
圖3.31針對頻率點6GHz、7GHz、8GHz再次迭代做驗證實驗後的反射損耗圖..........................53
圖3.32應用連續直交表最佳化後的天線結構示意圖........54
圖3.33應用連續直交表最佳化後的天線結構實體圖........54
圖3.34應用連續直交表最佳化後的天線反射損耗圖........55
圖3.35應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@3.1GHz) ...................55
圖3.36應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@4GHz) ...................56
圖3.37應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@5GHz) ...................56
圖3.38應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@6GHz) ...................57
圖3.39應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@7GHz) ...................57
圖3.40應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@8GHz) ...................58
圖3.41應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@9GHz) ...................58
圖3.42應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@10.6GHz) ..................59
圖3.43應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@3.1GHz) ...................59
圖3.44應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@4GHz) ...................60
圖3.45應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@5GHz) ...................60
圖3.46應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@6GHz) ...................61
圖3.47應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@7GHz) ...................61
圖3.48應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@8GHz) ...................62
圖3.49應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@9GHz) ...................62
圖3.50應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@10.6GHz) ..................63
圖3.51第一次迭代做驗證實驗後的反射損耗圖..........66
圖3.52第二次迭代做驗證實驗後的反射損耗圖..........67
圖3.53第三次迭代做驗證實驗後的反射損耗圖..........67
圖3.54第四次迭代做驗證實驗後的反射損耗圖..........68
圖3.55第五次迭代做驗證實驗後的反射損耗圖..........68
圖3.56五次迭代實驗之反射損耗變化圖.............69
圖3.57第四次迭代做驗證實驗後的天線結構示意圖........69
圖3.58第四次迭代做驗證實驗後的天線結構實體圖........70圖3.59第五次迭代做驗證實驗後的天線結構示意圖........70
圖3.60第五次迭代做驗證實驗後的天線結構實體圖........71
圖3.61第一次迭代做驗證實驗後的反射損耗圖..........71
圖3.62第二次迭代做驗證實驗後的反射損耗圖..........72
圖3.63第三次迭代做驗證實驗後的反射損耗圖..........72
圖3.64第四次迭代做驗證實驗後的反射損耗圖..........73
圖3.65第五次迭代做驗證實驗後的反射損耗圖..........73
圖3.66五次迭代實驗之反射損耗變化圖.............74
圖3.67第一次迭代做驗證實驗後的反射損耗圖..........74
圖3.68第二次迭代做驗證實驗後的反射損耗圖..........75
圖3.69第三次迭代做驗證實驗後的反射損耗圖..........75
圖3.70第四次迭代做驗證實驗後的反射損耗圖..........76
圖3.71第五次迭代做驗證實驗後的反射損耗圖..........76
圖3.72五次迭代實驗之反射損耗變化圖.............77
圖3.73第三次迭代做驗證實驗後的天線結構示意圖........77
圖3.74第三次迭代做驗證實驗後的天線結構實體圖........78
圖3.75第四次迭代做驗證實驗後的天線結構示意圖........78
圖3.76第四次迭代做驗證實驗後的天線結構實體圖........79
圖3.77第一次迭代做驗證實驗後的反射損耗圖..........80
圖3.78第二次迭代做驗證實驗後的反射損耗圖..........81
圖3.79第三次迭代做驗證實驗後的反射損耗圖..........81
圖3.80第四次迭代做驗證實驗後的反射損耗圖..........82
圖3.81第五次迭代做驗證實驗後的反射損耗圖..........82
圖3.82五次迭代實驗之反射損耗變化圖.............83

表目錄

表 2.1 直交表OA(18,5,3,2) ................ 27
表 3.1 OA(18,5,3,2)在第一次迭代實驗之位準、適應值及訊號雜訊比............................51
表 3.2 第一次迭代實驗後經由計算所得之響應表........ 52
表 3.3 第一次迭實驗後代經由響應表所選取之最佳參數組合.... 52
參考文獻 [1] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May.
[2] J. K. Paek and H. J. Eom, “Cylindrical Cavity-Backed Antenna,” IEEE Antenans and Wireless Propagation Letters, Vol. 8, 2009, pp.852-855.
[3] Xiao Yong-ping, Li Ye-qiang. “The Conformal Antenna Applied to Antiradiation Missile,” Shipboard electronic countermeasure. 2008, Vol.31, No.2: 89-92
[4] X. S. Yang, K. T. Ng, S. H. Yeung, and K. F. Man, “Jumping genes multiobjective optimization scheme for planar monopole ultrawideband antenna,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3659–3666, Dec. 2008.
[5] S. Chaimool and K. L. Chung, “CPW-fed mirrored-L monopole antenna with distinct triple bands for WiFi and WiMAX applications,” Electron. Lett., vol. 45, pp. 928–929, 2009.
[6] T.-N. Chang and M.-C. Wu, “Band-notched design for UWB antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 636–640, 2008.
[7] J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, “Compact printed ultra-wideband monopole antenna with dual band-notched characteristics,” Electron. Lett., vol. 44, no. 12, pp. 710–711, Jun. 2008.
[8] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May
[9] M. Ojaroudi, C. Ghobadi, and J. Nourinia, “Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 728–731, 2009.
[10] H.-J. Zhou, B.-H. Sun, Q.-Z. Liu and J.-Y. Deng, “Implementation and investigation of U-shaped aperture UWB antenna with dual bandnotched characteristics,” Electron. Lett., vol. 44, no. 24, pp. 1387–1388, Nov. 2008.
[11] M. Abdollahvand, H. R. Hassani and G. R. Dadashzadeh, “Novel modified monopole antenna with band-notch characteristic for UWB application,” IEICE Electron. Express, vol. 7, no. 16, pp. 1207–1213, Aug. 2010.
[12] M. Ojaroudi, G. Kohneshahri, and J. Noory, “small modified monopole antenna for UWB application,” Microw., Antennas Propag., vol. 3, no. 5, pp. 863–869, Aug. 2009.
[13] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[14] W. S. Lee, D. Z. Kim, K. J. Kim, and J. W. Yu, “Wideband planar monopole antennas with dual band-notched characteristics,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2800–2806, Jun. 2006.
[15] J. Ding, Z. Lin, Z. Ying, and S. He, “A compact ultra-wideband slot antenna with multiple notch frequency bands,” Microw. Opt. Technol. Lett, vol. 49, no. 12, pp. 3056–3060, 2007.
[16] L. Luo, Z. Cui, J.-P. Xiong, X.-M. Zhang, and Y.-C. Jiao, “Compact printed ultra-wideband monopole antenna with dual band-notch characteristic,” Electron. Lett., vol. 44, no. 19, Sep. 2008.
[17] A. Zhao and Rahola J., “Compact printed patch and bent-patch monopole Ultra-Wideband (UWB) antennas for mobile terminals,” In Proc. IEEE Intl. Symp. Antennas and Propaga., pp. 5135-5138, Jun. 2007.
[18] C. Y. Chiu, H. Wong and C.H. Chan, “Study of small wideband folded-patch-feed antennas,” IET Microw. Antennas & Propag., vol. 1, no. 2, pp. 501 – 505 April 2007.[19]G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi's Quality Engineering Handbook,
John Wiley & Sons Inc., NJ, 2005.
[20]W. C. Weng, F. Yang, and A. Z. Elsherbeni, Electromagnetics and Antenna Optimization using Taguchi's Method, Morgan & Claypool Publishers, CA, December 2007.
[21]W. C. Weng, F. Yang, and A. Z. Elsherbeni, "Design of an Ultra-Wideband Antenna Using Taguchi's Optimization Method," 2008 Applied Computational Electromagnetics Symposium, Niagara Falls, Canada, March 2008.
[22]W. C. Weng, F. Yang, and A. Z. Elsherbeni, "Electromagnetic Optimization Using Taguchi's Method: A Case Study of Band Pass Filter Design," IEEE International Symposium on Antennas and Propagation, Honolulu, HI, June 2007.
[23]W. C. Weng and C. T. M. Choi, “Optimal design of CPW slot antennas using Taguchi’s method,” IEEE Trans. Magn., vol. 45, no. 3, pp. 1542–1545, Mar. 2009.
[24]J. H. Ko, J. K. Byun, J. S. Park and H. S. Kim “Robust Design of Dual Band/Polarization Patch Antenna Using Sensitivity Analysis and Taguchi's Method,” IEEE Trans. Magn., vol. 47, no. 5. pp 1258-1261, May. 2001.
[25]Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second
Edition, John Wiley, New York, 1998.
[26]John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third Edition, McGraw-Hill, New York, 2002.
[27]D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley,1989.
[28]T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna for the FCC-Approved UWB Frequency Band”, Antennas and Propagation Society International Symposium, 2003. IEEE, Volume: 3, June 22-27, 2003, pp.460-463.
[29]N. J. A. Sloane, “A library of orthogonal array,” [Online]. Available: http://www.research.att.com/~njas/oadir/.
[30]賴辰銜,超寬頻平面單極天線的縮小化設計,碩士論文,淡江大學電機工程學系,2005年6月
[31]Federal Communications Commission, First Order and Report, Revision of part 15 of the commission’s rules regarding UWB transmission systems, FCC 02–48, April 22, 2002
[32]C. Huang and W. Hsia, “Planar ultra-wideband antenna with a frequency notch characteristic,” Microw. Opt. Technol. Lett., vol. 49, no. 2, pp. 316–320, Feb. 2007.
[33]C. Hong, C. Ling, I. Tarn and S. Chung, “Design of a planar ultrawideband antenna with a new band-notched structure,” IEEE Trans. Antennas Propagat., vol. 55, pp. 3391–3397, Dec. 2007.
[34]Taguchi G., System of Experimental Design, vol. 1 and vol. 2, UNIPUB/Kraus International Publication, New York, 1987.
[35]W. C. Weng and C. T. M. Choi, “Optimal Design of CPW Slot Antennas Using Taguchi's Method,” IEEE Transactions on Magnetics, vol. 45, no. 3 pp. 1542-1545, Mar. 2009.
[36]W. C. Weng, F. Yang and A. Z. Elsherbeni, “Linear antenna array synthesis using Taguchi’s method: a novel optimization technique in electromagnetics,” IEEE Trans. Antennas Propagat., March. 2007.
[37]林鼎富,印刷式超寬頻天線, 碩士論文,國立交通大學電信工程學系, 2003年6月
[38]施廷諺,超寬頻單極微帶天線, 專題報告,淡江大學電機工程學系, 2003年11月
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信