淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0606201712310700
中文論文名稱 設計不同迴轉盤在動態微過濾中流體力學與濾餅形成之解析
英文論文名稱 Analysis on Hydrodynamics and Cake Formation of Dynamic Microfiltration with Different Rotating-Disk Designs
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系博士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 吳思恩
研究生英文姓名 Su-En Wu
學號 802400019
學位類別 博士
語文別 英文
口試日期 2017-05-15
論文頁數 156頁
口試委員 指導教授-鄭東文
委員-李篤中
委員-莊清榮
委員-何啟東
委員-鄭東文
委員-童國倫
中文關鍵字 微過濾  迴轉盤動態過濾器  計算流體力學  幾何結構設計  海水淡化前處理  微藻濃縮 
英文關鍵字 Microfiltration  Rotating-disk dynamic filter  Computational fluid dynamics  Structure design  Seawater pretreatment  Microalgae concentration 
學科別分類 學科別應用科學化學工程
學科別應用科學材料工程
中文摘要 本研究設計不同迴轉盤並解析在動態微過濾中之流體力學與濾餅形成。微過濾應用中薄膜結垢被視為主要缺點,為了提高過濾性能和降低功耗,在動態過濾中使用迴轉盤所產生之剪切力可減少薄膜結垢。
本研究的第一部分是評估局部過濾通量和濾餅之不均勻性。為了瞭解轉速對過濾性能和通量行為之影響,可藉由過濾實驗中分析濾餅形成機制、局部濾餅特性和粒徑分佈。此實驗部分是使用平均孔徑為0.1 μm之醋酸纖維酯膜過濾粒徑分佈為1.5 μm至25 μm之聚甲基丙烯酸甲酯(PMMA)球型微粒,並且使用計算流體動學(CFD)模擬薄膜表面上的速度和剪切力分佈,藉由力平衡方程式結合實驗局部濾餅性質可分析濾餅形成機制。局部過濾通量、臨界粒徑和操作條件之間的關係可推導出非線性方程式。此研究方法可以估計局部濾餅量和過濾通量,找出最佳操作條件,作為設計高效迴轉盤結構或過濾模組支之基礎。
本研究的第二部分是在動態微過濾中選擇最佳操作條件與迴轉盤幾何結構以去除海水中之膠體結垢物。此研究使用計算流體力學模擬各種類型的迴轉盤在動態過濾器中的流體流動。藉由剪切力模擬值可建立濾餅質量和過濾通量之經驗方程式,並且基於過濾性能和功耗之間的關係設計出最佳迴轉盤幾何結構。由結果指出,除去海水中微粒可操作於低轉速度且具有兩個圓形通孔葉片的迴轉盤有高過濾通量和相對低的功率消耗。
本研究的第三部分為在動態過濾系統中設計九種迴轉盤並評估微藻濃縮和薄膜結構之過濾性能。藉由過去研究所得知的微藻濾餅性質,並選擇適當的模型以估計濾餅質量和過濾通量。從平均薄膜表面剪切力估算可建立濾餅質量和過濾通量的關係經驗式,並且以高過濾通量和低功耗之間的觀點來判定迴轉盤之最佳設計,本研究可提供未來設計迴轉盤動態過濾器和最佳化操作的指引。
英文摘要 This thesis investigated the hydrodynamics and cake formation with different rotating-disk designs in dynamic microfiltration. Membrane fouling is recognized as a major drawback for the application of microfiltration. In order to enhance high filtration performance and low power consumption, the reduction of membrane fouling, which is caused by the shear stress at the membrane, is created by a rotating-disk in dynamic filtration.
A local flux behavior and cake properties was evaluated to represent the nonuniformity of cake formation. In order to understand the effect of rotating speed on filtration performance and flux behavior, mechanism of cake formation, local cake properties, and particle size distribution were investigated in the filtration experiment. The mixed cellulose ester membrane with mean pore size of 0.1 μm was used for filtering Polymethyl methacrylate (PMMA) spherical fine particles with the particle size distribution ranged from 1.5 μm to 25 μm. The distributions of velocity and shear stress on the membrane surface were simulated using computational fluid dynamics (CFD). Combined with experimental data concerning local cake properties, the mechanism of cake formation based on a force balance model was analyzed. The relationship between local filtration flux, critical particle size, and operation conditions can be expressed as a nonlinear equation. This method estimates the local cake mass and filtration rate for optimizing operating conditions and designing high-efficiency disk structures or filter modules.
The selection of optimum operating conditions and the design of disk structures for removing colloidal foulants from artificial seawater was applied in rotating-disk dynamic microfiltration. The fluid flows in dynamic filer with various types of rotating disks were simulated using computational fluid dynamics. The cake mass and filtration flux were estimated from the shear stress and calculated using empirical equations. The optimal design of rotating-disk was determined from comparing the filtration performances and power consumptions. The results indicated that a rotating-disk with two vanes of circular orifice under low disk rotation speed shows the optimal design and operating condition in removing the particles from seawater with high filtration flux and relatively low power consumption.
Nine types of rotating-disk were designed and installed above the filter membrane in a filter chamber to study the filtration performances of microalgae concentration and membrane fouling. The cake property of microalgae was obtained from our previous study, and proper models were chosen to elucidate the cake mass and filtration flux. Once the mean shear stress on the membrane surface was known, the cake mass and filtration flux were estimated based on empirical equations. The optimal design of the rotating-disk was then determined from the viewpoints of high filtration flux and low power consumption. This study provides a guide for the design and optimized operation of rotating-disk dynamic filter.
論文目次 Contents
致謝 -----I
中文提要 -----V
Abstract -----VII
Contents -----IX
Index of figures -----XIV
Index of tables -----XIX
Chapter 1: Introduction -----1
1.1 Research Background -----1
1.2 Research Aims -----3
1.3 Structure of the thesis -----3
Chapter 2: Literature Review -----5
2.1 Filtration of fine particles -----5
2.1.1 Membrane fouling -----5
2.1.1.1 Blocking models -----5
2.1.1.2 Cake filtration models -----9
2.1.2 Membrane morphology -----10
2.1.3 Particle deposition -----11
2.1.4 Hydrodynamic method -----12
2.2 Filtration of soft particles -----15
2.2.1 Effect of particle deformation -----16
2.2.2 Effect of cake compression -----20
2.2.3 Effect of particle interactions -----23
2.3 Dynamic filtration systems -----25
2.3.1 Rotating-disk dynamic filtration systems -----26
2.3.2 Computational fluid dynamics -----28
2.3.3 Calculation of shear stress on rotating disk and membrane -----28
2.3.4 Expression of filtration characteristics -----30
2.3.5 Energy considerations -----31
2.3.6 Microfiltration application of rotating-disk systems -----34
Chapter 3: Analysis on the nonuniformity of cake formation in rotating-disk dynamic microfiltration -----38
3.1 Introduction -----39
3.2 Materials and experiments -----40
3.2.1 Materials and membrane -----40
3.2.2 Rotating-disk dynamic filtration and analyses -----42
3.2.3 Basic filtration equations and cake properties -----44
3.2.4 Local cake properties and filtration performance -----46
3.2.5 Force analysis on depositing particles -----47
3.2.5.1 Tangential drag force -----48
3.2.5.2 Normal drag force -----48
3.2.5.3 Net gravitational force -----49
3.2.5.4 Inertial lift force -----49
3.2.5.5 Net interparticle force -----49
3.2.6 The derivation process of local filtration flux -----50
3.3 Numerical simulation methods -----51
3.4 Results and discussion -----53
3.4.1 Simulated velocity and shear stress distributions -----53
3.4.2 Experimental filtration and cake structure -----55
3.4.3 Local cake properties -----59
3.4.4 Local filtration flux -----64
3.5 Summary -----67
Chapter 4: Structure design of rotating-disk dynamic microfiltration in improving filtration performances for fine particle removal -----68
4.1 Introduction -----69
4.2 Analyzed systems and numerical methods -----72
4.2.1 Analyzed systems -----72
4.2.2 Materials -----74
4.2.3 Numerical methods -----75
4.3 Theory -----76
4.3.1 Filtration equation and cake properties -----76
4.3.2 Power consumption -----77
4.4 Results and discussion -----78
4.4.1 Effect of disk rotation speed and feed flow rate -----78
4.4.2 Effect of disk structure -----84
4.4.3 The specific filtration flux -----87
4.5 Summary -----90
Chapter 5: Disk structure on the performance of a rotating-disk dynamic filter – A case study on microalgae microfiltration -----92
5.1 Introduction -----93
5.2 Analyzed Systems and Numerical methods -----95
5.2.1 Analyzed systems -----95
5.2.2 Materials -----98
5.2.3 Numerical methods -----99
5.3 Results and discussion -----101
5.3.1 Effect of disk rotation speed and feed flow rate -----101
5.3.2 Effect of geometric rotating-disk filter -----109
5.4 Summary -----119
Chapter 6: Conclusion -----120
6.1 General -----120
6.2 Analysis on the nonuniformity of cake formation -----121
6.3 Design of rotating-disk structure for fine particle removal -----122
6.4 Design of rotating-disk dynamic filter for microalgae microfiltration -----123
Chapter 7: Future Work -----124
Appendix -----126
A.1 Velocity profiles of parallel-disk system -----126
A.2 Power required of parallel-disk system -----128
A.3 Energy considerations of cross-flow system -----129
A.4 Energy considerations of rotating-disk system -----131
Abbreviations and Nomenclature -----134
References -----138
List of Publications -----154

Index of figures
Figure 1.1 Application range of various membrane processes.-----1
Figure 2.1 Four kinds of blocking phenomena in the membrane.-----7
Figure 2.2 The membrane blockages of (a) MF-Millipore (b) Durapore and (c) Isopore membranes at the initial stage of filtration. (Hwang et al., 2002)-----8
Figure 2.3 Two typical examples for explaining how the blocking index varies during microfiltration. (Hwang et al., 2007)-----9
Figure 2.4 Force analysis on a depositing particle in the (a) cross-flow and (b) submerged microfiltration system. (Hwang et al., 2006, 2010)-----12
Figure 2.5 The four stages of cake compression during a filtration. (Hwang et al., 2009)-----16
Figure 2.6 A comparison of cake structures formed by rigid and soft particles (a) PMMA rigid particles, (b) pseudomonas cells.-----17
Figure 2.7 Distributions of local cake porosity in cake at different filtration times. (Hwang et al., 2001b)-----18
Figure 2.8 The relationships between specific cake filtration resistance and P at different times. (Hwang et al., 2009)-----23
Figure 2.9 Specific energy consumed per m3 of permeate as a function of rotation speeds for various disks. (Brou et al., 2003)-----32
Figure 2.10 Power of rotating disk motor and feed pump at different TMP and rotating speed. (Luo et al., 2010)-----33
Figure 3.1 PMMA particle size distribution.-----41
Figure 3.2 Cross-sectional view of the chamber of a rotating-disk dynamic filter.-----42
Figure 3.3 Schematic view of the membrane.-----43
Figure 3.4 Schematic diagram of the dynamic microfiltration system.-----43
Figure 3.5 Forces on depositing particles in dynamic microfiltration.-----47
Figure 3.6 Simulated velocity distributions on x- and y- planes of rotating-disk dynamic filter at three disk rotating speeds.-----54
Figure 3.7 Simulated velocity distributions on the x-planes and velocity vectors near the rotating disk of a rotating-disk dynamic filter at three disk rotation speeds.-----54
Figure 3.8 Time courses of filtration flux during dynamic microfiltration at three TMPs, 20, 60 and 100 kPa, and Q = 3 × 10-6 m3/s and w = 500 rpm.-----55
Figure 3.9 Effects of disk rotating speed on the pseudo-steady filtration flux at TMPs from 20 to 100 kPa.-----57
Figure 3.10 Simulated shear stress distributions and cake formations at 1 hour of operation at three disk rotation speeds.-----57
Figure 3.11 The variation of the simulated compressive pressure and cake thickness distribution for different radial position with various disk rotating speeds.-----60
Figure 3.12 Local cake mass at different radial positions; TMP = 100 kPa for w = 100–500 rpm.-----61
Figure 3.13 Local specific cake filtration resistances at different radial positions; TMP = 100 kPa for w = 100–500 rpm.-----62
Figure 3.14 Particle size distributions in original PMMA suspension and the cake at various disk rotation speeds at TMP = 20 kPa.-----63
Figure 3.15 Comparison of calculated results and experimental data for average specific cake filtration resistances and cake mass at various disk rotation speeds at TMP = 20 kPa.-----64
Figure 3.16 Local filtration flux effects on critical particle size under various operating conditions.-----65
Figure 3.17 Local filtration flux at different r/r0 with various disk rotation speeds at TMP = 20 kPa.-----66
Figure 4.1 Schematic diagram of a cylindrical filter chamber with Type 1 rotating-disk.-----73
Figure 4.2 Schematic diagram of various types of rotating-disk dynamic filters.-----74
Figure 4.3 Comparison of mean shear rate between previous literature and this study under various disk rotation speeds.-----78
Figure 4.4 Effects of Q on mean shear stress at three disk rotation speeds, 100, 300 and 500 rpm with Type 1 rotating-disk.-----79
Figure 4.5 Simulated velocity distributions on xz-planes for type 1 rotating-disk under Q = 5×10-6 m3/s and disk rotation speeds from 500 to 3000 rpm.------80
Figure 4.6 The local shear stress on membrane surface at y = 0 of Type 1 rotating-disk at disk rotation speeds from 500 to 3000 rpm.-----81
Figure 4.7 Simulated shear stress distributions on membrane surface of Type 1 rotating-disk at different disk rotation speeds, (a)w= 500 rpm, (b)w= 1000 rpm, (c)w= 2000 rpm and (d)w= 3000 rpm.-----82
Figure 4.8 Effects of mean shear stress on the mean cake mass and pseudo-steady filtration flux of Type 1 rotating-disk at Q = 5×10-6 m3/s and P = 20 kPa.-----83
Figure 4.9 Simulated fluid velocity distribution of a cross-sectional view in the xz-plane for (a) Type 1, (b) Type 2 and (c) Type 3 rotating-disk and shear stress distribution on membrane surface for (d) Type 1, (e) Type 2 and (f) Type 3 rotating-disk at w = 3000 rpm.-----86
Figure 4.10 The cake resistances and pseudo-steady filtration fluxes for different types of rotating-disk dynamic filters at three disk rotation speeds, 1000, 2000 and 3000 rpm.-----87
Figure 4.11 The specific filtration fluxes for different types of rotating-disk dynamic filters at three disk rotation speeds, 1000, 2000 and 3000 rpm.-----89
Figure 5.1 The filter chamber of a rotating-disk dynamic filter used in this study.-----95
Figure 5.2 Schematic diagrams of different types of rotating-disks.-----97
Figure 5.3 Schematic diagrams of different types of rotating-disks with orifices. -----98
Figure 5.4 The microphotograph of Chlorella sp. (900x). (Lin, 2013)-----99
Figure 5.5 The mesh of rotating-disk dynamic filter.-----100
Figure 5.6 Comparisons of the mean shear rate between previous literature and this study under various rotating speeds.-----101
Figure 5.7 Fluid velocity on xz-plane at y = 0 for Type A1 rotating-disk at feed flow rates from 0 to 60 L/h.-----102
Figure 5.8 Distributions of shear rate on the membrane surface for Type A1 rotating-disk at feed flow rates from 0 to 60 L/h.-----103
Figure 5.9 Effects of feed flow rate on the mean shear rate at four rotating speeds of Type A1 rotating disk.-----104
Figure 5.10 Shear rate distributions on membrane surface at y = 0 for Type A1 rotating-disk at disk rotating speeds from 1000 to 3000 rpm.-----105
Figure 5.11 Effects of mean shear stress on the pseudo-steady filtration flux and mean cake mass for Type A1 rotating disk filter at Q = 30.8 L/h and P = 100 kPa.-----106
Figure 5.12 Effects of disk rotating speed on the power consumption and pseudo-steady filtration flux for Type A1 rotating disk filter at Q = 30.8 L/h and P = 100 kPa.-----108
Figure 5.13 Shear stress distributions at the membrane surface for different types of rotating-disks under w= 3000 rpm.-----111
Figure 5.14 The mean shear stress on the membrane surface for different types of rotating-disk filters with orifice disk at three disk rotating speeds, 150 500 and 3000 rpm.-----112
Figure 5.15 The power consumptions and pseudo-steady filtration fluxes for different types of rotating-disk filters at Q = 30.8 L/h and P = 100 kPa.-----113
Figure 5.16 Comparisons of the flux increase rate among different types of rotating-disk filters at three disk rotating speeds, 150 500 and 3000 rpm (on the basis of Type A1).-----114
Figure 5.17 Comparisons of the flux increase rate among different types of rotating-disk filters with orifice disk at three disk rotating speeds, 150 500 and 3000 rpm (on the basis of Type A1).-----115
Figure 5.18 Comparisons of the relative specific energy among different types of rotating-disk filters at three disk rotating speeds, 150 500 and 3000 rpm (on the basis of Type A1).-----117
Figure 5.19 Comparisons of the relative specific energy among different types of rotating-disk filters with orifice disk at three disk rotating speeds, 150 500 and 3000 rpm (on the basis of Type A1).-----118
Figure A.1 Schematic of parallel-disk system for cylindrical coordinates.-----126
Figure A.2 Schematic of two-parallel-plate cross-flow system for rectangular cartesian coordinates.-----129
Figure A.3 Schematic of parallel-disk system for cylindrical coordinates.-----131
Figure A.4 Effects of cross-flow velocity and disk rotation speed on the specific energy in cross-flow and rotating-disk dynamic filtration under P = 20 kPa.-----132

Index of tables
Table 4.1 Seawater quality characterization for pretreatment. (Voutchkov, 2010)-----70
Table 4.2 Constituents in artificial seawater.-----75
Table A.1 Effects of cross-flow velocity on the pseudo-steady filtration flux* (Hwang et al., 2016), power consumption and specific energy in cross-flow microfiltration.-----130
Table A.2 Effects of disk rotation speed on the pseudo-steady filtration flux* (Hwang et al., 2016), power consumption and specific energy in rotating-disk microfiltration. -----132

參考文獻 Al-Akoum, O., Jaffrin, M.Y., Ding, L., Paullier, P., Vanhoutte, C., 2002. An hydrodynamic investigation of microfiltration and ultrafiltration in a vibrating membrane module. J. Membr. Sci. 197, 37-52.
Al-Akoum, O., Mercier-Bonin, M., Ding, L., Fonade, C., Aptel, P., Jaffrin, M.Y., 2002. Comparison of three different systems used for flux enhancement: application to crossflow filtration of yeast suspensions. Desalination. 147, 3l-36.
Akoum, O., Richfield, D., Jaffrin, M.Y., Ding, L.H., Swart, P., 2006. Recovery of trypsin inhibitor by soy milk ultrafiltration using a rotating disk system. Desalination.191, 438-445.
Andersen, N.P.R., Christensen, M.L., Keiding, K., 2004. New approach to determining consolidation coefficients using cake-filtration experiments. Powder Technol. 142(2-3), 98-102.
Belfort, G., Davis, R.H., Zydney, A.L., 1994. The Behavior of Suspensions and Macromolecular Solutions in Crossflow Microfiltration. J. Membr. Sci. 96, 1.
Bendick, J., Reed, B., Morrow, P., Carole, T., 2014. Using a high shear rotary membrane system to treat shipboard wastewaters: Experimental disc diameter, rotation and flux relationships. J. Membr. Sci. 462, 178-184.
Bhattacharjee, C., Bhattacharya, P.K., 2006. Ultrafiltration of black liquor using rotating disk membrane module. Sep. Purif. Technol. 49, 281-290.
Bhattacharjee, S., Ghosh, S., Datta, S., Bhattacharjee, C., 2006. Studies on ultrafiltration of casein whey using a rotating disk module: effects of pH and membrane disk rotation. Desalination. 195, 95-108.
Bouzerar, R., Ding, L., Jaffrin, M. Y., 2000a. Local permeate flux–shear–pressure relationships in a rotating disk microfiltration module: implications for global performance. J. Membr. Sci. 170 (1), 127-141.
Bouzerar, R., Jaffrin, M.Y., Ding, L., Paullier, P., 2000b. Influence of geometry and angular velocity on performance of a rotating disk filter. AIChE J. 46 (2), 257-265.
Bouzerar, R., Jaffrin, M.Y., Lefevre, A., Paullier, P., 2000c. Concentration of ferric hydroxide suspensions in saline medium by dynamic cross-flow filtration. J. Membr. Sci. 165, 111-123.
Bödewadt, U.T., 1940. Die drehströmung über festem Grunde. Z. angew. Math. Mech. 20, 241.
Brou, A., Ding, L., Boulnois, P., Jaffrin, M.Y., 2002. Dynamic microfiltration of yeast suspensions using rotating disks equipped with vanes. J. Membr. Sci. 197, 269-282.
Brou, A., Jaffrin, M.Y., Ding, L.H., Courtois. J., 2003. Microfiltration and ultrafiltration of polysaccharides produced by fermentation using a rotating disk dynamic filtration system. Biotechnol. Bioeng. 82, 429-437.
Brugnoni, L.I., Cubitto, M.A., Lozano, J.E., 2011. Role of shear stress on biofilm formation of Candida krusei in a rotating disk system. J. Food Eng. 102, 266-271.
Cao, D.Q., Iritani, E., Katagiri, N., 2013. Properties of filter cake formed during dead–end microfiltration of O/W emulsion. J. Chem. Eng. Japan. 46(9), 593-600.
Charcosset, C., 2009. A review of membrane processes and renewable energies for desalination. Desalination. 245, 214-231.
Cheryan, M., 1998. Ultrafiltration and Microfiltration Handbook. Technomic Publishing Co., Pennsylvania, USA.
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.
Choi, C.K., Park, J.Y., Park, W.C., Kim, J.J., 1999. A study on dynamic separation of silica slurry using a rotating membrane filter: 2. Modelling of cake formation. J. Membr. Sci. 157, 177-187.
Christensen, M.L., Andersen, N.P.R., Hinge, M., Keiding, K., 2006. Characterisation of the transition between the filtration and consolidation stage from liquid pressure measurements. Filtration. 6(1), 71-78.
Christensen, M.L., Hinge, M., 2008. The influence of creep on cake solid volume fraction during filtration of core-shell particles. Colloids Surf., A. 320(1-3), 227-232.
Christensen, M.L., Johansson, C., Sedin, M., Keiding, K., 2011. Nonlinear filtration behavior of soft particles: Effect of dynamic cake compression. Powder Technol. 207(1-3), 428-436.
Christensen, M.L., Keiding, K., 2007. Filtration model for suspensions that form filter cakes with creep behavior. AIChE J. 53(3), 598-609.
Christensen, M.L., Keiding, K., 2007. Creep effects in activated sludge filter cakes. Powder Technol. 177(1), 23-33.
Christensen, M.L., Sedin, P., Theliander, H., Keiding, K., 2006. Pressure and concentration profiles in filter cake consisting of core/shell latex particle. Colloids Surf., A. 290(1-3), 295-303.
Chuang, C.J., 1988. Effect of shear stress on the performances of a rotating disk type dynamic filter. Ph.D. Thesis. Taipei, Taiwan: Department of Chemical Engineering, National Taiwan University.
Davies, G.A., Jia, X., 1995. Simulation of the structure and filtration performance of granular porous membranes. J. Membr. Sci. 106, 67-87.
Ding, L., Al-Akoum, O., Abraham, A., Jaffrin, M.Y., 2002. Milk protein concentration by ultrafiltration with rotating disk modules. Desalination. 144, 307-311.
Ding, L., Jaffrin, M.Y., Luo, J., 2015. Dynamic filtration with rotating disks, and rotating or vibrating membranes. Progress in Filtration and Separation, Elsevier Ltd. UK, Chap. 2, 27-59.
Ding, L., Jaffrin, M.Y. Mellal, M. Heb, G. 2006. Investigation of performances of a multishaft disk (MSD) system with overlapping ceramic membranes in microfiltration of mineral suspensions. J. Membr. Sci. 276, 232-240.
Engler, J., Wiesner, M.R., 2000. Particle fouling of a rotating membrane disk. Water Res. 34 (2), 557-565.
Espina, V., Jaffrin, M.Y., Ding, L., Cancino, B., 2010a. Fractionation of pasteurized skim milk proteins by dynamic filtration. Food Res. Intern. 43, 1335-1346.
Espina, V., Jaffrin, M.Y., Paullier, P., Ding, L., 2010b. Comparison of permeate flux and whey protein transmission during successive microfiltration and ultrafiltration of UHT and pasteurized milks. Desalination. 264, 151-159.
Espina, V.S., Jaffrin, M.Y., Ding, L., 2009. Comparison of rotating ceramic membranes and polymeric membranes in fractionation of milk proteins by microfiltration. Desalination. 245, 714-722.
Espina, V.S., Jaffrin, M.Y., Frapparta, M., Ding, L., 2008. Separation of casein micelles from whey proteins by high shear microfiltration of skim milk using rotating ceramic membranes and organic membranes in a rotating disk module. J. Membr. Sci. 325, 872-879.
Feuerpeil, H.P., Blase, D., Olapinski, H., 2003. GmbH. German Patent DE 102 39 247 C1.
Frappart, M., Massé, A., Jaffrin, M.Y., Pruvost, J., Jaouen, P., 2011. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination. 265, 279-283.
Frenander, U., Jönsson, A.S., 1996. Cell harvesting by cross-flow microfiltration using a shear-enhanced module. Biotech. Bioeng. 52, 397-403.
Harscoat, C., Jaffrin, M.Y., Bouzerar, R., Courtois, J., 1999. Influence of fermentation conditions and microfiltration process on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths. Biotech. Bioeng. 65, 500-511.
He, G., Ding, L.H., Paullier, P., Jaffrin, M.Y., 2007. Experimental study of a dynamic filtration system with overlapping ceramic membranes and non-permeating disks rotating at independent speeds. J. Membr. Sci. 300, 63-70.
Hermans, P.H., Bredee, H.L., 1936. Principles of the mathematical treatment of constant pressure filtration. J. Soc. Chem. Ind. 55, 1T.
Hermia, J., 1982. Constant pressure blocking filtration laws—application to power law non-Newtonian fluid. Trans. Inst. Chem. Eng. 60, 183.
Hwang, K.J., Chan, C.S., Chen, F.F., 2008. A Comparison of Hydrodynamic Methods for Mitigating the Particle Fouling in Submerged Membrane Filtration. J. Chin. Inst. Chem. Eng. 39(3), 257-264.
Hwang, K.J., Chan, C.S., Tung, K.L., 2009. Effect of Backwash on the Performance of Submerged Membrane Filtration. J. Membr. Sci. 330, 349-356.
Hwang, K.J. Chen, F.F., 2007. Modeling of Particle Fouling and Membrane Blocking in Submerged Membrane Filtration. Sep. Sci. Technol. 42(12), 2595-2614.
Hwang, K.J., Chen, F.F., 2009. Interpretation of Particle Fouling in Submerged Membrane Filtration by Blocking Models. Tamkang J. Sci. Eng. 12(1), 9-16.
Hwang, K.J., Chen, H.C., 2010. Selective Deposition of Fine Particles in Constant-Flux Submerged Membrane Filtration. Chem. Eng. J. 157, 323-330.
Hwang, K.J., Chen, H.C., Tsai, M.H., 2010. Analysis of Particle Fouling in Constant-Pressure Submerged Membrane Filtration. Chem. Eng. Technol. 33(8), 1327-1333.
Hwang, K.J., Chou, L.L., 2013. Crossflow microfiltration of Chlorella sp. suspensions. Filtration. 13(3), 185-192.
Hwang, K.J., Hseuh, C.L., 2003. Dynamic analysis of cake properties in microfiltration of soft colloids. J. Membr. Sci. 214, 259.
Hwang, K.J., Hsu, Y.L., Tung, K.L., 2006. Effect of particle size on the performance of cross-flow microfiltration. Adv. Powder Technol. 17(2), 189-206.
Hwang, K.J., Liao, C.Y., 2012. Effects of Membrane Morphology and Operating Conditions on Microfiltration Particle Fouling. J. Taiwan Inst. Chem. Eng. 43, 46-52.
Hwang, K.J., Liao, C.Y., Tung, K.L., 2007. Analysis of Particle Fouling during Microfiltration by Use of Blocking Models. J. Membr. Sci. 287(2), 287-293.
Hwang, K.J., Liao, C.Y., Tung, K.L., 2008. Effect of membrane pore size on the particle fouling in membrane filtration. Desalination. 234, 16-23.
Hwang, K.J., Lin, K.P., 2002. Cross-flow microfiltration of dual-sized submicron particles. Sep. Sci. Technol. 37, 2231-2249.
Hwang, K.J., Lin, S.J., 2014. Filtration flux–shear stress–cake mass relationships in microalgae rotating-disk dynamic microfiltration. Chem. Eng. J. 244, 429-437.
Hwang, K.J. Lin, T.T., 2002. Effect of Morphology of Polymeric Membrane on the Performance of Cross-Flow Microfiltration. J. Membr. Sci. 199(1-2), 41-52.
Hwang, K.J., Liu, H.C., Lu, W.M., 1998. Local properties of cake in cross-flow microfiltration of submicron particles. J. Membr. Sci. 138, 181-192.
Hwang, K.J., Lu, W.M., 1997. Migration and Deposition of Submicron Particles in Crossflow Microfiltration. Sep. Sci. Technol. 32(17), 2723-2747.
Hwang, K.J., Lyu, S.Y., Chen, F.F., 2006. The preparation and filtration characteristics of Dextran–MnO2 gel particles. Powder Technol. 161(1), 41-47.
Hwang, K.J., Perng, J.C., Lu, W.M., 2001a. Microfiltration of deformable submicron particles. J. Chem. Eng. Japan. 34(8), 1-9.
Hwang, K.J., Tsai, P.C., Iritani, E., Katagiri, N., 2012. Effect of polysaccharide concentration on the membrane filtration of microbial cells. J. Appl. Sci. Eng. 15(4), 323-332.
Hwang, K.J., Wang, Y.S., 2003. Cross–flow microfiltration of soft porous submicron particles. J. Chin. Inst. Chem. Eng. 34(1), 161-169.
Hwang, K.J., Wang, C.Y., 2012. Microfiltration characteristics of Bacillus subtilis fermentation broths. J. Taiwan Inst. Chem. Eng. 43(3), 347-353.
Hwang, K.J., Wang, S.Y., Iritani, E., Katagiri, N., 2016. Fine particle removal from seawater by using cross-flow and rotating-disk dynamic filtration. J. Taiwan Inst. Chem. Eng. 62, 45-53.
Hwang, K.J., Wang, Y.T., Iritani, E., Katagiri, N., 2009. Effects of porous gel particle compression properties on microfiltration characteristics. J. Membr. Sci. 341(1-2), 286-293.
Hwang, K.J., Wang, Y.T., Iritani, E., Katagiri, N., 2010. Effect of gel particle softness on the performance of cross-flow microfiltration. J. Membr. Sci. 365(1-2), 130-137.
Hwang, K.J., Wu, S.E., 2015. Disk structure on the performance of a rotating-disk dynamic filter: A case study on microalgae microfiltration. Chem. Eng. Res. Des. 94, 44-51.
Hwang, K.J., Wu, S.F., 2009. Effects of Air-Sparging on the Filtration Flux and Cake Properties in Cross-Flow Microfiltration of Size-Distributed Fine Particles. Sep. Sci. Technol. 44(15), 3485-3505.
Hwang, K.J., Wu, Y.J., 2008. Flux Enhancement and Cake Formation in Air-Sparged Cross-Flow Microfiltration. Chem. Eng. J. 139(2), 296-303.
Hwang, K.J., Yang, S.S., 2011. The role of polysaccharide on the filtration of microbial cells. Sep. Sci. Technol. 46(5), 786-793.
Hwang, K.J., Yu, Y.H., Lu, W.M., 2001b. Cross–flow microfiltration of submicron microbial suspension. J. Membr. Sci. 194(2), 229-243.
Iritani, E., Katagiri, N., Yoo, K.M., Hayashi, H., 2007. Consolidation and expansion of a granular bed of superabsorbent hydrogels. AIChE J. 53(1), 129-137.
Iritani, E., Matsumoto, S., Katagiri, N., 2008. Formation and consolidation of filter cake in microfiltration of emulsion-slurry. J. Membr. Sci. 318(1-2), 56-64.
Iritani, E., Mukai, Y., Hagihara, E., 2002. Measurements and evaluation of concentration distributions in filter cake formed in dead-end ultrafiltration of protein solutions. Chem. Eng. Sci. 57(1), 53-62.
Iritani, E., Sato, T., Katagiri, N., Hwang, K.J., 2010. Multi-stage creep effect in consolidation of tofu and okara as soft colloids. J. Chem. Eng. Japan. 43(2), 140-149.
Jaffrin, M.Y., 2008. Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems. J. Membr. Sci. 324 (1-2), 7-25
Jaffrin, M.Y., 2012. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update. Curr. Opin. Chem. Eng. 1, 1-7.
Jaffrin, M.Y., Ding, L., Akoum, O., Brou, A., 2004. A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. J. Membr. Sci. 242 (1-2), 155-167.
Jaffrin, M.Y., He, G., Ding, L.H., Paullier, P., 2006. Effect of membrane overlapping on performance of multishaft rotating ceramic disk membranes. Desalination. 200, 269-271.
Ji, P., Motin, A., Shan, W., Bénard, A., Bruening, M.L., Tarabara, V.V., 2016. Dynamic crossflow filtration with a rotating tubular membrane: Using centripetal force to decrease fouling by buoyant particles. Chem. Eng. Res. Des. 106, 101-114.
Jimenez-Lopez, A.J.E., Leconte, N., Garnier-Lambrouin, F., Bouchoux, A., Rousseau, F., Gesan-Guiziou, G., 2011. Ionic strength dependence of skimmed milk microfiltration: Relations between filtration performance, deposit layer characteristics and colloidal properties of casein micelles. J. Membr. Sci. 369(1-2), 404-413.
Kapur, P.C., Laha, S., Usher, S., DeKretser, R.G., Scales, P., 2002. Modeling of the consolidation stage in pressure filtration of compressible cakes. J. Colloid Interface Sci. 256(1), 216-222.
Kawakatsu, T., Nakajima, M., Nakao, S.I., Kimura, S., 1995. Three-dimensional simulation of random packing and pore blocking phenomena during microfiltration. Desalination. 101, 203-209.
Kersey, F.R., Merkel, T.J., Perry, J.L., Napier, M.E., Desimone, J.M. 2012. Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir. 28(23), 8773-8781.
Kim, K., Jung, J.Y., Kwon, J.H., Yang, J.W., 2015. Dynamic microfiltration with a perforated disk for effective harvesting of microalgae. J. Membr. Sci. 475, 252-258.
Kim, K., Jung, J.Y., Shin, H., Choi, S.A., Kim, D., Bai, S.C., Chang, Y.K., Han, J.I., 2016. Harvesting of Scenedesmus obliquus using dynamic filtration with a perforated disk. J. Membr. Sci. 517, 14-20.
Kim, K., Jung, J.Y., Kwon, J.H., Yang, J.W., 2015. Dynamic microfiltration with a perforated disk for effective harvesting of microalgae. J. Membr. Sci. 475, 252-258.
Lanoisellé, J.L., Vorobyov, E.I., Bouvier, J.M., Piar, G., 1996. Modeling of solid/liquid expression for cellular materials. AIChE J. 42, 2057.
Lee, S.S., Burt, A., Russoti, G., Buckland, B., 1995. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system, Biotechnol. Bioeng. 48, 386-400.
Li, L., Ding, L., Tu, Z., Wan, Y., Clausse, D., Lanoisellé, J-L., 2009. Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system. J. Membr. Sci. 342, 70-79.
Liebermann, F., 2010. Dynamic cross flow filtration with Novoflow's single shaft disk filters. Desalination. 250, 1087-1090.
Lin, S.J., 2012. Separation of microalgae suspension using rotating-disk dynamic microfilter. Master Thesis. New Taipei, Taiwan: Department of Chemical and Materials Engineering, Tamkang University.
Liu, J., Liu, Z., Liu, F., Wei, W., Li, Z., Wang, X., Dong, C., Xu, X., 2015. The application of saw-tooth promoter for flat sheet membrane filtration. Desalination. 359,149-155.
Liu, R., Huang, X., Wang, C., Chen, L., Qian, Y., 2000. Study on Hydraulic Characteristics in a Submerged Membrane Bioreactor Process. Process. Biochem. 36, 249.
Lu, W.M., Hwang, K.J., 1993. Mechanism of cake formation in constant pressure filtration. Sep. Technol. 3, 122-132.
Lu, W.M., Hwang, K.J., 1995. Cake Formation in 2-D Cross-Flow Filtration. AIChE J. 41(6), 1443-1455.
Lu, W.M., Ju, S.C., 1989. Selective Particle Deposition in Cross-Flow Filtration. Sep. Sci. Technol. 24(7-8), 517-540.
Lu, W.M., Lai, C.C., Hwang, K.J., 1995. Constant pressure filtration of submicron particles. Sep. Technol. 5, 45.
Lu, W.M., Tung, K.L., Hung, S.M., Shiau, J.S., Hwang, K.J., 2001a. Compression of deformable gel particles. Powder Technol. 116(1), 1-12.
Lu, W.M., Tung, K.L., Hung, S.M., Shiau, J.S., Hwang, K.J., 2001b. Constant pressure filtration of mono-dispersed deformable particle slurry. Sep. Sci. Technol. 36(11), 2355-2383.
Lu, W.M., Tung, K.L., Hung, S.M., Shiau, J.S., Hwang, K.J., 2001c. Constant pressure filtration of mono-dispersed deformable particle slurry. Sep. Purif. Technol. 36(11), 2351.
Lu, W.M., Tung, K.L., Pan, C.H., Hwang, K.J., 2002. Crossflow microfiltration of mono-dispersed deformable particle suspension. J. Membr. Sci. 198(2), 225-243.
Luo, J., Cao, W., Ding, L., Zhu, Z., Wan, Y., Jaffrin, M.Y., 2012c. Treatment of dairy effluent by shear-enhanced membrane filtration: The role of foulants. Sep. Purif. Technol. 96, 194-203.
Luo, J., Ding, L., 2011. Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system. Desalination. 278, 150-156.
Luo, J., Ding, L., Wan, Y., Jaffrin, M.Y., 2012b. Threshold flux for shear-enhanced nanofiltration: Experimental observation in dairy wastewater treatment. J. Membr. Sci. 409-410, 276-284.
Luo, J., Ding, L., Wan, Y., Paullier, P., Jaffrin, M.Y., 2010. Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater. Chem. Eng. J. 163, 307-316.
Luo, J., Ding, L., Wan, Y., Paullier, P., Jaffrin, M.Y., 2012a. Fouling behavior of dairy wastewater treatment by nanofiltration under shear-enhanced extreme hydraulic conditions. Sep. Purif. Technol. 88, 79-86.
Luo, J., Zhu, Z., Ding, L., Bals, O., Wan, Y., Jaffrin, M.Y., Vorobiev, E., 2013. Flux behavior in clarification of chicory juice by high-shear membrane filtration: Evidence for threshold flux. J. Membr. Sci. 435, 120-129.
Luo, M., Wang, Z., 2001. Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination. 141, 15-22.
Meeten, G.H., 2000. Septum and filtration properties of rigid and deformable particle suspensions. Chem. Eng. Sci. 55(10), 1755-1767.
Meireles, M., Molle, C., Clifton, M., Aimar, P., 2004. The origin of high hydraulic resistance for filter cakes of deformable particles: cell-bed deformation or surface-layer effect? Chem. Eng. Sci. 5(24).
Mellal, M., Jaffrin, M.J., Ding, L., Delattre, C., Michaud, P., Courtois, J., 2008. Separation of oligogclucuronans of low degrees of polymerization by using a high shear rotating disk filtration module. Sep. Purif. Technol. 60, 22-29.
Meyer, P., Mayer, A., Kulozik, U., 2015. High concentration of skim milk proteins by ultrafiltration: Characterisation of a dynamic membrane system with a rotating membrane in comparison with a spiral wound membrane. Int. Dairy J. 51, 75-83.
Moulai-Mostefa, N., Frappart, M., Akoum, O., Ding, L., Jaffrin, M.Y., 2010. Separation of water from metal working emulsions by ultrafiltration using vibratory membranes. J. Hazard. Mater. 177, 978-982.
Moulai-Mostefa, N., Akoum, O., Nedjihoui, M., Ding, L., Jaffrin, M.Y., 2007a. Comparison between rotating disk and vibratory membranes in the ultrafiltration of oil-in-water emulsions. Desalination. 206, 494-498.
Moulai-Mostefa, N., Ding, L.H., Frappart, M., Jaffrin, M.Y., 2007b. Treatment of aqueous ionic surfactant solutions by dynamic ultrafiltration. Sep. Sci. Technol. 42, 2583-2594.
Motin, A., Tarabara, V.V., Bénard, A., 2015. Numerical investigation of the performance and hydrodynamics of a rotating tubular membrane used for liquid–liquid separation. J. Membr. Sci. 473, 245-255.
Murkes, J., Carlsson, C.G., 1988. Crossflow Filtration. Wiley, New York.
Nakanishi, K., Tadokoro, T., Matsuno, R., 1987. On the specific resistance of microorganisms. Chem. Eng. Commun. 62, 187-201.
Pessoa, A., Vitolo, M., 1998. Evaluation of cross-flow microfiltration membrane using a rotary disc-filter. Process. Biochem. 33, 39-45.
Prihasto, N., Liu, Q.F., Kim, S.H., 2009. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination. 249, 308-316.
Qu, P., Gésan–Guiziou, G., Bouchoux, A., 2012. Dead-end filtration of sponge-like colloids: The case of casein micelle. J. Membr. Sci. 417-418, 10-19.
Rayess, Y.E., Manon, Y., Jitariouk, N., Albasi, C., Peuchot, M.M., Devatine, A., Fillaudeau, L., 2016. Wine clarification with Rotating and Vibrating Filtration (RVF): Investigation of the impact of membrane material, wine composition and operating conditions. J. Membr. Sci. 513, 47-57.
Ríos, S.D., Clavero, E., Salvado, J., Farriol, X., Torras, C., 2011. Dynamic Microfiltration in Microalgae Harvesting for Biodiesel Production. Ind. Eng. Chem. Res. 50, 2455-2460.
Sarkar, A., Moulik, S., Sarkar, D., Roy, A., Bhattacharjee, C., 2012. Performance characterization and CFD analysis of a novel shear enhanced membrane module in ultrafiltration of Bovine Serum Albumin (BSA). Desalination. 292, 53-63.
Schiele, B., 1978. Untersuchungen zur filtration feindisperser suspensionen im dynamischen druckfilter, Ph.D. Thesis. Stuttgart: Universität Stuttgart.
Serra, C.A., Wiesner, M.R., 2000. A comparison of rotating and stationary membrane disk filters using computational fluid dynamics. J. Membr. Sci. 165, 19-29.
Serra, C.A., Wiesner, M.R., Laı̂né, J.-M., 1999. Rotating membrane disk filters: design evaluation using computational fluid dynamics. Chem. Eng. J. 72, 1-17.
Shim, J.K., Yoo, I., Lee, Y.M., 2002. Design and Operation Considerations for Wastewater Treatment Using a Flat Submerged Membrane Bioreactor. Process. Biochem. 38, 279.
Sutzkover-Gutman, I., Hasson, D., 2010. Feed water pretreatment for desalination plants. Desalination. 264, 289-296.
Tamneh, Y., Ripperger, S., 2008. Performance of single and double shaft disk separators. Phys. Sep. Sci. Eng. ID 508617.
Tanaka, T., Kamimura, R., Fujiwara, R., Nakanishi, K., 1994. Crossflow filtration of yeast broth cultivated in molasses. Biotechnol. Bioeng. 43, 1094-1101.
Tien, C., Ramarao, B.V., 2006. On analysis of cake formation and growth in cake filtration. J. Chin. Inst. Chem. Eng. 37(1), 81.
Tiller, F.M., Cramp, J.R., Ville, F., 1980. A revised approach to the theory of cake filtration. in: P. Sanasundaran (Ed.), Fine Particles Processing, Vol. 2, Amer. Inst. Min. Met. Petr. Eng., New York, 1549-1558.
Tiller, F.M., Green, T.C., 1973. The role of porosity in filtration. IX. Skin effect with highlycompressible materials. AIChE J. 19, 1266.
Tim, S., Wolfgang, K., Ulrich, K., 2011. Impact of protein interactions and transmembrane pressure on physical properties of filter cakes formed during filtrations of skim milk. Procedia Food Sci. 1, 886-892.
Torras, C., Pallarès, J., Garcia-Valls, R., Jaffrin, M.Y., 2006. CFD simulation of a rotating disk flat membrane module. Desalination. 200, 453–455.
Torras, C., Pallarès, J., Garcia-Valls, R., Jaffrin, M.Y., 2009. Numerical simulation of the flow in a rotating disk filtration module. Desalination. 235 (1-3), 122-138.
Tu, Z., Ding, L., 2010. Microfiltration of mineral suspensions using a MSD module with rotating ceramic and polymeric membranes. Sep. Purif. Technol. 73, 363-370.
Tung, K.L., Hu, C.C., Chuang, C.J., Hwang, K.J., Wu, T.Y., 2010. Effects of soft particle deformability and particle/pore size ratio on the blocking mechanism in dead–end microfiltration. Chem. Eng. Technol. 33(8), 1341-1348.
Vasseur, P.R., Cox, G., 1976. The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78, 385.
Viadero, R.C., Masciola, D.A., Reed, B.E., Vaughan Jr., R.L., 2000. Two-phase limiting flux in high-shear rotary ultrafiltration of oil-in-water emulsions. J. Membr. Sci. 175, 85-96.
Voutchkov, N., 2010. Considerations for selection of seawater filtration pretreatment system. Desalination. 261, 354-364.
Wang, S.Y., 2014. Inorganic particle removal and filtration flux enhancement in seawater desalination pretreatment. Master Thesis. New Taipei, Taiwan: Department of Chemical and Materials Engineering, Tamkang University.
Wu, S.E., 2013. Novel design of rotating disk for improving separation efficiency of microfiltration by CFD. Master Thesis. New Taipei, Taiwan: Department of Chemical and Materials Engineering, Tamkang University.
Yakhot, V., Orszag, S.A., 1986. Renormalization Group Analysis of Turbulence: I. Basic Theory, J. Sci. Comput. 1 (1), 1-51.
Zhang, W., Ding, L., 2015. Investigation of membrane fouling mechanisms using blocking models in the case of shear-enhanced ultrafiltration. Sep. Purif. Technol. 141, 160-169.
Zhang, W., Ding, L., Grimi, N., Jaffrin, M.Y., Tang, B., 2017. Application of UF-RDM (Ultafiltration Rotating Disk Membrane) module for separation and concentration of leaf protein from alfalfa juice: Optimization of operation conditions. Sep. Purif. Technol. 175, 365-375.
Zhang, W., Grimi, N., Jaffrin, M.Y., Ding, L., 2015. Leaf protein concentration of alfalfa juice by membrane technology. J. Membr. Sci. 489,183-193.
Zhu, Z., Luo, J., Ding, L., Bals, O., Jaffrin, M.Y., Vorobiev, E., 2013. Chicory juice clarification by membrane filtration using rotating disk module. J. Food Eng. 115 (2), 264-271.
Zhu, Z., Ladeg, S., Ding, L., Bals, O., Moulai-Mostefa, N., Jaffrin, M.Y., Vorobiev, E., 2014. Study of rotating disk assisted dead-end filtration of chicory juice and its performance optimization. Ind. Crops Prod. 53, 154-162.
Zsirai, T., Qiblawey, H., A-Marri, M.J., Judd, S., 2016. The impact of mechanical shear on membrane flux and energy demand. J. Membr. Sci. 516, 56-63.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2022-06-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2022-06-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信