§ 瀏覽學位論文書目資料
系統識別號 U0002-0607200611522300
DOI 10.6846/TKU.2006.01012
論文名稱(中文) 改進複合型水旋風分離器之分離效率
論文名稱(英文) Improvement of Separation Efficiency in Multiple Hydrocyclones
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 呂信毅
研究生(英文) Sin-Yi Lyu
學號 693360082
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2006-06-19
論文頁數 117頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 李篤中(djlee@ntu.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw)
委員 - 童國倫(kuolun@cycu.edu.tw)
委員 - 吳容銘(romeman@mail.tku.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
關鍵字(中) 水旋風分離器
分級效率
計算流體力學
魚勾現象
關鍵字(英) hydrocyclone
partial separation efficiency
computational fluid dynamics
Fish-hook effect
第三語言關鍵字
學科別分類
中文摘要
本研究探討水旋風分離器以串聯連接方式及操作條件對其分級效率之影響。採用直徑10 mm之水旋風分離器來分離玉米澱粉(Corn starch)及PMMA粒子,分別進行實驗量測與數值模擬分析。實驗結果顯示,無論增加第一個或第二個水旋風分離器之壓降、增加第一個或第二個水旋風分離器之分流比,皆可提高其分級效率與總效率,且可使最後溢流口之粒子濃度降低,達到固液分離的目的。以串聯方式連接水旋風分離器分離Corn Starch為例,在本研究之操作範圍內,最佳的操作條件為:第一個水旋風分離器之壓降為0.4 MPa、分流比為3.3,第二個水旋風分離器之分流比為1.57;在此條件下,溢流口之粒子濃度可以比使用單一水旋風分離器還要降低13%。
本研究並以FLUENT軟體模擬水旋風分離器內之流體速度與壓力分佈。由模擬之結果可以獲得平衡軌道理論的零速包絡面,可以證實在分離器中心空氣柱的存在,並可了解在vortex finder附近的粒子抄近路現象。兩相流的模擬結果亦顯示,增加水旋風分離器之分流比可以提高分級效率,而且有明顯的魚鉤現象出現,這和實驗結果有相同的趨勢;但是模擬的分級效率比實驗結果低了大約2倍,因此尚有進一步的改善空間。
英文摘要
Effects of operating conditions on the particle separation efficiency of multiple hydrocyclones are studied and discussed. Two 10 mm-diameter hydrocyclones installed in series are used in experiments and in computational fluid dynamics (CFD) analyses. Experimental results show that an increase in pressure drop or split ratio, whatever in the first or the second hydrocyclone, leads the partial separation efficiency to be increase and the concentration of the final overflow to be decrease. The optimum operating condition for the separation of corn starch suspension can be selected as: the split ratios are set as 3.3 and 1.57 in the first and the second hydrocyclone, respectively, and the pressure drop is set as 0.4 MPa in the first hydrocyclone. The particle concentration in the final overflow is 13% lower than that in the use of single hydrocyclone. The fluid velocity and pressure profiles in the hydrocyclone are simulated by computational fluid dynamics method. The locus of zero velocity in the equilibrium orbit theory, the air core in the center of hydrocyclone and the short-cut phenomenon near the vortex finder can also be simulated using FLUENT software. Although the tendency and the occurrence of fish-hook effect in partial separation efficiency curve agree with experimental data, simulation results are still two-fold lower than experimental data. It is necessary to improve the simulation method to obtain accurate data in the near future.
第三語言摘要
論文目次
目錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
目錄………………………………………………………………………V
圖表目錄……………………………………………………………… IX
第一章 緒論…………………………………………………………… 1
1.1 前言…………………………………………………………………1
1.2 研究動機與目標……………………………………………………3
第二章 文獻回顧……………………………………………………… 4
  2.1水旋風分離器之發展簡述……………………………………… 4
      2.1.1水旋風分離器之簡介…………………………………… 4
      2.1.2水旋風分離器之結構…………………………………… 5
      2.1.3水旋風分離器之規格…………………………………… 6
      2.1.4水旋風分離器之程序設計……………………………… 9
      2.1.5水旋風分離器之優缺點…………………………………10
      2.1.6 水旋風分離器之選擇與應用………………………… 11
  2.2 收集效率之魚勾現象(Fish-hook Effect)………………… 13
  2.3 水旋風分離器之模型與理論………………..……………… 18
2.3.1滯留時間理論 (The Residence-time Theory)………………19
2.3.2亂流二相流理論 (Turbulent Two Phase Flow Theory)……20
2.3.3迴歸模型 (Regression Model)……………………………… 21
  2.4分析水旋風分離器內部流態之方法……………………………22
2.4.1 分析流態模型 (Analytical Flow Model)………………… 22
2.4.2 數值分析 (Numerical Analysis)……………………………23
2.4.3 流態數值模擬 (Numerical Simulation of Flow)…………24
第三章 理論……………………………………………………………27
  3.1水旋風分離器分離原理…………………………………………27
  3.2水旋風分離器之理論與模型……………………………………28
3.2.1平衡軌道理論 (The Equilibrium Orbit Theory)………… 28
3.2.2無因次群模型 (The Dimensionless Group Model)…………29
  3.3固體粒子在水旋風分離器中受力分析…………………………31
3.3.1粒子沉降受力分析………………………………………………31
3.3.2切應力……………………………………………………………34
3.3.3低濃度時顆粒之自由沉降………………………………………35
3.3.4高濃度時顆粒的干涉沉降………………………………………37
3.3.5離心沉降與重力沉降之比較……………………………………38
  3.4水旋風離器之性能特性…………………………………………39
3.4.1影響水旋風分離器分離效率之參數……………………………39
3.4.1.1標準旋風分離器之基本參數…………………………………39
3.4.1.2物性參數………………………………………………………40
3.4.1.3操作參數………………………………………………………41
  3.5FLUENT數值模擬…………………………………………………48
3.5.1模擬軟體與基本假設……………………………………………48
3.5.2幾何結構與網格建立……………………………………………48
3.5.3主導方程式………………………………………………………50
3.5.4多相流方程式……………………………………………………50
3.5.5邊界條件…………………………………………………………53
3.5.6參數設定…………………………………………………………54
3.5.7收斂情形…………………………………………………………54
3.5.8數值方法…………………………………………………………55
第四章 實驗裝置與方法………………………………………………57
    4.1實驗物料………………………………………………………57
    4.2實驗裝置………………………………………………………59
    4.3實驗步驟………………………………………………………62
第五章 結果與討論……………………………………………………64
5.1壓降效應……………………………………………………………64
5.2加入不同物料效應…………………………………………………71
5.3進料濃度效應………………………………………………………73
5.4分流比效應…………………………………………………………74
5.5FLUENT數值模擬結果………………………………………………86
5.5.1速度分佈…………………………………………………………86
5.5.2壓力分佈…………………………………………………………88
5.5.3不同位置之速度分佈……………………………………………89
5.5.4純水模擬與實驗比較……………………………………………92
5.5.5固體粒子與水混合之FLUENT模擬………………………………94
5.5.6分級效率之模擬與實驗比較……………………………………96
第六章 結論…………………………………………………………99
   符號說明……………………………………………………102     
   參考文獻……………………………………………………108
   附錄…………………………………………………………115
   附錄A 實驗物料之種類及物性……………………………115 
   附錄B 實驗操作之表………………………………………117

圖表目錄
圖目錄
第一章
Fig.1-1 Separation spectrum under different particle sizes………………2
第二章
Fig.2-1 Hydrocyclone flow structure…………………………………….6
Fig.2-2 Two conventional hydrocyclone (a) Narrow-angle design ; (b) Wide-angledesign(Trawinski,1977)………………….………...8
Fig.2-3 Different inlet sites of hydrocyclone. (Yalcin,2003)……………9
Fig.2-4 The partition curve (Frachon and Cilliers 1999)………………..13
Fig.2-5 Diagrams to explain the equilibrium orbit theory of hydrocyclone        mechanism and LZVV (Kawatra等人,1996)…………………19
Fig.2-6 Meshed hydrocyclone geometry (Narasimha等人,2005)…….26
第三章
Fig.3-1 Diagrams to explain the equilibrium orbit theory of hydrocyclone mechanism and LZVV (Kawatra,1996)……………………….29
Fig.3-2 Velocity profile of three vortex types (Puprasert et al, 2004)…..35
Fig.3-3 Differential size distributions in feed, overflow and underflow..46
Fig.3-4 Gambit structure of the hydrocyclone………………………….49
Fig.3-5 The meshing structure of the hydrocyclone…………………….50
第四章
Fig.4-1 Size distributions of Corn Starch used in this study……………58
Fig.4-1 Size distributions of PMMA-7G used in this study………….....58
Fig.4-3 Dimensions of the hydrocyclone geometry(unit: mm)………....60
Fig.4-4 Schematic diagram of the experiment apparatus……………….61
第五章
Fig.5-1 Feed velocity in HC1 and HC2 varies with pressure drops…….65
Fig.5-2 Size distribution of PMMA7g in the HC1 underflow under different pressure drops (CF=0.34Vol% Φ1=1 Φ2=1)…………….66
Fig.5-3 Size distribution of PMMA7g in the HC2 underflow under different pressure drops (CF=0.34Vol% Φ1=1 Φ2=1)…………….67
Fig.5-4 HC1 partial separation efficiency of PMMA7g under different pressure drops (CF=0.34Vol% Φ1=1 Φ2=1)………………………69
Fig.5-5 HC2 partial separation efficiency of PMMA7g under different pressure drops (CF=0.34Vol% Φ1=1 Φ2=1)……………………..69
Fig.5-6 Relationship between energy loss and total pressure drop……..70
Fig.5-7 Size distribution of Corn Starch and PMMA7g in HC1 and HC2 underflow………………………………………………………..71
Fig.5-8 The concentrtion of Corn Starch and PMMA7g in the overflow of HC2……………………………………………………………...71
Fig.5-9 Size distribution of Corn Starch in HC1 and HC2 underflow under different concentrations…………………………………..73
Fig.5-10 Feed velocity of Corn Starch in HC1 and HC2 varies with different Φ1 values……………………………………………...75
Fig.5-11 Size distribution of Corn Starch in the underflow of HC1 under different Φ1 values (CF=0.34wt% Φ2=1)………………………...77
Fig.5-12 Size distribution of Corn Starch in the underflow of HC2 under different Φ1 values (CF=0.34wt% Φ2=1)………………………...77
Fig.5-13 Energy loss of Corn Starch in HC1 and HC2 varies with different Φ1 values ………………………...78
Fig.5-14 The overall efficiency E(-) varies with different Φ1 values……79
Fig.5-15 Size distribution of Corn Starch in the HC1 underflow under different Φ2 values (CF=0.34wt% Φ1=1)………………………..81
Fig.5-16 Size distribution of Corn Starch in the HC2 underflow under different Φ2 values (CF=0.34wt% Φ1=1)………………………..81
Fig.5-17 Partial separation efficiency of Corn Starch in the HC1 underflow varies with different Φ2 values………………………..82
Fig.5-18 Partial separation efficiency of Corn Starch in the HC2 underflow varies with different Φ2 values………………………..83
Fig.5-19 Overall efficiency of Corn Starch in HC1 and HC2 varies with different Φ2 values………………………..85
Fig.5-20 Concentration of Corn Starch in HC2 overflow varies with different Φ1 and Φ2 
values………………………..85
Fig.5-21 Velocity profile on (y=0-plane) for an uniform inlet velocity
10m/s Po=0(Mpa)Pu=0(MPa)…………………………………87
Fig.5-22 Velocity profile near vortex finder for an uniform inlet velocity 
10m/s Po=0(Mpa)Pu=0(MPa)…………………………………87
Fig.5-23 Pressure profile on (y=0-plane) for an uniform inlet velocity
10m/s Po=0(Mpa)Pu=0(MPa)…………………………………88
Fig.5-24 The different sites in the geometry hydrocyclone.(mm)………89
Fig.5-25 Velocity profile varis different sites in the hydrocyclone for an uniform inlet velocity 10m/s Po=0(Mpa)Pu=0(MPa)…………90
Fig.5-26 Velocity profile on the overflow(z=24mm)…………………...91
Fig.5-27 Velocity profile on the underflow(z=-74mm)…………………91
Fig.5-28 Compare experimental data and simulated data with the flow split at different feed velocity………………………………….93
Fig.5-29 Compare experimental data and simulated data with the flow split at different underflow pressure…………………………...93
Fig.5-30 Solid velocity profile on (y=0-plane) for Pf=0.4(MPa) Po=0(Mpa)Pu=0(MPa)………………………………………...95
Fig.5-31Solid velocity profile near vortex finder for Pf=0.4(MPa) Po=0(Mpa)Pu=0(MPa)………………………………………...95
Fig.5-32 Partial separation efficiency of Corn Starch(0.34wt% ρs=1480kg/m3) in the underflow for △P1=0.4MPa Po=0MPa Pu=0MPa……………………………………………………….97
Fig.5-33 Partial separation efficiency of simulation with solid particles in the underflow…………………………………..………………98
Fig.5-34 Partial separation efficiency of simulation with solid particles in the underflow varies different Φ value…………………………98
附錄
Fig.A-1 Particle size distribution of Corn starch……………………....115
Fig.A-2 Particle size distribution of PMMA-7G………………………116


表目錄
第五章
Tab5-1 The pressure in HC1 and HC2 under the same PF pressure…....64
Tab5-2 Pressure and velocity in HC1 and HC2 varies with different  Φ1 values…………………………………………….………… 74
Tab5-3 Boundary conditions and physical properties in simulation particles………………………………………………….…..…97
附錄
Tab B-1 Operating range of flow split in multiple hydrocyclones……117
參考文獻
參考文獻
Arterburn, R. A. “The sizing and Selection of Hydrocyclone”.
Bloor, M. I. G. and D. B. Ingham, “Turbulent spin in a cyclone”, Trans. Inst. Chem. Eng., 53, 1, 1-46 (1975).
Bradley, D., “The Hydrocyclone”, Perga mmon Press, London, (1965).
Chu, L. Y., W. M. Chen and X. Z. Lee, “Effect of structural modification on hydrocyclone performance” Separation and Purification Technology Vol. 21, Issue: 1-2, November 1, 71 – 86 (2000).
Cilliers, J. J., L. Diaz-Anadon, and F. S. Wee, “Temperature, Classification and Dewatering in 10 mm Hydrocyclones”, Min. Eng., 17,591-597 (2004).
Coelho, M. A. Z. and R. A. Medronho, “A Model for Performance Prediction of Hydrocyclones”, Chem. Eng. J. 84, 7-14 (2001).
Cullivan, J. C., R. A. Williams, T. Dyakowski, C. R. Cross “New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics”, Trans. IchemE, 81, Part A (2003).


Dai, G. Q., W. M. Chen, J. M. Li and L. Y. Chu, “Experimental Study of Solid-Liquid Two Flow In a Hydrocyclone”, Chem. Eng. J., 74, 211-216 (1999).
Dwari, R. K., M. N. Biswas and B. C. Meikap, “Performance
Characteristics for Particles of Sand Fcc and Fly ash in a Novel Hydrocyclone”, Chem. Eng. Sci., 59, 671-684 (2004)
Dyakowski, T. and R. A. Williams, “Modelling Turbulent Flow within a Small-Diameter Hydrocyclone”, Chem. Eng. Sci., 48, 1143-1152 (1993)
Dyakowski, T. and R. A. Williams, “Prediction of High Solids Concentration Regions Within a Hydrocyclone”, Powder Technology, 87, 1, 43-47 (1996).
Frachon, M. and Cilliers, J. J, “A general model for hydrocyclone partition curves” Chem. Eng. Sci., 73, 1, April, 53-59 (1999).
Flintoff, B. C., L. R. Plitt and A. A. Turak, “Cylone Modelling A Review of Present Technologies”, CIM Bulletin 80(905), 39-50 (1987).
Grady, S. A., G. D. Wesson, M. Abdullab and E. E. Kalu, ”Prediction of 10- mm Hydrocyclone Separation Efficiency Using Computational Fluid Dynamics”, Researcharticle, 41-46 (2003).

He, P., M. Salcudean and I. S. Gartshore, “A Numerical Simulation of Hydrocyclones”, Trans. Inst. Chem. Eng., 77, 429-441 (1999).
Hottand-Batt, A. B., ”A Bulk Model for Separation in Hydrocyclones”, Trans. Inst Min. Metall. (Sect. C: Min. Process Extr. Metall.), 91 (1982).
Kawatra, S. K., A. K. Bakshi, and M. T. Rusesky, “Effect of Viscosity on The Cut (d50) Size of Hydrocyclone Classifiers”, Min. Eng., 9, 881-891 (1996).
Kelsall, D. F., “A Study of The Motion of Solid Particles in A Hydraulic Cyclone”, Trans. Inst. Chem. Eng., 30, 87-108 (1952).
Kumar, S., T. W. Pirog and D. Ramkrishna, “A New Method for Estimating Hindered Creaming/Settling Velocity of Particles in Polydisperse Systems”, Chem. Eng. Sci., 55, 1893-1904 (2000).
Lynch, A. J. and T. C. Rao, Ind. J. Technol., 6, 106-114 (1968).
Majumder, A. K., O. Yerriswamy and J. P. Barnwal, “The “Fish-Hook” Phenomenon in Centrifugal Separation of Fine Particles”, Min. Eng., 6, 1005-1007 (2003).
Michael, J. Doby., Wanailai Kraipech, A. F. Nowakowski, “Numerical Prediction of Outlet Velocity Patterns in Solid-Liquid Separators”, Chem. Eng. J., 111, 173-180 (2005)
Nageswararao, K., “A Critical Analysis of The Fish Hook Effect in Hydrocyclone Classifiers”, Chem. Eng. J., 80, 251-265 (2000).
Nageswararao, K., D.M. Wiseman and T. J. Napier-Munn, “Two
Empirical Hydrocyclone Models Revisited”, Min. Eng. 17, 671-681 (2004).
Narasimha, M., R. Sripriya, P. K. Banerjee, “CFD modeling of hydrocyclone-prediction of cut size” Int. J. Miner. Process., 75, 53-68 (2005)
Nowakowski, A. F., J. C. Cullivan, R. A. Williams and T. Dyakowski,
“Application of CFD to modelling of the flow in hydrocyclones.Is this a realizable option or still a research challenge”, Min. Eng. 17, 661–669 (2004).
Olson, T.J. and R. Van O mmen, “Optimizing hydrocyclone design using advanced CFD model” Min. Eng. 17, 713-720 (2004).
Pasquier, S. and J. J. Cilliers, “Sub-Micron Particle Dewatering Using Hydrocyclones”, Chem. Eng. J., 80, 283-288 (2000).
Plitt, L. R., “The Analysis of Solid-Solid Separations in Classifiers”, CIM Bull., 708, 64 (1971).
Plitt, L. R., “A Mathematical Model of The Hydrocyclone Classifier”, CIM Bull., December, 114-122 (1976).
Puprasert, C., G. Hebrard, L. Lopez and Y. Aurelle, “Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treatment”, Chemical Engineering and Processing, 43, 67-83 (2004).
Rietema, K., “Performance and Design of Hydrocyclone, Parts I to IV”, Chem. Eng. Sci., 15, 293-325 (1961).
Richardson, P. H. and W. N. Zaki, Chem. Eng. Sci., 3, 65 (1954).
Svarovsky, L., “Hydrocyclone”, Holt, Rinehart and Winston Ltd, London (1984).
Svarovsky, L., “Solid-Liquid Separation”, 3rd ed., (1990).
Schuetz, S., G. Mayer, M. Bierdel and M. Piesche, “Investigations on The Flow And Separation Behavious of Hydrocyclones Using Computational Fluid Dynamics”, Int. J. Miner. Process., 73, 229-237 (2004).
Tang, L., F. Wen, Y. Yang, C. T. Crowe, J. N. Chung and T. R. Troutt, “Self-Organizing Particle Dispersion Mechanism in a Plane Wake”, Physics of Fluids A4 10, 2244-2251 (1992).
Trawinski, H. F., “Solid/Liquid Separation Equipment Scale Up”, Ed. D. B .Purchas, Uplands Press, England, 241~286 (1977).

Uhlherr, P. H. T., “Hindered Settling in Non-Newtonian Fluids”, an Appraisal. CHER75, 1,Dept. of Chem. Eng., Monash University, Australia (1975).
Vallebuona, G., A. Casali, G. Ferrara, O. Leal and P.Bevilacqua, “Technical Note Modelling For Small Diameter Hydrocyclones”, Min. Eng., 8, 321-327 (1995).
Yalcin, T., E. Kaukolin, A. Byers, “Axial Inlet Cyclone for Mineral Processing Applications”, Min. Eng. 16,1375-1381 (2003)
Yang, G. A. B. and W. D. Wakley, “Oil-Water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions”, Oil Gas, 11(1), 37-50 (1994).
Yang, Y., C. T. Crowe, J. N. Chung and T. R. Troutt, “Experiments On Particle Dispersion in A Plane Wake”, International Journal of Multiphase Flow, 26, 1583-1607 (2000).
Yoshida Hideto, Taniguchi Satoru and Fukui Kunihiro, “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator”, J. Chin. Inst. Chem. Eng., 35, 1, 41-46 (2004).
Yoshioka, N. and Y. Hotta, “Liquid Cyclone As A Hydraulic Classifier”, Chem. Eng. Jap., 19(12), 623 (1955).

孫玉波,“淺淡水力旋流器的工作原理和影響參數”, 礦業快報,總第403期,1月第1期 (2003)。
呂維明、呂文芳 編,“過濾技術”,高立圖書有限公司 (1994)。
呂維明 編,“過濾技術”,高立圖書有限公司 (2004)。
黃國楨, 吳文豪, “操作條件與幾何結構對水旋風分離器之分離效率  的影響”, 碩士學位論文, 淡江大學化學工程與材料工程學系(2005)
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信