§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0603201502325300
DOI 10.6846/TKU.2015.00164
論文名稱(中文) 中空球形鐵酸鎳粉體合成與特性分析
論文名稱(英文) Preparation and characterization of hollow spherical NiFe2O4 powder
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 1
出版年 104
研究生(中文) 鄭羽珊
研究生(英文) Yu-Shan Cheng
學號 602400250
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-01-21
論文頁數 90頁
口試委員 指導教授 - 余宣賦
委員 - 張裕祺
委員 - 周賢鎧
關鍵字(中) 水熱法
模板法
中空球
鐵酸鎳
關鍵字(英) hydrothermal method
template technique
hollow sphere
nickel ferrite
第三語言關鍵字
學科別分類
中文摘要
本研究以一結合了模板法與水熱技術的製備程序來合成中空球形的鐵酸鎳磁性粉體。在含有金屬離子(Ni2+、Fe3+)及葡萄糖的水溶液加入適量檸檬酸,以氨水調整溶液pH值,隨後進行180°C水熱反應12小時,待反應結束收集粉體並且乾燥,最後進行煆燒過程後得一中空球形結構鐵酸鎳。實驗過程中將添加不同含量的檸檬酸、葡萄糖以及改變溶液pH值等不同參數所製得的乾燥粉及煆燒粉以X-光繞射分析儀、熱重分析儀、熱示差分析儀、傅氏轉換紅外線光譜儀、掃描式電子顯微鏡和超導量子干涉磁量儀來分析其特性,以了解所製得鐵酸鎳的性質與製程參數關係。結果顯示以Ni2+:Fe3+:檸檬酸:葡萄糖莫爾比為1:2:2.6:7且在中性環境下所製得粉體在兩階段煆燒(400+1000°C)後可得緻密的中空鐵酸鎳球形粉體,在外加磁場10 kOe下呈現磁場強度為39 emu/g,殘留磁場強度為8.45 emu/g,而矯頑力約為62 Oe。
英文摘要
Hollow spherical nickel ferrite magnetic powders (NiFe2O4) were prepared using process combining template technique and hydrothermal method. Aqueous solutions, containing the required amounts of Ni2+, Fe3+, glucose and citric acid, with controlled pH (by using NH4OH(aq)) were undergone hydrothermal reactions at 180°C for 12 h. The resulted slurries were collected and dried. The dried powder was calcined to from hollow spherical NiFe2O4. The specimens were characterized using X-ray diffractometer, termograviometric analyzer, differential scanning calorimeter, Fourier transform infrared spectrometer, scanning electron microscope and superconducting quantum interference device magnetometer. Effects of process parameters on the properties of prepared NiFe2O4 were investigated and discussed. The results indicate that the hollow, spherical NiFe2O4 particles with dense crust can be produced using the aqueous solution having molar ratios of Ni2+ : Fe3+ : citric acid : D(+)-glucose = 1:2:2.6:7 and pH = 7 as the strating solution. After calcining the dried powder using a two-stage heating procedure (400 + 1000°C), hollow spherical nickel ferrite powder with dense crust can be produced. The hollow spherical nickel ferrite powder obtained using a neutral starting solution of Ni2+ : Fe3+ : citric acid : D(+)-glucose = 1:2:2.6:7 and calcing in a two-stage heating procedure (400+1000°C) had saturated magnetization (measured at 10000 Oe) of 39 emu/g, remanence magnetization of 8.45 emu/g and coercivity of 62 Oe
第三語言摘要
論文目次
中文摘要………………………………………………………………………...…….I
英文摘要……………...………………………………………………………………II
目錄…………...………………...………………………...………...………... …......III
圖目錄…………...………………...……………………………………….……...… V
表目錄…………...………………...………………………...……………………..VIII
第一章	緒論…………...………………...………………………...………………….1
第二章	基礎理論與文獻回顧…………...………………...………………………....3
2-1 磁性原理…………...………………...………………………...………………3
2-2 磁性性質與分類…………...………………...………………………...………4
2-3 磁滯曲線…………...………………...………………………...………………6
2-4 鐵酸鎳晶體結構…………...………………...………………………...………8
2-5 文獻回顧…………...………………...………………………...………………9
2-5-1 共沉澱法製備奈米顆粒…………...………………...…………………...9
2-5-2 噴霧熱解法製備奈米顆粒…………...………………...……………….10
2-5-3 溶膠-凝膠法製備奈米顆粒…………...………………...………………10
2-5-4 水熱法製備奈米顆粒…………...………………...…………………….11
2-5-5 共沉澱法製備中空球形粉體…………...………………...………….…12
2-5-6 噴霧熱解法製備中空球形粉體…………...………………...………….12
2-5-7 水熱法製備中空球形粉體…………...………………...…………….…12
第三章	實驗步驟與儀器分析…………...………………...………………………..13
3-1 實驗步驟…………...………………...……………………………………….13
3-2 分析儀器…………...………………...……………………………………….16
第四章	結果與討論…………...………………...…………………………………..18
4-1 碳球的合成與NiFe2O4中空粒子製備的先導測試………………………..18
4-2 添加檸檬酸之影響…………...………………...…………………………….28
4-3 pH值對合成鐵酸鎳之影響…………...………………...……………………37
4-4 檸檬酸/鎳莫爾比對合成鐵酸鎳的影響…………...………………...……...48
4-5 葡萄糖/鎳莫爾比對合成鐵酸鎳的影響…………...………………...……...59
  4-6 煆燒程序對鐵酸鎳中空粒子的影響…………...………………...…….........69
  4-7 中空鐵酸鎳球形粒子的磁特性…………...………………...…….................72
第五章	結論…………...………………...……..........................................................75
參考文獻…………...………………...……................................................................76
附錄…………………………………………………………………………………..81
 
圖目錄
                 頁次
圖2-1 磁性物質分類圖………………………………………………………………6
圖2-2 磁滯曲線圖……………………………………………………………………7
圖2-3 FCC堆疊的氧離子內部四面體、八面體孔隙相對位置圖………………….8
圖3-1 實驗步驟流程圖……………………………………………………………..15
圖4-1 醣類水溶液以水熱法碳化成球之結構變化示意圖:(a)碳球之TEM圖;
      (b)碳球之化學結構式意圖[33]……………………………………………...21
圖4-2 碳球之SEM圖 (a)放大倍率10K;(b)放大倍率100K…………………...22
圖4-3 碳球之TG-DSC圖…………………………………………………….…….23
圖4-4乾燥粉之SEM圖 (a、b) N1F2C0G15Px;(c、d) N1F2C0G7Px…….….……..24
圖4-5 N1F2C0G7Px之TG-DSC圖……………………………………………………25
圖4-6 N1F2C0G7Px不同煆燒溫度粉體之XRD圖…………………………….….…26
圖4-7 SEM圖 (a) N1F2C0G7Px(600°C);(b) N1F2C0G7Px(1000°C)…………….……27
圖4-8 N1F2C2.6G7Px之乾燥粉SEM圖 (a)放大倍率10K;(b)放大倍率30K………30
圖4-9 N1F2C0G7Px及N1F2C2.6G7Px之TG-DSC圖……………………….…………31
圖4-10 N1F2C0G7Px及N1F2C2.6G7Px乾燥粉之IR圖……………….…….…………32
圖4-11 N1F2C0G7Px及N1F2C2.6G7Px煆燒600°C粉體之IR圖………………...........33
圖4-12 N1F2C0G7Px及N1F2C2.6G7Px煆燒600°C粉體之XRD圖…………………...34
圖4-13 N1F2C0G7Px及N1F2C2.6G7Px煆燒1000°C粉體之XRD圖………………….35
圖4-14 SEM圖 (a) N1F2C2.6G7Px(600°C);(b) N1F2C2.6G7Px(1000°C)……………...36
圖4-15 N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9之TG-DSC圖………………….39
圖4-16 乾燥粉之SEM圖 (a、b) N1F2C2.6G7P3;(c、d) N1F2C2.6G7P7;(e、f) 
N1F2C2.6G7P9 ……………………………………………………………….40
圖4-17 煆燒600°C粉體之SEM圖 (a、b) N1F2C2.6G7P3;(c、d) N1F2C2.6G7P7;
(e、f) N1F2C2.6G7P9………………………………………………………..…41
圖4-18 煆燒1000°C粉體之SEM圖 (a) N1F2C2.6G7P3;(b) N1F2C2.6G7P7;
(c) N1F2C2.6G7P9…………………………………………………………….42
圖4-19 N1F2C2.6G7Px、N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9乾燥粉之IR圖…43
圖4-20 N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9煆燒600°C粉體之IR圖………44
圖4-21 N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9煆燒1000°C粉體之IR圖……..45
圖4-22 N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9煆燒600°C粉體之XRD圖……46
圖4-23 N1F2C2.6G7P3、N1F2C2.6G7P7、N1F2C2.6G7P9煆燒1000°C粉體之XRD圖…..47
圖4-24 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7之TG-DSC圖…………………50
圖4-25 乾燥粉之SEM圖 (a、b) N1F2C1.6G7P7;(c、d) N1F2C2.6G7P7;(e、f)
N1F2C3G7P7…………………………………………………………………51
圖4-26 煆燒600°C粉體之SEM圖 (a、b) N1F2C1.6G7P7;(c、d) N1F2C2.6G7P7;
(e、f) N1F2C3G7P7 …………………………………………………………...52
圖4-27 煆燒1000°C粉體之SEM圖 (a、b) N1F2C1.6G7P7;(c、d) N1F2C2.6G7P7
(e、f) N1F2C3G7P7 ………………………………………………………….53
圖4-28 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7乾燥粉之IR圖………………….54
圖4-29 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7煆燒600°C粉體之IR圖………..55
圖4-30 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7煆燒1000°C粉體之IR圖………56
圖4-31 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7煆燒600°C粉體之XRD圖……..57
圖4-32 N1F2C1.6G7P7、N1F2C2.6G7P7、N1F2C3G7P7煆燒1000°C粉體之XRD圖……58
圖4-33 乾燥粉之SEM圖 (a) N1F2C2.6G3P7;(b) N1F2C2.6G5P7;(c) N1F2C2.6G7P7;
(d) N1F2C2.6G9P7;(e) N1F2C2.6G12P7 ……………………………………….62
圖4-34 煆燒600°C粉體之SEM圖 (a) N1F2C2.6G3P7;(b) N1F2C2.6G5P7;
(c) N1F2C2.6G7P7;(d) N1F2C2.6G9P7;(e) N1F2C2.6G12P7 ……………………63
圖4-35 煆燒1000°C粉體之SEM圖 (a) N1F2C2.6G3P7;(b) N1F2C2.6G5P7;
(c) N1F2C2.6G7P7;(d) N1F2C2.6G9P7;(e) N1F2C2.6G12P7…………………….64
圖4-36 N1F2C2.6G3P7、N1F2C2.6G5P7、N1F2C2.6G7P7、N1F2C2.6G9P7、
N1F2C2.6G12P7之TG-DSC圖. ……………………………………………...65
圖4-37 N1F2C2.6G3P7、N1F2C2.6G5P7、N1F2C2.6G7P7、N1F2C2.6G9P7、
N1F2C2.6G12P7乾燥粉之IR圖………………………………………………66
圖4-38 N1F2C2.6G3P7、N1F2C2.6G5P7、N1F2C2.6G7P7、N1F2C2.6G9P7、
N1F2C2.6G12P7煆燒600°C粉體之XRD圖………………………………….67
圖4-39 N1F2C2.6G3P7、N1F2C2.6G5P7、N1F2C2.6G7P7、N1F2C2.6G9P7、
N1F2C2.6G12P7煆燒1000°C粉體之XRD圖………………………………...68
圖4-40 N1F2C2.6G7P7兩階段煆燒粉體之SEM圖 (a、b)兩階段煆燒400+600°C;       
(c、d) 兩階段煆燒400+1000°C…………………………………………….70
圖4-41 N1F2C2.6G7P7 兩階段煆燒粉體之XRD圖…………………………………71
圖4-42 N1F2C2.6G7P7(600°C)粉體之磁性分析……………………………………...73
圖4-43 N1F2C2.6G7P7在不同煆燒程序後粉體之磁性分析……………..………….74
圖A-1 N1F2C2.6G7不同煆燒溫度粉體之XRD圖…………………………………..81
圖A-2 N1F2C2.6G7P3不同煆燒溫度粉體之XRD圖………………………………...82
圖A-3 N1F2C2.6G7P7不同煆燒溫度粉體之XRD圖………………………………...83
圖A-4 N1F2C2.6G7P9不同煆燒溫度粉體之XRD圖………………………………...84
圖A-5 N1F2C1.6G7P7不同煆燒溫度粉體之XRD圖………………………………...85
圖A-6 N1F2C3G7P7不同煆燒溫度粉體之XRD圖………………………………….86
圖A-7 N1F2C2.6G3P7不同煆燒溫度粉體之XRD圖………………………………...87
圖A-8 N1F2C2.6G5P7不同煆燒溫度粉體之XRD圖………………………………...88
圖A-9 N1F2C2.6G9P7不同煆燒溫度粉體之XRD圖…………………….………….89
圖A-10 N1F2C2.6G12P7不同煆燒溫度粉體之XRD圖………………………………90

 
表目錄
                     頁次
表3-1 實驗所需試藥……………………………………………………………..…14
參考文獻
1.	Jun, Y., Seo, J., Cheon, J. (2008). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of Chemical Research, 41(2), 179-189. doi:10.1021/ar700121f 

2.	Gomes, J. A., Sousa, M. H., Tourinho, F. A., Aquino, R., Silva, G. J., Depeyrot, J., Dubois, E., Perzynski, R. (2008). Synthesis of core-shell ferrite nanoparticles for ferrofluids: Chemical and magnetic analysis. The Journal of Physical Chemistry C, 112, 6220-6227. doi:10.1021/jp7097608 

3.	Jun, Y., Lee, J., Cheon, J. (2008). Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angewandte Chemie International Edition, 47(5122), 5135. doi:10.1002/anie.200701674 

4.	Shchukin, D. G., Radtchenko, I. L., Sukhorukov, G. B. (2003). Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Materials Letters, 57, 1743-1747. doi:10.1016/S0167-577X(02)01061-3

5.	Shchukin, D. G., Radtchenko, I. L., Sukhorukov, G. B. (2003). Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. Journal of Physical Chemistry B, 107, 86-90. doi:10.1021/jp0265236 

6.	Caruso, F., Spasova, M., Susha, A., Giersig, M., Caruso, R. A. (2001). Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chemistry of Materials, 13, 109-116. doi:10.1021/cm001164h 

7.	Bekovic, M., Trlep, M., Jesenik, M., Hamler, A. (2014). A comparison of the heating effect of magnetic fluid between the alternating and rotating magnetic field. Journal of Magnetism and Magnetic Materials, 355, 12-17. doi:10.1016/j.jmmm.2013.11.045 

8.	Tada, M., Kanemaru, T., Hara, T., Nakagawa, T., Handa, H., Abe, M. (2009). Synthesis of hollow ferrite nanospheres for biomedical applications. Journal of Magnetism and Magnetic Materials, 321, 1414-1416. doi:10.1016/j.jmmm.2009.02.053

9.	Lin, C., Chen, I., Wang, C., Chen, M. (2011). Synthesis and characterization of magnetic hollow nanocomposite spheres. Acta Materialia, 59, 6710-6716. doi:10.1016/j.actamat.2011.07.028 

10.	Yu, J., Yu, X., Huang, B., Zhang, X., Dai, Y. (2009). Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Crystal Growth and Design, 9(3), 1474-1480. doi:10.1021/cg800941d 

11.	Gul, I. H., Ahmed, W., Maqsood A. (2008). Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. Journal of Magnetism and Magnetic Materials, 320, 270-275. doi:10.1016/j.jmmm.2007.05.032 

12.	Maaz, K., Karim, S., Hasanain, S. K., Liu, J., Duan, J. L. (2009). Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of magnetism and magnetic materials, 321, 1838-1842. doi:10.1016/j.jmmm.2008.11.098 

13.	Cao, X., Dong, H., Meng, J., Sun, J. (2011). Synthesis of rod-shaped NiFe2O4 spinel ferrites by the precipitatione-toptactic reaction and investigation of magnetic properties. Solid State Sciences, 13, 1804-1808. doi:10.1016/j.solidstatesciences.2011.07.011 

14.	Yu, H., Gadalla, A. M. (1996). Preparation of NiFe2O4 powder by spray pyrolysis of nitrate aerosols in NH3. Journal of Materials Research, 11(3), 663-670. doi:10.1557/JMR.1996.0080

15.	Jung, D. S., Kang, Y. C. (2009). Effects of precursor types of Fe and Ni components on the properties of NiFe2O4 powders prepared by spray pyrolysis. Journal of magnetism and magnetic materials, 321, 619-623. doi:10.1016/j.jmmm.2008.10.008 

16.	Chen, D., He, X. (2001). Synthesis of nickel ferrite nanoparticles by sol-gel method. Materials Research Bulletin, 36, 1369-1377. doi:10.1016/S0025-5408(01)00620-1

17.	Srivastava, M., Chaubey, S., Ojha, A. K. (2009). Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Materials Chemistry and Physics, 118, 174-180. doi:10.1016/j.matchemphys.2009.07.023 

18.	Chen, D., Chen, D., Jiao, X., Zhao, Y., He, M. (2003). Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technology, 133, 247-250. doi:10.1016/S0032-5910(03)00079-2 

19.	Bucko, M. M., Haberko, K. (2007). Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. Journal of the European Ceramic Society, 27, 723-727. doi:10.1016/j.jeurceramsoc.2006.04.052 

20.	Huo, J., Wei, M. (2009). Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Materials Letters, 63, 1183-1184. doi:10.1016/j.matlet.2009.02.024 

21.	Li, S., Wang, E., Tian, C., Mao, B., Kang, Z., Li, Q., Sun, G. (2008). Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. Journal of Solid State Chemistry, 181, 1650-1658. doi:10.1016/j.jssc.2008.05.021 

22.	鄭振東編譯,1999,實用磁性材料,全華科技圖書股份有限公司,第2-11頁。

23.	曲遠方編譯,2006,新材料與應用技術叢書:功能陶瓷材料,曉園出版社有限公司,第238-240頁。

24.	Perron, H., Mellier, T., Domain, C., Roques, J., Simoni, E., Drot, R., Catalette, H. (2007). Structural investigation and electronic properties of the nickel ferrite NiFe2O4: A periodic density functional theory approach. Journal of Physics: Condensed Matter, 19, 346219-346229. doi:10.1088/0953-8984/19/34/346219

25.	Lee, S. H., Yoon, S. J., Lee, G. J., Kim, H. S., Yo, C. H., Ahn, K., Lee, D. H., Kim, K. H. (1999). Electrical and magnetic properties of NiCrxFe2-xO4 (0 ≦ x ≦ 0.6) spinel. Materials Chemistry and Physics, 61, 147-152. doi:10.1016/S0254-0584(99)00136-4

26.	Dehghan, R., Seyyed Ebrahimi, S. A., Badiei, A. (2008). Investigation of the effective parameters on the synthesis of Ni-ferrite nanocrystalline powders by coprecipitation method. Journal of Non-Crystalline Solids, 354, 5186-5188. 
doi:10.1016/j.jnoncrysol.2008.08.015

27.	Messing, G. L., Zhang, S., Jayanthi, G. V. (1993). Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 76(11), 2707-2726. doi:10.1111/j.1151-2916.1993.tb04007.x 

28.	Puche, R. S., Torralvo Fernandez, M. J., Blanco Gutierrez, V., Gomez, R., Marquina, V., Marquina, M. L., Perez Mazariego, J. L., Ridaura, R. (2008). Ferrites nanoparticles MFe2O4 (M = Ni and Zn): Hydrothermal synthesis and magnetic properties. Boletin De La Sociedad Espanola De Ceramica y Vidrio, 47(3), 133-137. doi:10.3989/cyv

29.	Zhang, C., Zhang, H., Du, B., Hou, R., Guo, S. (2012). Facile organic solvent-free synthesis of size-controlled hierarchically structured magnetic hollow spheres and potential application in adsorption for bovine serum album. Journal of Colloid and Interface Science, 386, 97-106. doi:10.1016/j.jcis.2011.10.056 

30.	Ran, P., Guan, J., Cheng, X. (2006). Influence of heat treatment conditions on the structure and magnetic properties of barium ferrite BaFe12O19 hollow microspheres of low density. Materials Chemistry and Physics, 98, 90-94. doi:10.1016/j.matchemphys.2005.08.070 

31.	Gu, J., Li, S., Ju, M., Wang, J.,Enbo. (2011). In situ carbon template-based strategy to fabricate ferrite hollow spheres and their magnetic property. Journal of crystal growth, 320, 46-51. doi:10.1016/j.jcrysgro.2011.01.072 

32.	Shao, J., Li, X., Ding, Y., Wan, Z., Liu, H., Yun, J., Qu, Q., Zheng, H. (2014). Construction of symmetric aqueous rechargeable battery with high voltage based on NiFe2O4 hollow microspheres. Electrochemistry Communications, 40, 9-12. doi:10.1016/j.elecom.2013.12.009

33.	Sevilla, M., Fuertes, A. B. (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry A European Journal, 15, 4195-4203. doi:10.1002/chem.200802097 

34.	Sun, X., Li, Y. (2004). Ga2O3 and GaN semiconductor hollow spheres. Angewandte Chemie International Edition, 43, 3827-3831. doi:10.1002/anie.200353212 

35.	Socrates, G. (2001). Infrared and raman characteristic group frequencies tables and charts (3rd ed.). Wiley, Chichester, UK 

36.	馮連、胡豐田、劉成寶、陳豐、徐楠、劉守清、陳志剛. (2012). 活性碳-鐵酸鎳磁性催化劑的光催化性能. Chinese Journal of Catalysis, 33(8), 1417-1422. doi:10.3724/SP.J.1088.2012.20348 

37.	Iglesias, J. E., Serna, C. J. (1995). The IR spectra of hematite-type compounds with different particle shapes. Mineralogica Et Petrographica Acta, 29, 363-370. 

38.	Li, H., Wu, H-Z., Xiao, G-X. (2010). Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technology, 198, 157-166. doi:10.1016/j.powtec.2009.11.005
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信