§ 瀏覽學位論文書目資料
系統識別號 U0002-0607200611451500
DOI 10.6846/TKU.2006.01011
論文名稱(中文) 曝氣對沈浸式薄膜表面濾餅成長之影響
論文名稱(英文) Effect of aeration on the cake growth on submerged membrane.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 陳豐富
研究生(英文) Fung-Fu Chen
學號 693360108
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-19
論文頁數 121頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw <kjhwang@mail.tku.edu.tw>)
委員 - 李篤中(djlee@ntu.edu.tw <djlee@ntu.edu.tw>)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw <cjchuang@cycu.edu.tw>)
委員 - 童國倫(kuolun@cycu.edu.tw <kuolun@cycu.edu.tw>)
關鍵字(中) 沈浸式薄膜過濾
微過濾
薄膜阻塞
濾餅形態
關鍵字(英) submerged membrane filtration
microfiltration
membrane blocking
cake formation
第三語言關鍵字
學科別分類
中文摘要
本研究探討操作條件對沈浸式薄膜過濾的影響。以兩種表面孔洞大小不同之薄膜(0.17μm與0.45μm)過濾平均粒徑為5μm之聚甲基丙烯酸甲酯(PMMA)粒子,探討薄膜孔洞大小、過濾壓差、曝氣通量及階梯式提高過濾壓差等操作條件對濾速的影響。並針對粒子在薄濾表面孔洞之附著機構加以研究。研究結果顯示:過濾阻力之來源主要為薄膜孔洞阻塞與濾餅成長,但以薄膜孔洞阻塞之阻力佔大部分。曝氣通量的提升確能提高過濾速度,主要是因為減少薄膜表面濾餅的形成。而在相同之曝氣量下,以階梯式的提升壓力來操作時,能同時減少內部孔洞阻塞以及濾餅的阻力,更能有效的的提升濾速。本研究並經由SEM觀察粒子阻塞薄膜孔道及堆積在薄膜表面的情形,由理論的分析與實驗的結果,可以了解在過濾初期,過濾阻力的來源是薄膜的阻塞,而0.17μm和0.45μm的薄膜分別為完全阻塞模式和中間阻塞模式,等到過濾一段時間後,皆轉變成濾餅阻塞模式。
英文摘要
The effects of operating conditions, such as aeration intensity, filtration pressure, membrane pore size and step increase pressure, on the filtration rate, cake formation and membrane blocking in submerged membrane filtration are studied. Two inorganic membranes with mean pore size of 0.17μm and 0.45μm, respectively, are used to filter PMMA particles with a mean diameter of 5μm. The experimental results show that the filtration resistances of cake and membrane blocking play the major roles on the overall filtration resistance, but the resistance due to membrane blocking is dominant. The filtration rate increases with the increase of aeration flux because of the reduction of cake formation. In addition, the filtration rate can also be enhanced significantly by the method of step-increase of filtration pressure. It is because both membrane blocking and cake formation are reduced by using this method. The membrane blocking and particle deposition are observed by SEM analysis. The structure of the inorganic membranes is not isotropic, the occurrence of membrane blocking is because of the existence of large pores. The model analysis of experimental results show that the complete blocking and the intermediate blocking occur in the pores of 0.17 μm and 0.45 μm membranes, respectively, at the beginning of filtration. However, the blocking models change to cake filtration after a period of time.
第三語言摘要
論文目次
中文摘要……………………………………………………………	I
英文摘要……………………………………………………………	II
目 錄……………………………………………………………..	VI
圖目錄………………………………………………………………	VII
表目錄………………………………………………………………	XIII
第一章 緒論……………………………………………………..	1
	1-1前言..………………………..…………..……..	1
	1-2薄膜生物技術的發展……………..……………..	2
	1-3廢水處理上之應用…………………………………	5
	1-4本研究目標…………………………………………	6
第二章 文獻回顧………………………………………………..	7
	2-1薄膜生物反應的特性……………..……………..	7
	2-2薄膜生物反應器的種類………………………….	9
	2-3 SMBR污水處理設備的原理………………………	11
	2-4 SMBR與傳統活性污泥法的比較…………………	13
	2-5 SMBR中結垢的性質………………………………	15
	2-6薄膜過濾的特性……………………………………	20
	2-6-1濾餅過濾(dead-end filtration) ……………	21
	2-6-2掃流過濾(crossflow filtration) ………...	21
	2-7濃度極化與結垢的現象……………………………	23
	2-7-1濃度極化(concentration polarization)…	23
	2-7-2結垢(fouling)………………………………	24
	2-8提高濾速的方法……………………………………	27
第三章 理論.…….…….…….…….…….…….…….…….…	36
	3-1粒子在濾面上之附著機構………………………..	36
	3-1-1粒子在濾面上之附著機構……..……………..	36
	3-1-2粒子之黏著機構………………..……………..	42
	3-2粒子之結垢模式……………………………………	43
	3-3阻力串聯模式………………………………………	45
	3-4氣泡形狀之估計……………………………………	47
第四章 實驗裝置與步驟………………………………………..	49
	4-1實驗物料…………………………………………..	49
	4-2濾材…………..…………………………………..	49
	4-3實驗裝置 ………………………………………….	50
	4-4分析儀器……………………………………………	51
	4-5實驗步驟 …………………………………………	51
第五章 結果與討論……………………………………………..	55
     5-1操作壓力的影響…………….. …….. ……………..	55
     5-2曝氣通量的影響………………………………………	65
	5-3過濾阻力分析…………………….……………..	77
	5-4階梯式提升壓差的影響……………………………	83
	5-5阻塞機制的判定……………………………………	91
	5-6 SEM的觀察…………………………………………	93
第六章 結論……………………………………………………..	96
符號說明………………………………………………..………..	99
參考文獻……………………………………………………..…..	102
附錄………………………………………..……………………..	109
      附錄A實驗物料之種類及物性…………………………	109
      附錄B實驗數據計算公式…………………………………	113
      附錄C實驗數據和圖………………………………………	116
圖 表 目 錄
                                                       頁次
圖目錄
第一章
Fig.1-1 Application of membrane separation……………………1
Fig.1-2 Separation spectrum under different particle size………………………………………………………………………3
第二章
Fig.2-1 Submerged membrane bioreactor………………………..10
Fig.2-2 External membrane bioreactor………………………….10
Fig.2-3 Comparison of the smbr system and activated sludge system………………………………………………………………….12
Fig.2-4 Effect of the main membrane fouling factor……….18
Fig.2-5 A schematic diagram of membrane separation……….20
Fig.2-6 Schematics of filtration.(a)dead-end filtration and (b)cross-flow filtration…………………………………….21
Fig.2-7 A schematic of the concentration polarization of solute on the membrane surfacesurface………………………..24
Fig.2-8 Four kind of blocking phenomena in the membrane (Belfort et al.1993)……………………………………………….27
Fig.2-9 Typical methods to reduce concentration polarization and fouling in pressure driving membrane processes(Mulder,1991)…………………………………………...28
Fig.2-10 (a) (Bubble flow)(b) (Slug flow) (c) (Churn flow) (d) (Annular flow) (Taitel,1980)……………………………….35

第三章
Fig.3-1 Forces exerted on a depositing particle in a submerged micro-filtration.………………………………………38
Fig.3-2 Interaction energy of Van der Waals force and electrical double layer repulsive force under different distance……………………………………………………………….41
Fig.3-3 Overview of various types of resistance in membrane filtration…………………………………………………46
Fig.3-4 Reynolds number versus Eolvos number for Seventeen experiment system(Granc,1973)……………………………………48
第四章
Fig.4-1 A schematic diagram of Submerged filtration system………………………………………………………………….50
第五章
Fig.5-1 Time courses of filtration rates during submerged micro-filtration under various filtration pressures………56
Fig.5-1-1 An enlarge plot in Fig 5-1………………………….56
Fig.5-2 Time courses of filtration rates during submerged micro-filtration under various filtration pressures………57
Fig.5-2-1 An enlarge plot in Fig5-2……………………………57
Fig.5-3 Time courses of filtration rates during submerged micro-filtration under different membrane sizes……………59
Fig.5-4 Comparison of the fouling resistances at the pseudo-steady state in submerged micro- filtration under different pressures and different membranes…………………59
Fig.5-5 The pseudo-steady filtration rate during submerged micro- filtration under various filtration pressures.……60
Fig.5-6 Comparison of the total resistances at the pseudo-steady state in submerged micro- filtration under different pressures and different membranes…………………61
Fig.5-7 Comparison of the cake resistances at the pseudo-steady state in submerged micro- filtration under different pressures and different membranes………………..62
Fig.5-8 Comparison of cake mass under different pressures62
Fig.5-9Effect of average specific filtration resistances and the porosity of the cake under various filtration pressures………………………………………………………………64
Fig.5-10 Time courses of filtration rates during submerged micro-filtration under various aeration rates………………66
Fig.5-10-1 An enlarge plot in Fig5-10..………………………66
Fig.5-11 Time courses of filtration rates during submerged micro-filtration under various aeration rates………………67
Fig.5-11-1 An enlarge plot in Fig. 5-11………………………67
Fig.5-12 The view of 0.45μm membrane surface after filtration under without aeration……………………………..68
Fig.5-13 The view of 0.45μm membrane surface after filtration under aeration Q=20L/min…………………………..69
Fig.5-14 Comparison of the pseudo-steady state filtration rates during submerged micro-filtration under different aeration rates and membranes….…………………………………70
Fig.5-15 Effect of aeration rates on enhancing filtration rate of the pseudo-steady state…………………………………70
Fig.5-16 Effect of bubble size under with aeration Q=4 L/min……………………………………………………………………71
Fig.5-17 Effect of bubble size under with aeration Q=20 L/min……………………………………………………………………71
Fig.5-18 Effect of aeration rates on mean diameter of bubbles ……………………………………………………………….72
Fig.5-19 Comparison of the total resistances at the pseudo-steady state in submerged micro-filtration under different aeration rates and membranes…………………………………….73
Fig.5-20 Comparison of the porosity of cake under different pressure and aeration rates……………………………………………………………………74
Fig. 5-21 Comparison of the porosity of cake under different pressure and aeration rates…………………………………………………………………..74
Fig.5-22 Comparison of the specific resistances of cake under different pressure and aeration rates.……………….75
Fig.5-23 Comparison of the specific resistances of cake under different pressure and aeration rates…..……………75
Fig.5-24 Comparison of cake mass under different pressure and aeration rates………………………………………………….76
Fig.5-25 Comparison of cake mass under different pressure and aeration rates………………………………………………….77
Fig.5-26 Variation of filtration resistance of 0.45μm membrane during submerged micro-filtration under various filtration aeration rates and pressures………………………78
Fig.5-27 Variation of filtration resistance of 0.17μm membrane during submerged micro-filtration under various filtration aeration rates and pressures……………………..79
Fig.5-28 Variation of filtration resistance of 0.45μm membrane during submerged micro-filtration under various filtration aeration rates and pressures………………………80
Fig.5-29 Variation of filtration resistance of 0.17μm membrane during submerged micro-filtration under various filtration aeration rates and pressures………………………80
Fig.5-30 Filtration resistances in submerged filtration under different aeration rates………………………………….82
Fig.5-31 Filtration resistances in submerged filtration under different aeration rates………………………………….82
Fig.5-32 Time courses of filtration rates during submerged micro-filtration by step change filtration pressures…….84
Fig. 5-33 Effect of changing filtration pressures on filtration rate of the pseudo-steady state………………….85
Fig. 5-34 Effect of changing filtration pressures on the total resistances of the pseudo-steady state……………….86
Fig. 5-35 Comparison of the fouling resistances at the pseudo-steady state in submerged micro- filtration under different operate process…………………………………………87
Fig. 5-36 Comparison of the cake resistances at the pseudo-steady state in submerged micro- filtration under different operate process………………………………………..87
Fig. 5-37 Comparison of the cake mass at the pseudo-steady state in submerged micro- filtration under different operate process……………………………………………………..88
Fig .5-38 Comparison of the porosity of cake in submerged micro- filtration under different operate process………..90
Fig. 5-39 Comparison of the specific resistances of cake in submerged micro- filtration under different operate process…………………………………………………………………90
Fig .5-40 Analysis of fouling mechanism for submerged micro-filtration of PMMA suspension……………………………91
Fig. 5-41 Analysis of fouling mechanism for submerged micro-filtration of PMMA suspension…………………………………………………………….92
Fig. 5-42 The surface view of 0.17um membrane after filtration…………………………………………………………….94
Fig. 5-42-1 An enlarge plot in Fig 5-42………………………95
附  錄
Fig. A.1-1 The SEM picture of PMMA powder(×10KX)…………109
Fig. A.1-2 Particle size distributions of PMMA powder(MX-500)……………………………………………………………………110
Fig. A.2-1 The SEM picture of clean membrane(pore size 0.17μm) (×3KX)…………………………………………………………..111
Fig. A.2-2 The SEM picture of clean membrane(pore size 0.45μm) (×2KX)……………………………………………………………112
Fig. B-1 The effect of pressure drop on the membrane resistance…………………………………………………………..114
Fig. B-2 The effect of pressure drop on the membrane resistance……………………………………………………………114
Fig. B-3 The adjustment on the gas flow rotamerter………115
Fig.C-1-1 The view of 0.17μm membrane surface after filtration under without aeration…………………………….116
Fig.C-1-2 The view of 0.17μm membrane surface after filtration under aeration Q=20L/min………………………….116
Fig.C-2-1 Effect of bubble size under with aeration Q =8 L/min………………………………………………………………….117
Fig.C-2-2 Effect of bubble size under with aeration Q=12 L/min………………………………………………………………….117
Fig.C-3-1 Time courses of filtration rates during submerged micro-filtration by step change filtration pressures…………………………………………………………….118
Fig.C-3-2 Comparison of the fouling resistances at the pseudo-steady state in submerged micro- filtration under different operate process……………………………………….119
Fig.C-3-3 Comparison of the cake resistances at the pseudo-steady state in submerged micro- filtration under different operate process……………………………………….119
Fig.C-3-4 Comparison of the cake mass at the pseudo-steady state in submerged micro- filtration under different operate process…………………………………………………….120
Fig.C-3-5 Comparison of the porosity of cake in submerged micro- filtration under different operate process……….120
Fig.C-3-6 Comparison of the specific resistance of cake in submerged micro- filtration under different operate process……………………………………………………………….121

表目錄
第三章
Table 3-1 The coefficients of blocking models………………45
第四章
Table 4-1 The operating conditions used in this study……53
第五章
Table 5-1 Resistance percentage of the 0.45μm and 0.17μm membranes.…………………………………………………………….63
Table 5-2 Resistance percentage of the 0.45μm and0.17μm membranes under different aeration rates…………………….83
Table 5-3 Comparison of enhancing filtration flux under different operate process…………………………………………89
Table 5-4 The fitting results of blocking models for two used membranes in micro-filtration…………………………………………………………….92
附  錄
Table B-1 The value of Rm of two membrane under different operation pressure…………………………………………………113
Table. B-2 The adjustment on the gas flow rotamerter……115
參考文獻
Ahn, K. H. and K. G. Song, “Treatment of Domestic Wastewater Using Microfiltration for Reuse of Wastewater”, Desalination.,126, 7(1999)
Berthold, G., “The Membrane-coupled Activated Sludge Process in Municipal Wastewater Treatment”,Technomic Publishing Company , Germany,35(2001)
Bouhabila, E. H., R. B. Aı&uml;m and H. Buisson, “Fouling Characterisation in Membrane Bioreactors”, Separation and Purification Technolog , 22-23 ,123(2001)
Belfort, G.,J. M. Pimbley, A. Greiner and K. Y. Chung, “Diagnosis of Membrane Fouling Using Rotating Annular Filter. 1. Cell Culture Media”, J. Membrane Sci .,77,1-22 (1993)
Choi, J. G., T. H. Bae, J. H. Kim, T. M. Tak, and A. A. Randall“The Behavior of Membrane Fouling Initiation on the Crossflow Membrane Bioreactor System”, Journal of Membrane Science, 203,103(2001)
Chang, I. S., and C. H. Lee, “ Membrane Filtration Characteristics in Membrane Coupled Activated Sludge System-the Effect of Physiological States of Activated Sludge on Membrane fouling”, Desalination, 120, 221(1998) 
Chang, I. S., P. L. Clech, B. Jefferson and S. Judd, “Membrane Fouling in Membrane Bioreactors for Wastewater Treatment”, Journal of Environmental Engineering, 128, (2002)
Chang, I. S., S. O. Bag ,and C. H. Lee, “ Effects of Membrane Fouling on Solute Rejection during Membrane Filtration of Activated Sludge”, Process Biochemistry, 36, 855(2000)
Chang, S. and A. G. Fane, “Filtration of Biomass with Laboratory-scale Submerged Hollow Fiber Modules-effect of Operating Conditions and Module Configuration,”J. Chem Tech Biotechnol.,77,1030(2002) 
Chuang, S. H..,“Fouling behavior in a macropores membrane bioreactor”, The second Taiwan-Japan joint symposium on membrane technology in nvironmental management, Taipei, 2003.
Cote, P., H. Buisson, C. Pound and G. Arakaki, “Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater”, Desalination., 113, 189(1997)
Dufrance, R., H. C. Lavallee, R. E. Lebrun and S. O. Lo, “Comparison of Performance between Membrane Bioreactor and Activated Sludge System for the Treatment of Pulping Process Wastewaters”,Tappi J., 81,131(1998)
Fang, H. H. P. and X. Shi, “Pore Fouling of Micofiltration Membrane by Activated Sludge”, Journal of Membrane Science , 264 ,161(2005)
Fane, A. G., C. J. D. Fell and M. T. Nor, “Ultrafiltration Activated Sludge System-development of a Predictive Model”, Polym. Sci. Tech., 13,631(1981)
Gander, M., B. Jefferson and S. Judd, “Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations”, Separation and Purification Technology, 18,199(2000)
Hong, S. P., T. H. Tak, S. Hong, and A. Randallb, “Fouling Control in Activated Sludge Submerged Hollow Fiber Membrane Bioreactors”, Desalination,143,209(2002)


Harada, H., K. Momonoi, S. Yamazaki and S. Takizawa, “Application of Anaerobic UF Membrane Reactor for Treatment of a Wastewater Containing High Strength Particulate Organics” , Wat. Sci. Tech.,30, 307(1994)
Hardt, F. M., and L. S, Clesceri,“Solids Separation by Ultrafiltration for Concentrated Activated Sludge”,J. Wat. Pollut.,42, 2145(1970)
Happel, P. H. and H. L. Bredee, “Principles of the Mathematical Treatment of Constant-pressure Filtration”,J. Soc. Chem. Ind.55T 1-11(1936)
Jefferson, B., A. L. Laine, T. Stephenson and S. L. Judd, “Advanced Biological Unit Process for Domestic Water Recycling.”,Water. Science and Technology, 43, 211(2001)
Jia, X. S., “Extracellular Polymers of Hydrogen-utilizing Mechanogenic and Slulfate-reducing Sludges”, Wat. Res., 30, 1439(1996)
Kang, I. J., S. H. Yoon and C. H. Lee, “Comparison of the Filtration Characteristic of Organic and Inorganic Membranes in a Membrane-coupled Anaerobic Bioreactor”, Wat. Res., 36,1803(2002)
Karapang, N. K., “Extraction and Characterization of Extracellular Polymers in Digester Sewage Sludge”, J. Chem. Tech., Biotechnol,44, 107(1993)
Kang, I. J., S. H. Yoon and C.H. Lee,  “Comparison of the Filtration Characteristics of Organic and Inorganic Membranes in a Membrane-coupled Anaerobic bioreactor”, Water Research,36, 1803 (2002)
Kim, J. S., C. H. Lee and I. C. Chang, “ Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor”, Wat. Res., 35, 2137(2001)
Kim, S. H., S. Y. Moon, C. H. Yoon, S. K. Yim and J. W. Cho, “Role of Coagulation in Membrane Filtration of Wastewater for Reuse”, Desalination,173,301(2004)
Koyuncu, I., E. Kural and D. Topacik, “Pilot Scale Nanofiltration Membrane Sepration for Waste Management in Textile Industrial”,Water Science and Technology, 43, 233(2001)
Liu, R., X. Huang, C. Wang, L. Chen andY. Qian, “Study on Hydraulic Characteristics in a Submerged Membrane Bioreactor Process”,Process Biochemistry,36,249(2000)
Lubbecke, S., A. Vogelpohl and W. Dewjanin, “Wastewater Treatment in a Biological High-performance System with High Biomass Concentration”, Wat. Tes., 29,793(1995)
Lee, J., W. Y. Ahn and C. H. Lee“ Comparison of the Filtration Characteristics Between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor”, Wat. Res.35, 2435(2000)
Mueller, J., “Basic Principles of Membrane Technology”, Kluwer Aacademic Publisher, 309(1991)
Mutlu, S. H., U. Yetis, T. Gurkan and L.Yilmaz, “Decolorization of Wastewater of a Baker’s Yeast Plant by Membrane Processes”,Water Research ,36, 609(2002)
Mayhew, M. and T. Stephenson, Environ. Technol, 18, 883, ( 1997)
Michaels, A. S., “New Separation Technique for the CPI ”, Chem. Eng Prog.,64,31(1968)


Morgan, J. W., “A Comparative Study of the Nature of Biopolymers Extracted from Anaerobic and Activated Sludge”, Wat. Res., 24,743(1990)
Nagaoka, H., S. Ueda, A. Miya, “Influence of Bacterial Extracellular Polymers on the Membrane Separation Sludge Process”, Wat. Sci. Tech., 34,165(1996)
Nuengjamnong, C., J. H. Kweon , J. Cho, C. Polprasert, K. H. Ahn, “Membrane Fouling Caused by Extracellular Polymeric Substances during Microfiltration Processes”, Desalination., 179, 117 (2005)
Nuengjamnong, C., J. H. Kweon, J. Cho, K. H. Ahn, and C. Polprasert, “Influence of Extracellular Polymeric Substances on Membrane Fouling and Cleaning in a Submerged Membrane Bioreactor, ”Colloid. Journal, 67,251(2004)
Ogoshi, M. and Y. Suzuki, “Application of Membrane Separation to An Easily Installed Municipal Wastewater Treatment Plant ” International Specialized Conference on Membrane Technology in Environmental Management,Tokyo,Janpan,November 1-4,250(1999)
Ping Gui, Xia Huang, Ying Chen and Yi Qian , “Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor.,” Desalination 151, 185(2002)
Pierre, C., B. Herve and P. Matthieu, “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater ”,Wat. Sci. Tech., 38,437(1998)
Psoch, C., and S. Schiewer, “Long-term Study of an Intermittent Air Sparged MBR for Synthetic Wastewater Treatment”, Journal of Membrane Science , 260 ,56(2005)
Rishi, S and R. Bhave,“Role of Backpulsing in Fouling Minimization in Crossflow Filtration with Ceramic Membranes,” J. Membrane Sci., 186,41(2001)
Seyfried, A., E. Dorgeloh, E. Brand and P. Ohle, “Effect of the Membrane Technology on the Dimensioning of Municipal Wastewater Treatment Plants ”, Wat. Sci. Tech., 38, 173(1998)
Shin, H. S., S. M. Lee, I. S. Seo, G. O. Kim, K. H. Lim and J. S. Song ,“Pilot-Scale SBR and MF Operation for Removal of Origanic and Nitrogen Compounds from Greywater”, Water Science and Technology, 38, 79(1998)
Smith, C. V., D. D. Gregorio and R. M. Talcott, “The Use of Ultrafiltration Membrane for Activated Sludge Separation”, 24thAnnual Purdue Industrial Waste Conference, Purdue University,Lafayette, Indiana,U.S.A.,1300(1969)
Stephenson, T., S. Judd, B. Jefferson and K. Brindle, “Membrane Bioreactors for Wastewater Treatment,” IWA Publishing London, 4(2000)
Shimizu, Y., Y. I. Okuno and K. Uryu, “Filtration Characterist of Hollow Fiber Microfiltration Membrane Used in  Membrane Bioreactor for Domestic Wastewater Treatment,”Wat. Res., 30.2385(1996)
Tenno, R. and H. Paulapuro, “Removal of Dissolved Organic Compounds form Paper Machine Whitewater by Membrane Bioreactors: A Comparative Analysis”,Control Engineering Practice ,7 ,1085(1999)
Taitel, Y., D. Bornea, and A. E. Dukler, “Modelling Flow Pattern Transitions for Steady Upward Gas-liquid Flow in Tubes”, AIChE J,26, 345(1980)
Ueda, T., K. Hata and Y. Kikuoka, “Treatment of Domestic Sewage Fromrural Settlements by a Membrane Bioreactor”, Wat. Sci. Tech., 34, 189(1996)
Ueda, T., K. Hata and Y. Kikuoka, “Wastewater Treatment Using MembraneBioreactor ”, Wat. Sci. Technol., 34,259(1996)
Urbain, J. C., “Bioflocculation in Activated Sludge: An Analytic Approach”, Wat. Res., 27,829(1993)
Wontae, Lee, S. Kang, H. Shin, “Sludge Characteristics and Their Contribution to Microfiltrationin Submerged Membrane Bioreactors”, J. Membrane Sci., 216, 217 (2003)
Wummel, J.and H. Walther, “Membrane Technology in Municipal Wastewater Treatment-The Case of arkransta Dt Germany”,IWA World Water Congress, Berlin(2001)
Xing, C. H., X. H. Wen, Y. Qian and E. Tardieu, “Ultrafiltration Membrane Bioreactor for Urban Wastewater Reclamation” , J. Membr. Sci., 177, 73(2000)
Yamamoto, K., M. Hiasa, T. Mahmood and T. Matsuo, “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank, ”Water Science and Technology , 21 ,43(1989)
Youm, K. H., A. G. Fane and D. E. Wiley“Effect of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration , ” J. Membrane Sci.,116,229(1996)
呂維明、呂文芳 編著,〝過濾技術〞,高立圖書有限公司(1994)。
呂維明 編著,〝固體過濾技術〞,,高立圖書有限公司(2004)。
論文全文使用權限
校內
校內紙本論文立即公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信