淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0602201219033300
中文論文名稱 雙效型直接接觸式薄膜蒸餾於海水淡化之研究
英文論文名稱 The study of double-effect direct contact membrane distillation on seawater desalination
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 1
出版年 101
研究生中文姓名 陳俊男
研究生英文姓名 Chun-Nan Chen
學號 699400064
學位類別 碩士
語文別 中文
口試日期 2012-01-05
論文頁數 123頁
口試委員 指導教授-何啟東
委員-萬文彬
委員-張煖
中文關鍵字 薄膜蒸餾  海水淡化  薄膜係數  溫度極化 
英文關鍵字 direct contact membrane distillation  desalination  membrane coefficient  temperature polarization  semi-empirical correlation 
學科別分類
中文摘要 薄膜蒸餾為海水淡化技術之一,用來製造純水提供民生及工業使用。其特色為占據體積小、可操作在常壓、低溫熱源與可模組化等優點。本研究主要針對在薄膜蒸餾系統中,薄膜係數為預測理論純水透膜通量之重要參數。因此本研究將以攪拌型直接接觸式薄膜蒸餾系統,藉由改變不同操作條件,求得薄膜兩側膜面溫度,再利用最小平方法建立一薄膜係數經驗公式。進而建立雙效型直接接觸式薄膜蒸餾系統之二維數學模型,對其質量與熱量傳送機制進行研究,並將薄膜係數經驗公式代入,以實驗分析輔以驗證數學模型之正確性。本研究求解是先利用有限差分法將偏微分方程式簡化,再使用四階Runge-Kutta數值方法求解,得到通道內溫度分佈及理論純水透膜通量。研究結果顯示雙效型直接接觸式薄膜蒸餾系統實驗值與理論值平均相對誤差(1)純水:3.97%;(2)鹽水:5.46%。結果顯示,純水透膜通量會因提升攪拌轉速、提升熱側進口流體溫度與提升體積流率而增加。溫度極化係數隨著攪拌轉速的提升與進口體積流率增加而趨近於1。
英文摘要 The direct contact membrane distillation(DCMD) device is a simple design of MD systems in which both the cold stream and hot stream are kept in direct contact with the membrane. The advantages of DCMD lie in its simple configuration, the need for only small temperature differences and nearly 100% salt rejection. In this study, the DCMC process are performed at middle temperature operation (about 40 °C to 70 °C) of hot inlet stream associated with a constant cold stream inlet temperature(about 25 °C). A concurrent flat-plate device was constructed and carried out to verify the theoretical prediction of pure water productivity on saline water desalination. The purposes of this study are (1) to develop a new semi-empirical expression of the membrane coefficient from the results of the pure water production of the experiment and the mathematical modeling; (2) to study a new design of double-effect direct contact membrane distillation system and develop a two-dimensional mathematical model and propose a general numerical method for solving this complex mathematical model in predicting pure water productivity in membrane distillation systems. The numerical results from the mathematical modeling of the resultant partial differential equations were obtained using the finite difference technique of the fourth-order Runge-Kutta method. The influences of the inlet saline water temperature and volumetric flow rate on the pure water productivity as well as the hydraulic dissipated energy are also delineated.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 XII
符號說明 XIV
第一章 緒論 1
1-1 前言 1
1-2 薄膜蒸餾系統簡介 4
1-3 研究動機與目的 8
第二章 文獻回顧 10
第三章 理論分析 15
3-1 攪拌型直接接觸式薄膜蒸餾之熱量與質量傳送機制之建立 15
3-2 薄膜蒸餾係數之建立 23
3-3 雙效型直接接觸式薄膜蒸餾之熱量與質量傳送機制之建立 26
3-4 水力損耗 31
3-5 數值解析方法-朗吉庫塔法 33
第四章 實驗 38
4-1 攪拌型直接接觸式薄膜蒸餾系統 38
4-2 攪拌型直接接觸式薄膜蒸餾系統之海水淡化實驗步驟 43
4-3 雙效型直接接觸式薄膜蒸餾系統 44
4-4 雙效型直接接觸式薄膜蒸餾系統之海水淡化實驗步驟 47
4-5 實驗設計參數與操作參數 48
第五章 結果與討論 50
5-1 攪拌型直接接觸式薄膜蒸餾系統 50
5-1.1 不同設計與操作參數對溶液透膜通量之影響 50
5-1.2 薄膜係數經驗公式與薄膜係數公式之比較 53
5-1.3 熱對流係數對溫度極化之影響 56
5-2 雙效型直接接觸式薄膜蒸餾系統 65
5-2.1操作參數對純水透膜通量之影響 65
5-2.2溫度極化效應 70
5-2.3水力損耗 72
第六章 結論 106
參考文獻 108

附錄
附錄A 薄膜蒸餾係數之經驗式推導 114
附錄B 最小平方法求解 119
附錄C 平板型速度分佈推導 121
附錄D 數學模擬參數之設定 123

圖目錄
圖1-1海水淡化成本 3
圖1-2各種海水淡化技術產量與市場佔有率 3
圖1-3薄膜蒸餾模組型式 6
圖1-4薄膜蒸餾之薄膜型狀分類 7
圖1-5研究架構圖 9
圖3-1薄膜蒸餾之質量傳送阻力串並聯模式示意圖 16
圖3-2薄膜蒸餾之熱量傳送阻力串聯示意圖 16
圖3-3攪拌型直接接觸式薄膜蒸餾示意圖 17
圖3-4攪拌型薄膜蒸餾系統之熱量傳送阻力示意圖 17
圖3-5薄膜表面溫度之計算流程表 20
圖3-6直接接觸式薄膜蒸餾系統質量傳送示意圖 26
圖3-7順流式雙效型直接接觸式薄膜蒸餾示意圖 27
圖3-8朗吉庫塔法求解常微分聯立方程組之計算示意圖 37
圖4-1攪拌型直接接觸式薄膜蒸餾系統實驗裝置簡圖 38
圖4-2攪拌型直接接觸式薄膜蒸餾模組式示意圖 39
圖4-3攪拌型直接接觸式薄膜蒸餾系統實驗裝置實際圖 39
圖4-4純水溢流桶槽實際圖 41
圖4-5雙效型直接接觸式薄膜蒸餾系統實驗裝置簡圖 44
圖4-6薄膜支撐層示意圖 46
圖4-7雙效型直接接觸式薄膜蒸餾模組分解圖 46
圖5-1攪拌型直接接觸式薄膜蒸餾系統之熱側流體為純水時,不同攪拌
速度與進口溫度對純水透膜通量之影響 51
圖5-2攪拌型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
不同攪拌速度與進口溫度對純水透膜通量之影響 52
圖5-3攪拌型直接接觸式薄膜蒸餾系統之熱側流體為純水時,薄膜係數
經驗式與薄膜係數公式之比較 54
圖5-4攪拌型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
薄膜係數經驗式與薄膜係數公式之比較 55
圖5-5攪拌型直接接觸式薄膜蒸餾系統之熱側流體為純水時,不同攪拌
轉速下對熱側對流係數之影響 57
圖5-6攪拌型直接接觸式薄膜蒸餾系統之熱側流體為純水時,不同攪拌
轉速下對冷側對流係數之影響 58
圖5-7攪拌型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
不同攪拌轉速下對熱側對流係數之影響 59
圖5-8攪拌型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
不同攪拌轉速下對冷側對流係數之影響 60


圖5-9攪拌型直接接觸式薄膜蒸餾系統之熱側流體為純水時,
不同攪拌轉速下對溫度極化係數之影響 61
圖5-10攪拌型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
不同攪拌轉速下對溫度極化係數之影響 62
圖5-11雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
不同進口溫度與流速下對純水透膜通量之關係圖 66
圖5-12雙效型直接接觸式薄膜蒸餾系統之熱通道流體為鹽水時,
不同進口溫度與流速下對純水透膜通量之關係圖 67
圖5-13雙效型直接接觸式薄膜蒸餾系統之熱側流體為純水時,薄膜
係數經驗式與薄膜係數公式之比較 68
圖5-14雙效型直接接觸式薄膜蒸餾系統之熱側流體為3.5wt%鹽水時,
薄膜係數經驗式與薄膜係數公式之比較 69
圖5-15雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道壁面溫度與膜面溫度在不同流速下之分佈圖Tin, h = 45 °C
73
圖5-16雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道壁面溫度與膜面溫度在不同流速下之分佈圖,Tin, h = 50°C
74
圖5-17雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道壁面溫度與膜面溫度在不同流速下之分佈圖,Tin, h = 55 °C
75

圖5-18雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道壁面溫度與膜面溫度在不同流速下之分佈圖,Tin, h = 60 °C
76
圖5-19雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道壁面溫度與膜面溫度在不同流速下之分佈圖,
Tin, h = 45 °C 77
圖5-20雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道壁面溫度與膜面溫度在不同流速下之分佈圖,
Tin, h = 50 °C 78
圖5-21雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道壁面溫度與膜面溫度在不同流速下之分佈圖,
Tin, h = 55 °C 79
圖5-22雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道壁面溫度與膜面溫度在不同流速下之分佈圖,
Tin, h = 60 °C 80
圖5-23雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
流體通道位置對不同流速下,流體溫度分佈圖,
Tin, h = 45 °C 81
圖5-24雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 50 °C
82
圖5-25雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 55 °C 83

圖5-25雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 55 °C
83
圖5-26雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 60 °C
84
圖5-27雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 45 °C
85
圖5-28雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 50 °C
86
圖5-29雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 55 °C
87
圖5-30雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速下,流體溫度分佈圖,Tin, h = 60 °C
88
圖5-32雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道位置對不同流速與進口溫度下,熱通道溫度極化效應
(Tin, h = 55-60 °C) 90



圖5-33雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道位置對不同流速與進口溫度下,冷通道溫度極化效應
(Tin, h = 45-50 °C) 91
圖5-34雙效型直接接觸式薄膜蒸餾系統之熱通道流體為純水時,流體
通道位置對不同流速與進口溫度下,冷通道溫度極化效應
(Tin, h = 55-60 °C) 92
圖5-35雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速與進口溫度下,熱通道溫度極化效應
(Tin, h = 45-50 °C) 93
圖5-36雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速與進口溫度下,熱通道溫度極化效應
(Tin, h = 55-60 °C) 94
圖5-37雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速與進口溫度下,冷通道溫度極化效應
(Tin, h = 45-50 °C) 95
圖5-38雙效型直接接觸式薄膜蒸餾系統之熱通道流體為3.5wt%鹽水時,
流體通道位置對不同流速與進口溫度下,冷通道溫度極化效應
(Tin, h = 55-60 °C) 96


表目錄
表4-1 PTFE/PP複合膜之薄膜性質 48
表4-2攪拌型直接接觸式薄膜蒸餾系統設計參數與操作參數 49
表4-3雙效型直接接觸式薄膜蒸餾系統設計參數與操作參數 49
表5-1熱側進口流體為純水時,薄膜兩側表面溫度表,Tin, c = 25℃ 63
表5-2熱側進口流體為3.5wt%鹽水時,薄膜兩側表面溫度表,
Tin, c = 25℃ 64
表5-3雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(pure water test, ) 97
表5-4雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (pure water test, ) 98
表5-5雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (pure water test, ) 99
表5-6雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (pure water test, ) 100
表5-7雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (NaCl solution = 3.5wt%, ) 101
表5-8雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (NaCl solution = 3.5wt%, ) 102
表5-9雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (NaCl solution = 3.5wt%, ) 103
表5-10雙效型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差
比較表(續) (NaCl solution = 3.5wt%, ) 104
表5-11不同操作流體下之熱通道雷諾數 105
表5-12水力損耗表 105
參考文獻 參考文獻
1. 樓基中編著,水資源與環境保育SOS環保救地球,台北市,五南圖書出版股份有限公司,2010,初版。
2. G. W. Meindersma, C. M. Guijt and A. B. de Haan. Desalination and water recycling by air gap membrane distillation, Desalination, 2006, 187, 291–301.
3. N. N. Li, A. G. Fane, W. S. Wincton Ho, T. Matsuura, Advanced Membrane Technology and Applications. New York: John Wiley and Sons Inc., 2008.
4. M. S. El-Bourawi, Z. Ding, R. Ma and M.A. Khayet. A framework for better understanding membrane distillation separation process, J. Membr. Sci., 2006, 285, 4–29.
5. 郭文正,曾添文編著。薄膜分離,台北市,高立圖書有限公司,1988,初版。
6. 鄭領英,王學松編著。膜的高科技應用,台北市,五南圖書出版股份有限公司,2003,初版。
7. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus. Desalination by a "compact SMADES" autonomous solarpowered membrane distillation unit, Desalination, 2007, 217, 29–37.
8. M, Rommel, J. Koschikowski, M. Wieghaus., Solar driven desalination systems based on membrane distillation, NATO Security through Science Series C: Environmental Security, 2007, 247–257.
9. V. Calabro, E. Drioli, F. Matera, Membrane distillation in the textile wastewater treatment, Desalination, 1991, 83, 209–224.
10. J. L. Cartinella, T. Y. Cath, M. T. Flynn, G. C. Miller, K. W. Hunter, A. E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol., 2006, 40, 7381–7386.
11. V. Calabro, B. L. Jiao, E. Drioli, Theoretical and experimental study on membrane distillation in the concentration of orange juice, Ind. Eng. Chem. Res., 1994, 33, 1803–1808.
12. P. Onsekizoglu, K. S. Bahceci, J. Acar, The use of factorial design for modeling membrane distillation, J. Membr. Sci., 2010, 349, 225–230.
13. M. Tomaszewska, M. Gryta, A. W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci., 1995, 102, 113–122.
14. M. Tomaszewska, M. Gryta, A. W. Morawski. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation, J. Membr. Sci., 2000, 166, 149–157.
15. K. Sakai, T. Muroi, K. Ozawa, S. Takesawa, M. Tamura, T. Nakane, Extraction of solute-free water from blood by membrane distillation, Trans. Am. Soc. Artif. Intern. Organs ,1986, 32, 397-400.
16. K. W. Lawson, D. R. Lloyd, Membrane distillation. J. Membr. Sci., 1997, 124, 1-25.
17. M. Gryta, M. Tomaszewska, J. Grzechulska, A. W. Morawski, Membrane distillation of NaCl solution containing natural organic matter, J. Membr. Sci., 2001a, 181, 279–287.
18. M. Khayet, J. I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation, J. Membr. Sci., 2005, 252, 101–113.
19. F. A. Banat, F. A. Abu Al-Rub, R. Jumah, M. Al-Shannag, Modeling of desalination using tubular direct contact membrane distillation modules, Sep. sci. technol., 1999, 34, 2191-2206.
20. M. Thomson, M. S. Miranda, D. Infield, A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range, Desalination, 2002, 153, 229–236.
21. T. Y. Cath, V. D. Adams, E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, J. Membr. Sci., 2004, 228, 5–16.
22. M. E. Findley, Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 1967, 6, 226–230 .
23. M. Khayet, Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloil interface Sci., 2011, 164, 56-88.
24. R. W. Schofield, A. G. Fane., C. J. D Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 1987, 33, 299-313.
25. R. W. Schofield, A. G. Fane, C. J. D Fell, R. Macoun, “Factors affecting flux in membrane distillation,” Desalination, 1990c, 77, 279–294 .
26. J. Phattaranawik, R. Jiraratananon, A. G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci.,2003, 212, 177-193.
27. M. C. Garc´ıa-Payo, M. A. Izquierdo-Gil, Thermal resistance technique for measuring the thermal conductivity of thin microporous membranes, J. Phys. D., 2004, 37, 3008-3016.
28. R. W. Schofield, A. G. Fane, C. J. D Fell, Gas and vapor transport through microporous membranes. Ⅰ. Knudsen- Poiseuille transition, J. Membr. Sci., 1990, 53, 159-171.
29. A. Velazquez, J. I. Mengual, Temperature polarization coefficients in membrane distillation. Sep. Sci.Technol.,1998, 33, 787-799.
30. L. Pena, M. P. Godino, J. I. Mengual, A method to evaluate the net membrane distillation coefficient, J. Membr. Sci., 1998, 143, 219-233.
31. T. C. Chen, C. D. Ho, H. M. Yeh, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Mem. Sci., 2009, 330, 279–287.
32. B. Li, K. K. Sirkar, Novel membrane and device for direct contact membrane distillation-based desalination process, Ind. Eng. Chem. Res., 2004, 43, 5300–5309.
33. J. Schwinge, P. R. Neal, D. E. Wiley, D. F. Fletcher, A. G. Fane, Spiral wound modules and spacers: Review and analysis, J. Membr. Sci., 2004, 242, 129–153 .
34. A. M. Alklaibi, N. Lior, Heat and mass transfer resistance analysis of membrane distillation. 2006, J. Membr. Sci., 282, 362-369.
35. S. T. Hsu, K. T. Cheng, J. S. Chiou, Seawater desalination by direct contact membrane distillation. Desalination, 2002, 143, 279-287.
36. A. M. Alklaibi, N. Lior, Comparative study of direct-contact and air-gap membrane distillation processes, Ind. Eng. Chem. Res., 2007, 46, 584-590.
37. E. Curcio, E. Drioli , Membrane Distillation and related operations—a review, Sep. Purif. Rev., 2005, 34, 35–86.
38. T. H. Chilton, T. B. Drew, R. H. Jebens, Heat transfer coefficient in agitated vessels, Ind. Eng. Chem., 1944, 36, 510-516.
39. R. P. Saini, J. S. Saini, Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element, Int. J. Heat Mass Transf., 1997, 40, 973–986.
40. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, New York, 2007.
41. A. Gilat, V. Subramaniam, Numerical methods for engineers and scientists, John Wiley & Sons, New York, 2007.
42. J. R. Welty, C. E. Wick, R. E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York, 1984.
43. 葉和明,單元操作,台北市,三民書局,1996,初版。
44. J. O. Wilkes, Fluid Mechanics for Chemical Engineers, second ed., Prentice Hall Professional Technical Reference, New York, 2006.
45. F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer fourth ed., John Wiley & Sons Inc., New York, 1996.
46. F. Chenlo, R. Moreira, G. Pereira, A. Ampudia, Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes, J. Food Eng., 2002, 54, 347–352.
47. H. Ozbek, S. L. Phillips. Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C, J. Chem. Eng. Data, 1980, 25, 263–267.
48. Magalhães MCF, Königsberger E, May PM, Hefter G. Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C, J. Chem. Eng. Data, 2002, 47, 590–598.
49. A. Korosi and B. M. Fabuss. Viscosities of binary aqueous solutions of NaCl, KCl, Na2SO4, and MgSO4 at concentrations and temperature of interest in desalination processes, J. Chem. Eng. Data, 1968, 13, 548–552.
50. S. B. Iversen, V. K. Bhatia, K. Dam-Jphasen, G. Jonsson. Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci., 1997, 130, 205–217.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-02-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-02-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信