淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0603200910173200
中文論文名稱 聲波監測應用於地錨結構破壞之模擬和訊號分析
英文論文名稱 Simulation and Signal Analysis of Ground Anchor Failures with Application of Acoustic Monitoring System
校院名稱 淡江大學
系所名稱(中) 土木工程學系博士班
系所名稱(英) Department of Civil Engineering
學年度 97
學期 1
出版年 98
研究生中文姓名 鄭世豪
研究生英文姓名 Shih-Hao Cheng
學號 893310010
學位類別 博士
語文別 中文
口試日期 2009-01-09
論文頁數 364頁
口試委員 指導教授-張德文
指導教授-李維峰
委員-廖洪鈞
委員-林三賢
委員-倪勝火
委員-林宜清
委員-楊長義
委員-張德文
委員-李維峰
中文關鍵字 地錨  聲波監測  集中質塊法  訊號分析  損傷 
英文關鍵字 ground anchor  acoustic monitoring  lumped mass method  signal analysis  distress 
學科別分類
中文摘要 地錨工程技術因可充分發揮錨碇地層承載力、提高錨碇地層強度、減輕錨碇結構或支撐結構自重等優點,廣泛應用於交通建設的隧道開挖支撐;水壩和輸電塔的基礎穩定;邊坡穩定修護等大型建設工程。然而,由於其作用機制複雜且埋置於地層中,常因施工品質不良、鋼腱腐蝕、地層潛變或環境氣候變遷等外在因素影響造成缺陷,進而降低其服務年限和使用功能,故如何評估其耐久性和使用性能遂為現代地錨工程之重要工作。
有鑑於此,本研究以現地拉拔試驗配合SoundPrint®預力連續式聲波監測系統,同步觀察地錨損傷發展和聲訊表徵,由試驗結果得知,監測系統之聲訊資料庫(各式材料損傷聲訊)和定位方式(時間差定位),可良好應用於地錨損傷情況和位置的鑑別,以利日後之維護補強和安全檢查之用。
同時,地錨損傷過程複雜且依環境與肇因不同而有異,有限之試驗數據不易釐清,故吾人另基於聲波沿最短和最快路徑之假設,以集中質塊法為基礎建立數值分析模型,藉地錨損傷情況發展和聲洩訊號的模擬,瞭解各式設計地錨之受力分佈情形、損傷發展及特徵,以擴充其應用性和提出相關建議,希冀建立開創性的試驗成果和理論,供各界參考應用。此外,為進階探索試驗和理論損傷聲訊之隱藏內涵,本研究依訊號分析方法的比較,建議試驗聲訊應由數據的重疊分段和加窗處理消除主頻峰值兩側漣波,以增進其特徵判讀。最後,更透過試驗和理論聲訊的交义驗證,建立各式地錨之損傷規則和變化特徵,建議以結構損傷釋放音量和主要頻率,鑑別系統的損傷程度,回饋於設計和冀望落實於地錨維護管理之用。
英文摘要 Geotechnical engineering of ground anchors is widely applied in many large-scale constructions, including tunnel excavation or support work on traffic construction, foundation stabilization work of dams and power transmission towers, slope stability work and so on. The causes are its many advantages in enhancing the load bearing as well as the strength of anchorage stratum and in decreasing self weight of anchorage structure and support structure. However, external factors such as poor quality of construction, tendon corrosion, creep stratum, and the change of climate can have serious defects on ground anchors, mostly embedded and thus have a highly-complicated mechanism action. In consequence, the service life and usage function of ground anchors can be greatly reduced. For this reason, evaluation of ground anchors’ duration and usage performance is of high significance to the temporary geotechnical engineering practice of ground anchors.
In view of the circumstances mentioned above, this research draws on field pullout tests and SoundPrint® acoustic monitoring system to observe simultaneously the development of ground anchor distress and characteristics. As shown by test results, the database (from the various material defects of sound signals) and localization (time difference localization) of acoustic monitoring can be fairly used in discerning the ground anchors’ distress and location for bettering future maintenance work and safety inspection.
In the meantime, the distress of ground anchors is essentially highly complex and can vary from different environmental conditions and causes. It becomes extremely difficult to recognize the failure behavior of ground anchors by using test data narrowly. Therefore, based on the presumption that sound wave follows the shortest and fastest path, this study applies lump mass model to establish numerical analysis. By looking at the development of ground anchors’ distress and acoustic simulation, the stress distribution of anchors of different designs as well as distress development and characteristics are discussed. In the attempt to achieve wider applicability and to provide more practical suggestions, this research seeks a breakthrough of test results and theory for the usage of practical engineering. Accordingly numerical analysis is used to further explore the hidden meaning of experiment signal and numerical signal, and the signal of experiment is suggested to be obtained through the piecewise of overlapping and by joining window function to eliminate the two-side of main amplitude in order to improve judgment of their characteristics. Last, to overlap verify experiment signal and numerical signal in establishing the regular pattern of distress and characteristic changes on anchors of different types, it is suggested to use the acoustic volume release and nature frequency of structure distress in distinguishing distress degrees. The principal research aims to contribute to the succeeding work of anchor designs and to more promised effects of anchor maintenance.
論文目次 中文摘要
英文摘要
本文目錄
表目錄 Ⅵ
圖目錄 Ⅶ
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與內容 3

第二章 地錨系統與監測理論 7
2-1 前言 7
2-2 地錨工程的發展與應用現況 9
2-3 地錨的構造與種類 10
2-4 地錨力學行為 14
2-4-1 錨碇 15
2-4-2 荷重傳遞與應力分佈情形 15
2-4-3 預力施加與預力損失影響因素 17
2-5 地錨破壞 18
2-5-1 鋼腱斷裂 19
2-5-2 土層-錨碇水泥漿介面開裂 22
2-5-3 錨碇土體破壞 23
2-6 地錨行為研究 24
2-6-1 模型試驗 25
2-6-2 現地試驗 27
2-6-3 數值分析 30
2-6-4 本章小結 33
2-7 SoundPrint®預力連續式聲波監測系統 33
2-7-1 簡介 34
2-7-2 監測原理 36
2-7-3 應用案例 41
2-8 本章小結 43

第三章 地錨波動與訊號分析理論 45
3-1 彈性波傳理論 45
3-2 地錨分析理論模式 49
3-2-1 離散參數系統 49
3-2-3 連續參數系統 51
3-2-3 複合材料等效模式 53
3-2-4 分析模式比較 55
3-3 波動傳播規律 56
3-4 聲波衰減機制 58
3-5 訊號分析理論 60
3-5-1 時間域分析方法 61
3-5-2 頻率域分析方法 64
3-5-3 時間-頻率域分析方法 73
3-6 地錨狀態的評估指標 92
3-7 本章小結 94

第四章 聲波監測系統現場試驗 96
4-1 前言 96
4-2 試驗基地說明 97
4-2-1 地質概況 98
4-2-2 地層物理性質 99
4-3 試驗原理與內容 101
4-4 試驗儀器與設備 103
4-5 試驗步驟 106
4-6 試驗結果 112
4-6-1 舊有地錨試驗結果 114
4-6-2 新設地錨試驗結果 115
4-7 結果討論 116

第五章 試驗訊號處理與分析 129
5-1 前言 129
5-2 訊號前置處理 130
5-3 分析方法比較 131
5-4 現地訊號分析 140
5-4-1 損傷音量(能量)釋放 140
5-4-2 主要頻率特徵 149
5-4-3 時間-頻率特性 153
5-4-4 初步安全監測預警建立 159
5-5 結果討論 160

第六章 地錨分析模式建立 163
6-1 前言 163
6-2 分析模式組成與推導 164
6-3 分析參數估算方式 175
6-4 材料組構模式選用 180
6-4-1 鋼腱材料模式 180
6-4-2 錨碇水泥漿-土層界面模式 184
6-4-3 錨碇土層模式 189
6-5 地錨預力施加 192
6-6 分析程序 195
6-6-1 拉拔曲線模擬(靜力分析) 195
6-6-2 損傷聲訊模擬(動力分析) 197
6-6-3 分析要點 199

第七章 理論分析與損傷聲訊演譯 202
7-1 前言 202
7-2 理論拉拔曲線模擬 203
7-2-1 現地試驗比較 203
7-2-2 有限元素分析 215
7-3 理論損傷聲訊模擬 221
7-3-1 試驗訊號比較 221
7-3-2 訊號傳遞衰減之模擬應用 229
7-4 影響參數研究 235
7-5 結果討論 240

第八章 假設作業研究 242
8-1 前言 242
8-2 假設案例研究 243
8-3 理論訊號分析 248
8-3-1 試驗與理論損傷之頻率特徵比較 248
8-3-2 虛擬作業地錨損傷之頻率解析 254
8-3-3 試驗與理論損傷之釋放音量比較 258
8-3-4 進階安全監測預警建立 267
8-4 結果討論 269

第九章 地錨聲波監測應用芻議 271
9-1 前言 271
9-2 地錨設計之應用 272
9-3 地錨完整性試驗之應用 275

第十章 結論與建議 278
10-1 結論 278
10-2 建議與展望 281

參考文獻 282

附錄2-1 地錨錨碇力估算經驗公式 294

附錄5-1 舊有地錨試驗損傷聲訊之PSD反應譜(Welch法) 296

附錄5-2 新設地錨試驗損傷聲訊之PSD反應譜(Welch法) 299

附錄6-1 分析模式之質量矩陣、勁度矩陣和阻尼矩陣完整配
置情形說明 306

附錄6-2 螺旋鋼腱軸向勁度之估算方式 313

附錄7-1 舊有地錨損傷聲訊沿混凝土面版之衰減模擬 315

附錄7-2 新設地錨損傷聲訊沿混凝土面版之衰減模擬 320

附錄8-1 假設地錨(一)損傷聲訊沿混凝土面版之衰減模擬 329

附錄8-2 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 333

附錄8-3 舊有地錨理論損傷聲訊之PSD反應譜(Welch法) 342

附錄8-4 新設地錨理論損傷聲訊之PSD反應譜(Welch法) 346

附錄8-5 假設地錨(一)損傷聲訊之PSD反應譜(Welch法) 354

附錄8-6 假設地錨(二)損傷聲訊之PSD反應譜(Welch法) 357

表目錄
表2-1 地錨種類 13
表2-2 地錨因腐蝕而產生破壞之資料統計 20
表3-1 地錨動態反應分析模式比較 55
表3-2 非參數化功率譜估算方式說明 69
表3-3 參數化功率譜估算方式說明 70
表3-4 常用窗口函數說明 75
表3-5 小波尺度、小波等級和頻率關係 (以分解5層為例) 81
表3-6 時間-頻率域分析方法之比較 92
表4-1 基地之地層試驗參數 101
表4-2 舊有地錨和新設地錨之設計條件和材料使用規格說明 103
表4-3 舊有地錨和新設地錨試驗成果表 112
表4-4 舊有地錨和新設地錨損傷發生時間和載重階級 112
表5-1 訊號分析方法比較 139
表5-2 地錨試驗之損傷音量迴歸公式整理 146
表5-3 地錨安全監測預警與地錨損傷釋放音量關係 159
表5-4 地錨安全監測預警與地錨損傷主要頻率變化關係 160
表6-1 國際間常用7股鋼腱之規格和力學性質 182
表6-2 不同試驗水泥漿之材料組成說明 187
表6-3 不同試驗水泥漿之材料力學性質 188
表6-4 描述水泥漿理想化剪力-滑動模式之各項參數 188
表7-1 地錨鋼腱之分析參數設定 204
表7-2 錨碇水泥漿界面模式之分析參數設定 205
表7-3 錨碇土層之分析參數設定 205
表7-4 舊有地錨拉拔模擬之損傷發展描述 208
表7-5 新設地錨拉拔模擬之損傷發展描述 209
表7-6 舊有地錨和新設地錨之試驗及數值模擬結果比較 213
表7-7 舊有地錨和新設地錨之試驗及數值模擬損傷事件比較 213
表7-8 地錨損傷行為研究方法之工作特性、效能和應用性評比 219
表7-9 理論聲訊模擬之分析參數設定說明 222
表7-10 水泥漿隨頻率變化之衰減係數試驗結果 230
表7-11 錨碇土層影響參數設計 236
表7-12 錨碇水泥漿影響參數設計 237
表7-13 鋼腱性質和設計影響參數設計 237
表8-1 假設案例之分析參數設定 (以舊有地錨分析案例為範例) 243
表8-2 理論及假設案例分析結果及可能損傷發生事件統計 246
表8-3 地錨損傷之試驗與模擬聲訊的頻率變化比較 253
表8-4 試驗和理論地錨之損傷音量迴歸整理 266
表8-5 地錨進階安全監測預警與地錨損傷釋放音量關係 268
表8-6 地錨進階安全監測預警與地錨損傷主要頻率變化關係 268
表9-1 各式地錨斷腱損傷之釋放音量規則 274

圖目錄
圖1-1 本文之研究流程與架構示意圖 6
圖2-1 地錨工程之應用 8
圖2-2 「林肯大郡」災變中地錨系統破壞之鋼腱露出情形 8
圖2-3 「林肯大郡」災變中地錨系統破壞之錨頭掉落情形 9
圖2-4 地錨之基本構造示意圖 13
圖2-5 灌漿型地錨之錨碇段施工方式 14
圖2-6 錨碇力沿地錨徑向/軸向之變化情形 16
圖2-7 荷重於地錨組合材料中之傳遞與分佈示意圖 17
圖2-8 地錨擋土結構潛勢破壞分類 20
圖2-9 地錨單層防蝕設計示意圖 21
圖2-10 地錨雙層防蝕設計示意圖 22
圖2-11 模型試驗中之地錨破壞面發展情況 26
圖2-12 Beard and Lowe岩栓和灌漿鋼腱錨碇品質模型試驗示意圖 27
圖2-13 GRANIT®試驗與監測系統之現地工作示意圖 30
圖2-14 Tannant等人建議之錨碇系統簡化分析模型示意圖 32
圖2-15 Ivanovic等人建議之錨碇系統簡化分析模型示意圖 32
圖2-16 聲射研究於大地工程材料之常見頻率範圍 34
圖2-17 SoundPrint®預力連續式聲波監測系統運作示意圖 35
圖2-18 SoundPrint®網站與登入首頁和即時監測訊息報告 36
圖2-19 SoundPrint®預力連續式聲波監測原理 37
圖2-20 區域定位示意圖 38
圖2-21 二維時間差定位示意圖 39
圖2-22 三維時間差定位示意圖 40
圖2-23 加拿大溫哥華Alex Fraser(Annacis) Bridge的應用情形 42
圖2-24 日本東京公路橋的應用情形 42
圖2-25 南加州Brookwood儲水槽及災後鋼腱斷裂檢視情況 43
圖3-1 壓力波、剪力波和表面波波傳示意圖 48
圖3-2 表面波之質點運動軌跡示意圖 48
圖3-3 離散參數系統分解模擬示意圖 51
圖3-4 連續參數系統和單元力平衡示意圖 53
圖3-5 複合材料等效計算模型示意圖 54
圖3-6 應力波於不同材料介質之入射、反射和透射 57
圖3-7 快速傅立葉變換(FFT)流程示意圖 67
圖3-8 功率譜運算流程圖 69
圖3-9 短時傅立葉變換示意圖 74
圖3-10 離散小波分解示意圖 79
圖3-11 近似空間( )和細部空間( )關係示意圖
79
圖3-12 小波分解與重構示意圖 80
圖3-13 希爾伯特-黃變換之流程圖 90
圖4-1 試驗基地位置圖 97
圖4-2 試驗基地地形圖 98
圖4-3 地質鑽探記錄及土壤基本物理性質報告表 100
圖4-4 試驗場址全視圖 102
圖4-5 擋土邊坡剖面示意圖 102
圖4-6 地錨拉拔試驗儀器組成圖 105
圖4-7 SoundPrint®資料擷取系統與聲波感應器 105
圖4-8 聲波感應器佈設位置示意圖 107
圖4-9 監測系統連接與反彈錘測試 107
圖4-10 舊有地錨試驗各聲波感應器之測試訊號 108
圖4-11 新設地錨試驗各聲波感應器之測試訊號 109
圖4-12 地錨拉拔試驗之施行步驟 110
圖4-13 舊有地錨和新設地錨之載重施加歷時曲線 111
圖4-14 舊有地錨之載重-變位關係曲線和發生之損傷事件示意圖 113
圖4-15 新設地錨之載重-變位關係曲線和發生之損傷事件示意圖 113
圖4-16 舊有地錨損傷時各聲波感應器之接收訊號 (Event 1 : cement crack) 118
圖4-17 舊有地錨損傷時各聲波感應器之接收訊號 (Event 2 : cement crack) 119
圖4-18 舊有地錨損傷時各聲波感應器之接收訊號 (Event 3 : deep wire break) 120
圖4-19 SoundPrint®預力連續式監測系統破壞位置(錨碇水泥漿開裂)顯示視窗 121
圖4-20 SoundPrint®預力連續式監測系統破壞位置(深層鋼腱斷裂)顯示視窗 121
圖4-21 新設地錨損傷時各聲波感應器之接收訊號 (Event 1 : cement crack) 122
圖4-22 新設地錨損傷時各聲波感應器之接收訊號 (Event 2 : cement crack) 123
圖4-23 新設地錨損傷時各聲波感應器之接收訊號 (Event 3 : deep wire break) 124
圖4-24 新設地錨損傷時各聲波感應器之接收訊號 (Event 4 : surface wire break) 125
圖4-25 新設地錨損傷時各聲波感應器之接收訊號 (Event 5 : surface wire break) 126
圖4-26 新設地錨損傷時各聲波感應器之接收訊號 (Event 6 : deep wire break) 127
圖4-27 新設地錨損傷時各聲波感應器之接收訊號 (Event 7 : surface wire break) 128
圖5-1 訊號誤差消除前、後之時間域和頻率域比較 (新設地錨;第3組破壞事件;CH6聲波感應器) 132
圖5-2 自相關函數反應譜 (新設地錨;第3組破壞事件;CH6聲波感應器) 133
圖5-3 快速傅立葉變換未正規和正規化結果比較 (0~15000 Hz) 134
圖5-4 非參數化方法之功率譜分析比較 (0~15000 Hz) 137
圖5-5 短時傅立葉分析結果 (矩形窗, Rectangular) 138
圖5-6 短時傅立葉分析結果 (三角形窗, Bartlett) 138
圖5-7 短時傅立葉分析結果 (鞍形窗, Hamming) 139
圖5-8 舊有和新設地錨各式損傷之釋放音量-拉拔載重關係圖 (未除以測試訊號, 未正規化) 143
圖5-9 舊有和新設地錨各式損傷之釋放音量-拉拔載重關係圖 (除以測試訊號, 正規化;FFT Method) 144
圖5-10 舊有和新設地錨各式損傷之釋放音量-拉拔載重關係圖 (除以測試訊號, 正規化; Spectrum Method) 145
圖5-11 試驗地錨錨碇水泥漿開裂時釋放音量之迴歸分析 147
圖5-12 試驗地錨鋼腱斷裂時釋放音量之迴歸分析 148
圖5-13 舊有地錨各損傷事件之PSD反應譜 (Welch方法) 150
圖5-14 新設地錨各損傷事件之PSD反應譜 (Welch方法) 151
圖5-15 舊有地錨各損傷事件之STFT反應譜 154
圖5-16 新設地錨各損傷事件之STFT反應譜 155
圖6-1 地錨結構破壞時聲波訊號傳播示意圖 164
圖6-2 離散化之地錨結構示意圖 165
圖6-3 鋼腱外露段之節塊運動平衡示意圖 167
圖6-4 錨頭之節塊運動平衡示意圖 168
圖6-5 自由段鋼腱之節塊運動平衡示意圖 169
圖6-6 錨碇段鋼腱之節塊運動平衡示意圖 170
圖6-7 錨碇土層之節塊運動平衡示意圖 173
圖6-8 錨頭承載鈑之曲線擬合結果示意圖 177
圖6-9 不同直徑和型式之預力鋼腱示意圖 182
圖6-10 7股低鬆弛鋼腱理想化和公式化之應力-應變關係曲線 183
圖6-11 鋼腱和錨碇土層界面之理想化剪力滑動模式 184
圖6-12 錨碇水泥漿界面描述之組構模式 187
圖6-13 雙曲線模式之應力-應變曲線 190
圖6-14 莫耳-庫侖破壞準則(剪力-圍壓關係曲線)之示意圖 192
圖6-15 地錨預力施加和錨頭簡化示意圖 194
圖6-16 本研究之地錨數值分析流程示意圖 196
圖6-17 分析模式中施加之脈衝載重示意圖 197
圖7-1 舊有地錨拉拔模擬之收斂性比較示意圖 207
圖7-2 新設地錨拉拔模擬之收斂性比較示意圖 207
圖7-3 舊有地錨現地拉拔試驗與數值模擬結果比較 211
圖7-4 新設地錨現地拉拔試驗與數值模擬結果比較 212
圖7-5 舊有地錨受力後錨碇段變形之模擬分佈情形 214
圖7-6 新設地錨受力後錨碇段變形之模擬分佈情形 214
圖7-7 地錨有限元素分析之分析域、幾何網格切割和邊界條件設定示意圖 (2D軸對稱模型) 217
圖7-8 地錨有限元素分析之分析域、幾何網格切割和邊界條件設定示意圖 (3D模型) 218
圖7-9 不同地錨受力行為研究結果比較 (舊有地錨) 220
圖7-10 不同地錨受力行為研究結果比較 (新設地錨) 220
圖7-11 舊有地錨現地試驗與數值模擬聲訊比較 (impact test) 222
圖7-12 舊有地錨現地試驗與數值模擬聲訊比較 (cement crack at 38.88 tons) 223
圖7-13 舊有地錨現地試驗與數值模擬聲訊比較 (cement crack at 50.25 tons) 223
圖7-14 舊有地錨現地試驗與數值模擬聲訊比較 (cement crack at 51.91 tons) 224
圖7-15 舊有地錨現地試驗與數值模擬聲訊比較 (wire break at 58.41 tons) 224
圖7-16 新設地錨現地試驗與數值模擬聲訊比較 (impact test) 225
圖7-17 新設地錨現地試驗與數值模擬聲訊比較 (cement crack at 31.29 tons) 225
圖7-18 新設地錨現地試驗與數值模擬聲訊比較 (cement crack at 39.34 tons) 226
圖7-19 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 42.89 tons) 226
圖7-20 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 46.53 tons) 227
圖7-21 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 47.20 tons) 227
圖7-22 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 48.47 tons) 228
圖7-23 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 50.47 tons) 228
圖7-24 新設地錨現地試驗與數值模擬聲訊比較 (wire break at 50.89 tons) 229
圖7-25 舊有地錨之現地試驗聲訊與衰減模擬之應用比較 (cement crack at 38.88 tons) 231
圖7-26 新設地錨之現地試驗聲訊與衰減模擬之應用比較 (cement crack at 31.29 tons) 233
圖7-27 地錨設計載重影響參數分析比較 239
圖8-1 假設案例(Anchor No.1)之拉拔試驗及損傷發展模擬結果 245
圖8-2 假設案例(Anchor No.4)之拉拔試驗及損傷發展模擬結果 245
圖8-3 理論及假設地錨之模擬拉拔曲線綜合比較 247
圖8-4 舊有地錨之試驗聲訊和模擬論聲訊頻率特徵比較 250
圖8-5 新設地錨之試驗聲訊和模擬聲訊頻率特徵比較 251
圖8-6 虛擬作業地錨(Anchor No.1)各式損傷之PSD反應譜 (Welch方法) 255
圖8-7 虛擬作業地錨(Anchor No.4)各式損傷之PSD反應譜 (Welch方法) 256
圖8-8 理論分析地錨各式損傷之釋放音量-拉拔載重關係圖 (除以測試訊號, 正規化; FFT Method) 259
圖8-9 理論分析地錨各式損傷之釋放音量-拉拔載重關係圖 (除以測試訊號, 正規化; Spectrum Method) 260
圖8-10 理論地錨錨碇水泥漿開裂時釋放音量之迴歸分析 262
圖8-11 理論地錨鋼腱斷裂時釋放音量之迴歸分析 263
圖8-12 試驗及理論地錨錨碇水泥漿開裂時釋放音量迴歸 264
圖8-13 試驗及理論地錨鋼腱斷裂時釋放音量迴歸 265
圖9-1 日本地錨維護流程示意圖 273
圖9-2 各式地錨鋼腱斷裂時之釋放音量等級與趨勢 274
圖9-3 各式音量等級之迴歸和外插曲線 、 係數趨勢圖
274
圖5-1-1 舊有地錨試驗聲訊之PSD反應譜 (Event 1 : cement crack ) 296
圖5-1-2 舊有地錨試驗聲訊之PSD反應譜 (Event 2 : cement crack ) 297
圖5-1-3 舊有地錨試驗聲訊之PSD反應譜 (Event 3 : deep wire break ) 298
圖5-2-1 新設地錨試驗聲訊之PSD反應譜 (Event 1 : cement crack ) 299
圖5-2-2 新設地錨試驗聲訊之PSD反應譜 (Event 2 : cement crack ) 300
圖5-2-3 新設地錨試驗聲訊之PSD反應譜 (Event 3 : deep wire break ) 301
圖5-2-4 新設地錨試驗聲訊之PSD反應譜 (Event 4 : surface wire break ) 302
圖5-2-5 新設地錨試驗聲訊之PSD反應譜 (Event 5 : surface wire break ) 303
圖5-2-6 新設地錨試驗聲訊之PSD反應譜 (Event 6 : deep wire break ) 304
圖5-2-7 新設地錨試驗聲訊之PSD反應譜 (Event 7 : surface wire break ) 305
圖6-2-1 螺旋鋼絞線之幾何示意圖 313
圖7-1-1 舊有地錨理論聲訊之衰減模擬 (impact test) 315
圖7-1-2 舊有地錨理論聲訊之衰減模擬 (cement crack at 38.88 tons) 316
圖7-1-3 舊有地錨理論聲訊之衰減模擬 (cement crack at 50.25 tons) 317
圖7-1-4 舊有地錨理論聲訊之衰減模擬 (cement crack at 51.91 tons) 318
圖7-1-5 舊有地錨理論聲訊之衰減模擬 (wire break at 58.41 tons) 319
圖7-2-1 新設地錨理論聲訊之衰減模擬 (impact test) 320
圖7-2-2 新有地錨理論聲訊之衰減模擬 (cement crack at 31.29 tons) 321
圖7-2-3 新有地錨理論聲訊之衰減模擬 (cement crack at 39.34 tons) 322
圖7-2-4 新有地錨理論聲訊之衰減模擬 (wire break at 42.89 tons) 323
圖7-2-5 新有地錨理論聲訊之衰減模擬 (wire break at 46.53 tons) 324
圖7-2-6 新有地錨理論聲訊之衰減模擬 (wire break at 47.20 tons) 325
圖7-2-7 新有地錨理論聲訊之衰減模擬 (wire break at 48.47 tons) 326
圖7-2-8 新有地錨理論聲訊之衰減模擬 (wire break at 50.47 tons) 327
圖7-2-9 新有地錨理論聲訊之衰減模擬 (wire break at 50.89 tons) 328
圖8-1-1 假設地錨(一)損傷聲訊沿混凝土面版之衰減模擬 (impact test) 329
圖8-1-2 假設地錨(一)損傷聲訊沿混凝土面版之衰減模擬 (cement crack at 56.00 tons) 330
圖8-1-3 假設地錨(一)損傷聲訊沿混凝土面版之衰減模擬 (cement crack at 65.00 tons) 331
圖8-1-4 假設地錨(一)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 65.50 tons) 332
圖8-2-1 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (impact test) 333
圖8-2-2 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (cement crack at 16.50 tons) 334
圖8-2-3 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (cement crack at 24.50 tons) 335
圖8-2-4 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 28.50 tons) 336
圖8-2-5 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 30.00 tons) 337
圖8-2-6 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 31.00 tons) 338
圖8-2-7 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 32.50 tons) 339
圖8-2-8 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 34.00 tons) 340
圖8-2-9 假設地錨(二)損傷聲訊沿混凝土面版之衰減模擬 (wire break at 36.00 tons) 341
圖8-3-1 舊有地錨理論聲訊之PSD反應譜 (cement crack at 38.88 tons) 342
圖8-3-2 舊有地錨理論聲訊之PSD反應譜 (cement crack at 50.25 tons) 343
圖8-3-3 舊有地錨理論聲訊之PSD反應譜 (cement crack at 51.91 tons) 344
圖8-3-4 舊有地錨理論聲訊之PSD反應譜 (wire break at 58.41 tons) 345
圖8-4-1 新設地錨理論聲訊之PSD反應譜 (cement crack at 31.29 tons) 346
圖8-4-2 新設地錨理論聲訊之PSD反應譜 (cement crack at 39.34 tons) 347
圖8-4-3 新設地錨理論聲訊之PSD反應譜 (wire break at 42.89 tons) 348
圖8-4-4 新設地錨理論聲訊之PSD反應譜 (wire break at 46.53 tons) 349
圖8-4-5 新設地錨理論聲訊之PSD反應譜 (wire break at 47.20 tons) 350
圖8-4-6 新設地錨理論聲訊之PSD反應譜 (wire break at 48.47 tons) 351
圖8-4-7 新設地錨理論聲訊之PSD反應譜 (wire break at 50.47 tons) 352
圖8-4-8 新設地錨理論聲訊之PSD反應譜 (wire break at 50.89 tons) 353
圖8-5-1 假設地錨(一)損傷聲訊之PSD反應譜 (cement crack at 56.00 tons) 354
圖8-5-2 假設地錨(一)損傷聲訊之PSD反應譜 (cement crack at 65.00 tons) 355
圖8-5-3 假設地錨(一)損傷聲訊之PSD反應譜 (wire break at 65.50 tons) 356
圖8-6-1 假設地錨(二)損傷聲訊之PSD反應譜 (cement crack at 16.50 tons) 357
圖8-6-2 假設地錨(二)損傷聲訊之PSD反應譜 (cement crack at 24.50 tons) 358
圖8-6-3 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 28.50 tons) 359
圖8-6-4 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 30.00 tons) 360
圖8-6-5 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 31.00 tons) 361
圖8-6-6 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 32.50 tons) 362
圖8-6-7 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 34.00 tons) 363
圖8-6-8 假設地錨(二)損傷聲訊之PSD反應譜 (wire break at 36.00 tons) 364






參考文獻 Ⅰ、英文部分 (按英文字母順序排列)

1.Aggelis, D.G., Polyzos, D. and Philippidis, T.P. (2005). "Wave Dispersion and Attenuation in Fresh Mortar." Journal of the Mechanics and Physics of Solids, Vol. 53 (4), pp. 857-883.

2.Bolt, B.A. (1978). "Earthquakes: A Primer, Freeman, San Francisco." 241 p.
3.Beard, M.D. and Lowe, M.J.S. (2003a). "Non-destructive Testing of Rock Bolts Using Guided Ultrasonic Waves." International Journal of Rock Mechanics and Mining Sciences, Vol. 40 (4), pp. 527-536.

4.Beard, M.D., Lowe, M.J.S. and Cawley, P. (2003b). "Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts." Journal of Materials in Civil Engineering, Vol. 15 (3), pp. 212-218.

5.Brown, D.A., Morrison, C. and Reese, C. (1988). "Lateral Behavior of a Pile Group in Sand." Journal of Geotechnical Engineering, Vol. 114 (11), pp. 1261-1276.

6.Barley, A.D. (1997a). "The Single Bore Multiple Anchor System." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London.

7.Barley, A.D. (1997b). "Properties of Anchor Grout in a Confined State." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London.

8.Bendat, J.S. and Piersol, A.G. (1971). "Random Data: Analysis and Measurement Procedures." Wiley, New York.

9.Briaud, J.L., William, F. and Weatherby, D.E. (1998). "Should Grouted Anchors Have Short Tendon Bond Length?" Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124 (7), pp. 110-119.

10.British Standard (BSI). (2000). "Execution of Special Geotechnical Work-Ground Anchors." British Standards Institution (BSI).

11.Boashash, B. and O’Shea, P. (1994). "Polynomial Wigner-Ville Distributions and Their Relationship to Time-varying Higher Order Spectra." Signal Processing, IEEE, Vol. 42 (1), pp. 216-220.

12.Bracewell, R. (1965). "The Fourier Transform and Its Applications." McGraw-Hill, New York.

13.Benmokrane, B. and Ballivy, G. (1991). "Five-year Monitoring of Load losses on Pre-stressed Cement-Grouted Rock Anchor." Canadian Geotechnique, Vol. 28 (5), pp. 668-677.

14.Benmokrane, B., Chennouf, A. and Mitri, H. (1995). "Laboratory Evaluation of Cement-Based Grouts and Grouted Rock Anchors." International Journal of Rock Mechanics and Mining Science, Vol. 32 (7), pp. 633-642.

15.Benmokrane, B., Chekired, M. and Xu, H. (1995). "Monitoring Behavior of Grouted Anchors Using Vibrating-Wire Gauges." Journal of Geotechnical Engineering, Vol. 121 (6), pp. 466-475.

16.Cai, Y., Esaki, T. and Jiang, Y. (2004). "An Analytical Model to Predict Axial Load in Grouted Rock Bolt for Soft Rock Tunnelling." Tunnelling and Underground Space Technology, Vol. 19, pp. 607-618.

17.Cox, H.L. (1952). "The Elasticity and Strength of Paper and Other Fibrous Materials." British Journal of Applied Physics, Vol. 3, pp. 72-79.

18.Cui, Y. and Zou, D.H. (2006). "Numerical Simulation of Attenuation and Group Velocity of Guided Ultrasonic Wave in Grouted Rock." Journal of Applied Geophysics, Vol. 59 (4), pp. 337-344.

19.Chen, W.F. and Saleeb, A.F. (1994). "Constitutive Equations for Engineering Materials 2nd Edition." John Wiley, New York.

20.Chen, Y.S. and Lee, Wei F. (2005). "Application Study of Real-Time Acoustic Monitoring System for Pre-Stresses Anchor System at Taiwan." Proceeding, The 18th KKCNN Symposium on Civil Engineering, Taiwan, pp. 19-21.

21.Chang, D.W. and Yeh, S.H. (1999). "Time-Domain Wave Equation Analysis of Single Piles Utilizing Transformed Radiation Damping." Soils and Foundations, Vol. 39 (2), pp. 31-44.

22.Chang, D.W., Cheng, S.H. and Lee, W.F. (2008). "Numerical simulation and Data Interpretation on Ground Anchor Failure Using Acoustic Monitoring Test." Proceeding, 3rd Taiwan-Japan Joint Workshop on Geotechnical Natural Hazards, Keelung, Taiwan, pp. 371-384.

23.Cheng, C.C., Lin, Y., Hsiao, C.M. and Chang, H.C. (2007). "Evaluation of Simulated Transfer Functions of Concrete Plate Derived by Impact-Echo Method." NDT & E International, Vol. 40 (3), pp. 239-249.

24.Cheng, S.H., Chang, D.W. and Lee, W.F. (2008). "Real-Time Acoustic Monitoring Test and Numerical Simulation of Ground Anchor Failure." Proceeding, 3rd International Conference on Site Characterization, Taipei, Taiwan.

25.Cheng, S.H., Chang, D.W. and Lee, W.F. (2009). "Modeling and Interpretation for Ground Anchor Failure Signals under Pullout Loads ." Proceeding, 17rd International Conference for Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt.

26.Coyle, H.M. and Reese, L.C. (1966). "Load Transfer for Axially Loaded Piles in Clay." Journal of Soil Mechanics and Foundation Engineering Division, Vol. 92 (SM2), pp. 1-26.

27.Cardou, A. and Jolicoeur, C. (1997). "Mechanical Models of Helical Strands." Journal of Applied Mechanics review, Vol. 50 (1), pp. 1-14.

28.Cooley, J.W. and Tukey, W. (1965). "An Algorithm for the Machine Calculation of Complex Fourier Series." Mathematics Computation, Vol. 19, pp. 297-301.

29.Cheung, W.M. (2002). "Non-destructive Tests for Deterining The Lengths of Installed Steel Soil Nails." Hong Kong Civil Engineering and Development Department (HKCEDD).

30.Costello, G.A. (1997). "Theory of Wire Rope 2nd Edition." Springer-Verlag, New York.

31.Das, B.M. (1993). "Principles of Soil Dynamics." PWS-KENT Book Company, Boston.

32.Duncan, J.M. and Chang, C.Y. (1970). " Nonlinear Analysis of Stress and Strain in Soil." Journal of Soil Mechanics and Foundations Division, , Vol. 96 (SM5), pp. 1629-1653.

33.Deutsche Industries Norm (DIN 4125) (1988). "Verpressaker fur Vorubergehende Zwecke im Lockergestein." Bemessung, Ausfuhrung und Prufung.

34.Ewing, M., Jardetzky, W. and Press, F. (1957). "Elastic Waves in Layered Media." McGraw-Hill, New York.

35.European Standard EN1537. (1999). "Execution of Special Geotechnical Work-Ground Anchors." Committee European de Normalisation (CEN).

36.Famiyesin, O.O., Rodger, A.A. and Connolly, E.F. (1997). "Finite Element Modeling and Parametric Study of Resin Bonded Rock Anchorage Systems." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London, pp. 440-449.

37.Federation Internationale de la Precontrainte (FIP). (1986). "Corrosion and Corrosion Protection of Prestressed Ground Anchorages." FIP-State of the Art Report, Tomas Telford Ltd.

38.Federation Internationale de la Precontrainte (FIP). (1996). "Recommendations, Design and Construction of Prestressed Ground Anchorages." SETO.

39.Gabor, D. (1946). "Theory of Communication." Proceeding, IEEE, Vol. 93, pp. 429-457.

40.Gutowski, T. and Dym, C. (1976). "Propagation of Ground Vibration: A Review." Journal of Sound and Vibration, Vol. 49 (2), pp. 179-193.

41.He, C., Van Velsor, J.K., Lee, C.M. and Rose, J.L. (2006). "Health Monitoring of Rock Bolts Using Ultrasonic Guided Waves." Quantitative Nondestructive evaluation, Vol. 25, pp. 195-201.

42.Hanna, T.H. (1990). "Foundation in Tension-Ground Anchors 2nd Edition." McGraw-Hill, New York.

43.Hardy, H.R. (1972). "Application of Acoustic Emission Techniques to Rock Mechanics Research." Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83.

44.Hobbs, D.W. (1967). "The Formation of Tension Joints in Sedimentary Rocks: An Explanation." Geological Magazine, Vol. 104, pp. 550-556.

45.Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. and Liu, H.H. (1998). "The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis." Proceeding, Royal Society of London, Series A Vol. 454 (1971), pp. 903-995.

46.Holley, M.W. (1998). "Continuous Acoustic Nondestructive Evaluation of Prestressed Concrete Structures." Proceeding, NACE Conference, Victoria, BC.

47.Hibbitt, K. and Scorensen. (2006). "ABAQUS User’s Manual Version 6.6." ABAQUS Inc.

48.Idriss, I.M. and Seed, H.B. (1968). "Seismic Response of Horizontal Soil Layers." Journal of the Soil Mechanics and Foundation Division, Vol. 94 (SM4), pp. 1003-1031.

49.Ivanovic, A. (2001). "The Dynamic Response of Ground Anchorage Systems." PhD Thesis, University of Aberdeen.

50.Ivanovic, A., Neilson, R.D. and Rodger, A.A. (2001). "Numerical Modeling of Single Tendon Ground Anchorage Systems." Geotechnical Engineering, Vol. 149 (2), pp. 103-113.

51.Ivanovic, A., Neilson, R.D. and Rodger, A.A. (2002). "Influence of Prestress on the Dynamic Response of Ground Anchorages." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128 (3), pp. 237-249.

52.Ivanovic, A., Starkey, A., Neilson, R.D. and Rodger, A.A. (2003). "The Influence of Load on the Frequency Response of Rock Bolt Anchorage." Advances in Engineering Software, Vol. 34 (11-12), pp. 697-705.

53.Ilamparuthi, K. and Muthukrishnaiah, K. (1999). "Anchors in Sand Bed: Delineation of Rupture Surface." Ocean Engineering, Vol. 26, pp. 1249-1273.

54.Janbu, N. (1963). "Soil Compressibility as Determined by Oedometer and Triaxial Tests." Proceeding, 3rd European Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 19-25.

55.Japan Anchor Association (JAA). (2003). "Manual for Constructing Ground Anchor." May, 26.

56.Jones, R.M. (1975). "Mechanics of Composite Material." McGraw-Hill Book Company, Washington, DC.

57.Jarrel, D.J. and Haberfield, C.M. (1997). "Tendon/Grout Interface Performance in Grouted Anchors." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London.

58.Kim, B.T., Kim, N.K., Lee, W.J. and Kim, Y.S. (2004). "Experimental Load-Transfer Curves of Lateraly Loaded Piles in Nak-Dong River Sand." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130 (4), pp. 416-425.

59.Kim, N.K., Park, J.S. and Kim, S.K. (2007). "Numerical Simulation of Ground Anchor." Computers and Geotechnics, Vol. 34 (6), pp. 498-507.

60.Kilic, A., Yasar, E. and Celik, A.G. (2002). "Effect of Grout Properties on the Pull-out Load Capacity of Fully Grouted Rock Bolt." Tunneling and Undergrouns Space Technology, Vol. 17, pp. 355-362.

61.Konder, R.L. (1963). "Hyperbolic Stress-Strain Response of Cohesive Soils." Journal of Soil Mechanics and Foundations Devision, Vol. 89, pp. 115-143.

62.Kuamar, K. and Cochran, J.E. (1987). "Closed-Form Analysis for Elastic Deformations of Multilayered Strands." Journal of Applied Mechanics, Vol. 54, pp. 898-903.

63.Lin, Y., Yang, C.K. and Cheng, C.C. (2006). "Calibration of an Impact Device and Its Application to the Normalized Spectral Analysis of Impact-Echo Tests." Key Engineering Materials, Vol. 321-323, pp. 381-385.

64.Liao, H.J. and Hsu, S.T. (1999). "Discussion on Should Grouted Anchors Have Short Tendon Bond Length?" Journal of Geothechnical and Geoenvironmental Engineering, Vol. 125 (9), pp. 810-812.

65.Liao, H.J. and Hsu, S.T. (2003). "Uplift Behavior of Blade-Underreamed Anchors in Sility Sand." Journal of Geothechnical and Geoenvironmental Engineering Division, Vol. 129 (6), pp. 560-568.

66.Liang, M. and Husein, A.I. (1993). "Simplified Dynamic Method for Pile-Driving Control." Journal of Geotechnical Engineering, Vol. 119 (4), pp. 694-713.

67.Littlejohn, G.S. (1970). "Soil Anchors." Proceeding, Conference of Ground Engineering, The Institution of Civil Engineers, London, pp. 33-44.

68.Littlejohn, G.S. (1980). "Design Estimation of the Ultimate Load-holding Capacity of Ground Anchors." Ground Engineering, Vol. 13 (8), pp. 25-39.

69.Mandal, N., Deb, S.K. and Khan, D. (1994). "Evidence for a Non-linear Relationship Between Fracture Spacing and Layer Thickness." Journal of Structural Geology, Vol. 16, pp. 1275-1281.

70.Manoliu, I., Botea, E. and Constantinescu, A. (1977). "Behavior of Pile Foundations Submitted to Lateral Loads." Proceeding, Conference of 9th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1-2 (56), pp. 637-640.

71.Meyerhof, G.G. and Adams, J.J. (1968). "The Ultimate Uplift Capacity of Foundations." Journal of Canadiam Geotechnical, Vol. 5, pp. 225-244.

72.Ni, S.H., Lehmann, L., Charng, J.J. and Lo, K.F. (2006). "Low-strain Integrity Testing of Drilled Piles with High Slenderness Ratio." Computers and Geotechnics, Vol. 33 (6-7), pp. 283-293.

73.National Cooperative Highway Research Program (NCHRP) (2002). "Recommended Practice for Evaluation of Metal-Tensioned Systems in Geotechnical Applications". NCHRP REPORT 477, Washington, D. C.

74.Owino, J.O. and Jacobs, L.J. (1999). "Attenuation Measurements in Cement-Based Materials using Laser Ultrasonics." Journal of Engineering Mechanics, Vol. 125 (6), pp. 637-647.

75.Oppenheim, A.V. and Schafer, R.W. (1989). "Discrete-Time Signal Processing." Prentice-Hall, New York.

76.Oppenheim, A.V., Willsky, A.S. and Nawab, S.H. (1997). "Signals and Systems-2nd Edition." Prentice-Hall, New York.

77.Ostermayer, H. (1974). "Construction, Carrying Behavior and Creep characteristics of Ground anchors." Proceeding, Conference on Diaphragm Wall and Anchorages, The Institution of Civil Engineers, London.

78.Ostermayer, H. and Scheele, F. (1977). "Research on Ground Anchors in Non-cohesive Soils." Proceeding, Conference of 9th International Conference on Soil Mechanics and Foundation Engineering, Speciality Session (4), pp. 92-97.

79.Paulson, P. (1998). "Acoustic monitoring of Prestressed Concrete Pipe." Proceeding, NACE Conference, Plam Springs, CA.

80.Paulson, P., Tozser, O. and Marcel de Wit (2003). "The Use of Acoustic Monitoring to Manage Concrete Structures in the Nuclear Industry." Proceeding, 17th International Conference on Structural Mechanics in Reactor Technology, Prague, Czech Republic, Paper ID:001-6.

81.Pagodinas, D. (2002). "Ultrasonic Signal Processing Methods for Detection of Defects in Composite Materials." ULTRAGARSAS, Vol. 4 (45), pp. 47-53.

82.Pavlakovic, B.N., Lowe, M.J.S., Alleyne, D.N. and Cawley, P. (1997). "DISPERSE: A General purpose Program for Creating Dispersion." Review of Progress in Quantitative NDE, Vol. 16, pp. 185-192.

83.Pavlakovic, B.N., Lowe, M.J.S. and Cawley, P. (1998). "Guided Ultrasonic Waves for the Inspection of Post-tensioned Concrete Bridges." Review of Progress in Quantitative NDE, Vol. 17, pp. 1557-1564.

84.Pavlakovic, B.N. and Lowe, M.J.S. (1999). "A General Purpose Approach to Calculating the Longitudinal and Flexural Modes of Multi-layered, Embedded, Transversely Isotropic Cylinders." Review of Progress in Quantitative NDE, Vol. 18, pp. 239-246.

85.Philippidis, T.P. and Aggelis, D.G. (2005). "Experimental Study of Wave Dispersion and Attenuation in Concrete." Ultrasonics, Vol. 43, pp. 584-595.

86.Post Tensioning Institute (PTI). (1980). "Recommendations for Prestressed Rock and Soil Anchors." PTI.

87.PCI Bridge Design Mannual (1997). "Precast, Prestressed Concrete Bridges-The High Performance Solution." Precast/Prestressws Concrete Institute, Chicage, IL.

88.Qian, S. and Chen, D. (1996). "Joint Time-Frequency Analysis: Methods and Applications." Prentice-Hall, New York.

89.Raoof, M. (1992). "Design Recommendations for Steel Cables." Structural Engineering Review, Vol. 4 (4), pp. 223-233.

90.Rizzo, P. and Lanza di Scalea, F. (2004). "Wave Propagation in Multi-Wire Strands by Wavelet-Based Laser Ultrasound." Experimental Mechanics, Vol. 44, pp. 407-415.

91.Rabiner, L.R. and Schafer, R.W. (1978). "Digital Signal Processing of Speech Signals." Prentice Hall, New York.

92.Richart, F.E., Woods, R.D. and Hall, J.R. (1970). "Vibrations of Soils and Foundations." Prentice-Hall, Englewood Cliffs, N.J.

93.Su, W. and Fragaszy, R.J. (1988). "Uplife Testing of Model Anchors." Journal of Geotechnical Engineering Division, Vol. 114 (9), pp. 961-983.

94.Seed, H.B. and Reese, L.C. (1957). "The Action of Soft Clay along Friction Piles." Transactions, Vol. 122, pp. 731-754.

95.Smith, E.A.L. (1960). "Pile Driving Analysis by the Wave Equation." Journal of the Soil Mechanics and Foundation Division, Vol. 86 (SM4), pp. 35-61.

96.Starkey, A. (2001). "Condition Monitoring of Geotechnical Processes using Artificial Intelligence Techniques." PhD Thesis, University of Aberdeen.

97.Starkey, A., Ivanovic, A., Neilson, R.D. and Rodger, A.A. (2003). "Use of Neural Networks in the Condition Monitoring of Ground Anchorages." Advances in Engineering Software, Vol. 34, pp. 753-761.

98.Starkey, A., Ivanovic, A., Rodger, A.A. and Neilson, R.D. (2003). "Condition Monitoring of Ground Anchorages by Dynamic Impulses: GRANIT System." Journal of Meccanica, Vol. 38 (2), pp. 265-282.

99.Sridevi, J. and Sitharam, T.G. (2000). "Analysis of Strength and Moduli of Jointed Rocks." Geotechical and Geological Engineering, Vol. 18, pp. 1573-1529.

100.Sabatini, P.J., Pass, D.G. and Bachus, R.C. (1999). "Geotechnical Engineering Circular No. 4 Ground Anchors and Anchored Systems." Report, FHWA-IF-99-015.

101.Stillborg, B. (1984). "Experimental Investigation of Steel Cables for Rock Reinforcement in Hard Rock." PhD Thesis, Lulea University.

102.Stillborg, B. (1999). "Analytical Models for Rock Bolts." International Journal of Rock Mechanics and Mining Sciences, Vol. 36 (8), pp. 1013-1029.

103.Serbousek, M.O. and Signer, S.P. (1987). "Linear Load-Transfer Mechanics of Fully Grouted Roof Bolts." USBM RI9135 (USA Department of Interior).

104.Tang, B., Mitri, H.S. and Bouteldja, M. (2000). "Finite-Element Modeling of Rock Anchors." Ground Improvement, Vol. 4 (2), pp. 65-71.

105.Thomas, P.K., Shure, L. and Little, J.N. (1995). "Signal Processing Toolbox User’s Guide." The MathWorks, Inc., U.S.A.

106.Tannant, D.D. and Brummer, R.K. (1995). "Rockbolt Behavior Under Dynamic Loading: Field Tests and Modeling." International Journal of Rock Mechanics and Mining Sciences, Vol. 32 (6), pp. 537-550.

107.Toshinori, S. and Tadatsugu, T. (1999). "Scale Effect of a Shallow Circular Anchor in Dense Sand." Soils and Foundations, Vol. 38 (2), pp. 93-99.

108.The MathWorks. (2004). "MATLAB User’s Guide." The MathWorks, Inc., U.S.A.

109.The MathWorks. (2007). "MATLAB User’s Guide." The MathWorks, Inc., U.S.A.

110.Ville, J. (1948). "Theorie et applications de la notion de signal analytique." Cables et Transmissions, 2A, pp. 61-74.

111.Woods, R.I. and Barkhordari, K. (1997). "The Influence of Bond Stress Distribution on Ground Anchor Design." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London.

112.Wigner, E.P. (1932). "On the Quantum Correction for Thermodynamic Equilibrium." Phys, 40, pp. 749-759.

113.Windsor, C.R. (1997). "Rock Reinforcement Systems." International Journal of Rock Mechanics and Mining Sciences, Vol. 34 (6), pp. 919-951.

114.Weerasinghe, R.L. and Littlejohn, G.S. (1977). "Load Transfer and Failure of Anchorages in Weak Mudstone." Proceeding, Conference on Ground Anchorages and anchored structure, The Institution of Civil Engineers, London.

115.Yasar, E. and Celik, A.G. (2002). "Effect of Grout Properties on the Pull-out Capacity of Fully Grounted Rock Bolt." Tunneling and Underground Space Technology, Vol. 17 (4), pp. 355-362.

116.Zhang, C.S., Zou, D.H. and Madenga, V. (2006). "Numerical Simulation of Wave Propagation in Grouted Rock Bolts and the Effects of Mesh Density and Wave Frequency." International Journal of Rock Mechanics and Mining Sciences, Vol. 43 (4), pp. 634-639.

Ⅱ、中文部分 (按姓氏筆劃排列)

1.丁秀麗、盛謙、韓軍、程良奎、白世偉 (2002),"預應力錨索錨固機理的數值模擬試驗研究",岩石力學與工程學報,第21卷,第7期,pp. 980-988。

2.于作安 (1999),"木山層砂岩高圍壓之變形行為研究",碩士論文,台灣大學,台灣,台北。

3.日本土質工學會 (JSF). (1990). "グラントアンかー 設計、施工準則,同解說." JSF。

4.中國土木水利工程學會 (2001),「錨設計與施工準則暨解說(三版)」,科技圖書。

5.台灣營建研究院 (1995),"台灣基隆監獄新建工程地質調查及基地整體安全評估工作-期中地質調查報告",台灣科技大學委託案。

6.地工技術第六十八期 (1998),「林肯大郡災變」,財團法人地工技術研究發展基金會。

7.李有豐、黃鋼、候羿、曾文清 (2003),"HHT應用於RC橋柱環境微振動量測之研究",中國土木水利學刊,第15卷,第1期,pp. 21-33。

8.李維峰、陳育聖、王淳讙、林主潔、卓大鈞 (2004),「Advitam預力監測系統研發推廣計畫」,派爾國際工程股份有限公司委託案。

9.李佳龍 (2003),「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台灣,台南。

10.何思明 (2004),"預應力錨索作用機理研究",博士論文,西南交通大學,中國大陸,成都。

11.翁孟嘉 (2002),"麓山帶砂岩之力學特性及其與微組構關係研究",博士論文,台灣大學,台灣,台北。

12.倪勝火、羅國峯 (2001),"小波轉換法應用於基樁回應法檢測之分析研究",檢測科技,第19卷,第1期,pp. 4-15。

13.倪勝火、羅國峯 (2002),"小波轉換法應用於基樁回應法檢測之探討",中華民國力學期刊(B刊),第18卷,第1期,pp. 65-68。

14.陳育聖、李維峰、王淳讙 (2005),"SoundPrint監測系統於預力地錨之應用",第十一屆大地工程學術研究討論會論文摘要集,第104頁。

15.陳錦清、高憲彰、葛文忠、李國榮、林金成 (2005),「非破壞檢測技術於山坡地安全檢查之應用子計畫二:土(岩)釘檢測技術研究」,內政部建築研究所委託研究報告。

16.留鼎傑 (2003),"以小波轉換分析混凝土版內鋼筋及管線之膏擊回音反應",碩士論文,朝陽科技大學,台灣,台中。

17.游有方 (2002),"關廟層砂岩之力學特性",碩士論文,成功大學,台灣,台南。

18.葛文忠、陳建忠、高憲彰、林怡先、林金成 (2006),"岩釘非破壞檢測技術研究",2006岩盤工程研討會,台灣,台南,pp. 539-548。

19.葛文忠、俞旗文 (2007),"時間頻率分析應用於土釘檢測敲擊回波資料處理",第十二屆大地工程學術研討會,pp. 185。

20.廖洪鈞 (1992),「砂土中單段錨碇端受力行為和群錨行為研究」,國科會專題研究報告,NSC80-0410-E-011-16。

21.薛偉辰 (2003),「現代預應力結構設計」,書號:7112056160。

22.羅華強 (2005),「訊號處理-MATLAB的應用」,全華科技圖書。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-03-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-03-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信