§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0602201216093400
DOI 10.6846/TKU.2012.00222
論文名稱(中文) 聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸鹽)-鉑奈米粒子混成 導電薄膜之製備與分析及其在可撓式染敏太陽能電池的應用
論文名稱(英文) Preparation and characterization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-platinum nanoparticle (PEDOT:PSS-Pt) hybrid conducting thin films and application of these films to flexible dye sensitized solar cells
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 1
出版年 101
研究生(中文) 魏士紘
研究生(英文) Shih-Hung Wei
學號 698400479
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-01-04
論文頁數 83頁
口試委員 指導教授 - 張正良(chlchang@mail.tku.edu.tw)
共同指導教授 - 張朝欽(ccchang@mail.tku.edu.tw)
委員 - 林正嵐
委員 - 段葉芳
委員 - 陳林祈
關鍵字(中) 聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸鹽)-鉑奈米粒子混成導電薄膜
可撓式染敏太陽能電池
關鍵字(英) PEDOT:PSS
Pt
DSSC
ITO-PET
第三語言關鍵字
學科別分類
中文摘要
本研究使用多元醇還原法,在90 oC溫度用ethylene glycol (EG)將六氯鉑酸還原成奈米鉑粒子。用EG改質導電高分子PEDOT:PSS,在PEDOT:PSS溶液中掺混不同的鉑含量分別為6.8、12.7、17.9和22.5 wt % Pt。分析比較用轉速500 rpm和1000 rpm旋轉塗佈成膜在FTO玻璃基板和ITO-PET基板時性質的差異。
奈米鉑粒子經DLS、XRD和TEM的分析符合奈米鉑的特徵結晶峰,晶粒尺寸和粒徑大小約3 ~ 5 nm;AFM分析,PEDOT:PSS經EG改質後,Ra和RMS提升,當鉑含量隨著增加,Ra和RMS跟著提升;PEDOT:PSS溶液的黏度經EG改質後下降,鉑含量的增加,黏度跟著提高,在17.9 wt % Pt時有最黏的黏度,在FTO玻璃基板和ITO-PET基板上成膜在17.9 wt % Pt時有最厚的膜厚,但成膜在ITO-PET基板時12.7 wt % Pt比22.5 wt % Pt還厚;越厚的膜有越低的UV-vis穿透度;經四點探針和EIS分析,PEDOT:PSS在EG改質後,片電阻值和電阻值下降,鉑含量增加時,膜厚越厚,片電阻值和電阻值下降;CV分析,PEDOT:PSS經EG改質後可產生較多的還原電流,鉑含量的增加也可產生更多的還原電流,雖然22.5 wt % Pt沒有最厚的膜厚,但可藉由較多的鉑含量而有最低的片電阻值和電阻值及較多的還原電流,FTO`玻璃基板比ITO-PET基板導電性好,使用FTO玻璃基板可得到較低的片電阻值和電阻值及較多的還原電流;效率量測上,使用TiO2工作電極和N3染料,在FTO玻璃基板上以500 rpm成膜的22.5 wt % Pt對電極組成為DSSC效率為4.16 %,在ITO-PET基板上以500 rpm成膜的22.5 wt % Pt對電極,使用液態和膠態電解液時DSSC效率分別為1.94 %和1.57 %。
英文摘要
This study use polyol method reducted hydrogen hexachlorate(IV) to platinum nanoparticles by ethylene glycol (EG) under 90 oC. Improve conduction polymer PEDOT:PSS by EG and doping platinum nanoparticles as 6.8、12.7、17.9 and 22.5 wt % Pt. Compare of characters used 500 rpm and 1000 rpm to spin coating on FTO and ITO-PET substrate.
Platinum nanoparticles analysis by DLS、XRD and TEM fit with platinum characteristic crystalline, particles size and grain size about 3 ~ 5 nm; AFM analysis, add EG into PEDOT:PSS raise up the Ra and RMS, add into more platinum nanoparticles, Ra and RMS also raise up; the viscosity of PEDOT:PSS solution down after EG treatment, the viscosity raise by add more platinum nanoparticles, 17.9 wt % Pt have the max viscosity, the more thick of film thickness also in 17.9 wt % Pt; UV-Vis transmittance analysis, the thick film have low transmittance; Four probe and EIS analysis, PEDOT:PSS after EG treatment, sheet resistance and resistance down, add into more platinum nanoparticles let sheet resistance and resistance down; From CV analysis, PEDOT:PSS after EG treatment can produce more reduction current, add into more platinum nanoparticles can produce more reduction current; DSSC efficiency, use TiO2 working electrode and N3 dye, use 500 rpm spin coating 22.5 wt % Pt on FTO substrate as counter electrode, 4.16 %, use 500 rpm spin coating 22.5 wt % Pt on ITO-PET substrate as counter electrode, use liquid and gel electrolyte, 1.94 % and 1.57 %.
第三語言摘要
論文目次
本文目錄
中文摘要…………………………………..................………………... I
英文摘要…………………………………………..................…….. II
本文目錄………………………………………………………………………... III
圖目錄………………………………………………………………………………… V
表目錄……………………………………………………………………………… VIII
第一章 緒論……………………………………………………………………... 1
1-1前言……………………………………………………..……..................... 1
1-2研究動機………………………………………………………………............... 3
第二章 文獻回顧……………………………………………………………... 4
2-1共軛導電高分子PEDOT:PSS……………………………………………….. 4
2-2奈米鉑製程………………………………………………………………………... 6
2-3染料敏化太陽能電池(dye-sensitized solar cells, DSSC).... 8
2-4可撓式基板製程……………………………………………….................... 11
第三章 實驗…………………………………………………………….................... 13
3-1實驗藥品及材料………………………………………………..................... 13
3-2實驗步驟…………………………………………………………..................... 19
3-2-1在FTO基板製備TiO2工作電極………………………………………………… 19
3-2-2在ITO-PET基板製備TiO2工作電極……….................... 20
3-2-3製備奈米鉑混成導電薄膜對電極………………………………………………. 21
3-2-4配製電解液………………………………………………………………………. 22
3-2-5電池元件組裝……………………………………………………………………. 23
3-3分析儀器……………………………………………………..................... 24
第四章 結果與討論……………………………………………………………………. 28
4-1奈米鉑粒子性質分析……………………………………………………………. 28
4-1-1奈米鉑粒子DLS分析………………………………………………………. 28
4-1-2奈米鉑粒子XRD分析……………………………………………………… 29
4-1-3奈米鉑粒子TEM分析……………………………………………………... 30
4-2奈米鉑混成導電薄膜性質分析…………………..................... 31
4-2-1膜厚、黏度及導電度分析……………………………………………………….. 31
4-2-2 UV-Vis穿透度分析……………………….................... 37
4-2-3 AFM分析...................................... 40
4-2-4 SEM及EDS分析.................................. 43
4-2-5 CV分析........................................ 47
4-2-6 EIS分析....................................... 50
4-2-7奈米鉑混成導電薄膜應用-染料敏化太陽能電池的鉑對電極....... 53
4-3奈米鉑混成導電薄膜性質分析............................ 56
4-3-1膜厚及導電度分析.................................. 56
4-3-2 UV-Vis穿透度分析................................ 59
4-3-3 SEM分析.................................... 61
4-3-4 CV分析.................................... 63
4-3-5 EIS分析.................................. 66
4-3-6奈米鉑混成導電薄膜應用-全可撓式染料敏化太陽能電池...... 69
第五章 結論………………………………..................... 73
參考資料…………………………………………………………………... 74
附錄……………………………………………………………………………78

圖目錄
圖2-1染料敏化太陽能電池工作原理圖……………………….…………. 9
圖2-2高壓水蒸氣加熱薄膜裝置示意圖………………………………………….... 11
圖2-3 TiO2經過高壓水蒸氣加熱形成結晶粒子……………………..……….. 12
圖4-1在90 oC下加熱4小時形成奈米鉑粒子的粒徑大小………………….. 28
圖4-2奈米鉑粒子XRD圖(a)奈米鉑粒子溶液的薄膜(b)22.5 wt % Pt的薄膜....... 29
圖4-3在90 oC下加熱4小時形成奈米鉑粒子溶液的TEM圖(a)比例尺10 nm (b)比例尺5 nm…………………………………………………………………………. 30
圖4-4不同鉑含量溶液的黏度分布圖……….................... 32
圖4-5在玻璃上用500 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖……….. 33
圖4-6在玻璃上用1000 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖………… 33
圖4-7在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖…………. 35
圖4-8在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖……….. 35
圖4-9在玻璃上塗佈奈米鉑混成導電薄膜UV-Vis穿透圖(a)500 rpm (b)1000 rpm…………………………………………………………………………….. 38
圖4-10在FTO上塗佈奈米鉑混成導電薄膜UV-Vis穿透圖(a)500 rpm (b)1000 rpm...…………………………………………………………………………. 39
圖4-11用500 rpm塗佈奈米鉑混成導電薄膜3D AFM圖(a)PEDOT:PSS* (b)6.8 wt % Pt (c)12.7 wt % Pt (d)17.9 wt % Pt (e)22.5 wt % Pt.. 41
圖4-12用1000 rpm塗佈奈米鉑混成導電薄膜3D AFM圖(a)PEDOT:PSS*
(b)PEDOT:PSS (c)6.8 wt % Pt (d)12.7 wt % Pt (e)17.9 wt % Pt (f)22.5 wt % Pt…………..……………………………………..….. 42
圖4-13塗佈FTO成奈米鉑混成導電薄膜SEM表面圖(a)PEDOT:PSS* (b)PEDOT:PSS (c)22.5 wt % Pt....……………………….…………………………… 44
圖4-14塗佈FTO成奈米鉑混成導電薄膜SEM截面圖(a)PEDOT:PSS*
(b)PEDOT:PSS (c)22.5 wt % Pt……...……………………………….……... 45
圖4-15在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜CV圖....... 48
圖4-16在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜CV圖…..….. 49
圖4-17在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜EIS圖……………… 51
圖4-18在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜電阻分佈圖…...… 51
圖4-19在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜電阻EIS圖…. 52
圖4-20在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜電阻分佈圖... 52
圖4-21在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜效率圖…………... 54
圖4-22在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜效率圖…………. 55
圖4-23在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖.. 57
圖4-24在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜片電阻分佈圖.. 57
圖4-25在ITO-PET上塗佈奈米鉑混成導電薄膜UV-Vis穿透圖(a)500 rpm (b)1000 rpm…...…………………………………………….…… 60
圖4-26塗佈ITO-PET為22.5 wt % Pt薄膜SEM表面圖……………………... 62
圖4-27塗佈ITO-PET為22.5 wt % Pt薄膜SEM側面圖………………………….. 62
圖4-28在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜CV圖………… 64
圖4-29在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜CV圖….… 65
圖4-30在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜EIS圖………. 67
圖4-31在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜電阻分佈圖…… 67
圖4-32在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜EIS圖.... 68
圖4-33在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜電阻分佈圖.. 68
圖4-34在ITO-PET上使用液態電解液的效率圖…………………………….. 70
圖4-35在ITO-PET上使用膠態電解液的效率圖………………………….………. 71
圖4-36在ITO-PET上測試使用膠態電解液的效率穩定圖………………………. 71
附錄A-1 EG、純PEDOT:PSS和EG改質PEDOT:PSS溶液的黏度圖…….…… 78
附錄A-2不同鉑含量溶液的黏度圖…………………………………………….…. 78
附錄B-1純基板FTO的SEM表面圖………………………………………………. 79
附錄B-2純基板FTO的SEM截面圖…………………………………………………. 79
附錄B-3純基板ITO-PET的SEM表面圖……………………………………………. 80
附錄B-4純基板ITO-PET的SEM側面圖……………………………….…………. 80
附錄C-1在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜CV圖…….…………. 81
附錄C-2在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜CV圖……………… 81
附錄D-1在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜EIS圖……………. 82
附錄D-2在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜EIS圖………….. 82
附錄E-1在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜效率圖........ 83
附錄E-1在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜效率圖..…. 83

表目錄
表1-1不同系列的太陽能電池比較……………………………………………….…. 2
表4-1不同鉑含量溶液的黏度值……………….................... 32
表4-2在玻璃上塗佈成奈米鉑混成導電薄膜導電度................ 34
表4-3在FTO上塗佈成奈米鉑混成導電薄膜膜厚及導電度……………………… 36
表4-4奈米鉑粒子在混成導電薄膜中EDS分析………………………………… 46
表4-5在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜CV各項數值………... 48
表4-6在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜CV各項數值………. 49
表4-7在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜EIS各項數值……….. 51
表4-8在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜EIS各項數值………… 52
表4-9在FTO上用500 rpm塗佈成奈米鉑混成導電薄膜效率各項數值…………. 54
表4-10在FTO上用1000 rpm塗佈成奈米鉑混成導電薄膜效率各項數值…. 55
表4-11在ITO-PET上塗佈成奈米鉑混成導電薄膜膜厚及導電度……………….. 58
表4-12在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜CV各項數值…. 64
表4-13在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜CV各項數值.. 65
表4-14在ITO-PET上用500 rpm塗佈成奈米鉑混成導電薄膜EIS各項數值.. 67
表4-15在ITO-PET上用1000 rpm塗佈成奈米鉑混成導電薄膜EIS各項數值.. 68
表4-16在ITO-PET上使用液態電解液的效率各項數值………………….. 70
表4-17在ITO-PET上使用膠態電解液的效率各項數值………………………….. 72
參考文獻
1. J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, D. D. C. Bradley, "Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films", Synthetic Metals 139 (2003) 569-572.
2. M. Kus, S. Okur, "Electrical characterization of PEDOT:PSS beyond humidity saturation", Sensors and Actuators B 143 (2009) 177-181.
3. J. H. Hsu, J. M. Tang, L. H. Chung, D. C. Kong, "Highly conductive PEDOT:PSS films on polymer substrates for soft electronic applications", 高分子年會 (2011).
4. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, J. Shinar, "On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film through solvent treatment", Polymer 45 (2004) 8443-8450.
5. S. K. M. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, W. R. Salaneck, M. Fahlman, "The effect of solvent on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films", Synthetic Metals 139 (2003) 1-10.
6. O. P. Dimitriev, D. A. Grinko, Y. V. Noskov, N. A. Ogurtsov, A. A. Pud, "PEDOT:PSS films-effect of organic solvent additives and annealing on the film conductivity", Synthetic Metals 159 (2009) 2237-2239.
7. H. Yan, H. Okuzaki, "Effect of solvent on PEDOT/PSS nanometer-scaled thin films:XPS and STEM/AFM studies", Synthetic Metals 159 (2009) 2225-2228.
8. W. Wichiansee, A. Sirivat, "Electrorheological properties of poly(dimethylsiloxane) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid)/ethylene glycol blends ", Materials Science and Engineering C 29 (2009) 78-84.
9. G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, E. Dinjus, H. Bonnemann, "Catalytic platinum layers for dye solar cells: A comparative study", Thin Solid Films 511-512 (2006) 342-348.
10. T. Hyde, "Crystallite Size Analysis of Supported Platinum Catalysts by XRD", Platinum Metals Review 52 (2008) 129-130.
11. C. C. Chang, M. T. Jiang, C. L. Chang, C. L. Lin, "Preparation and characterization of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite thin films highly loaded with platinum nanoparticles", Materials Chemistry and Physics 127 (2011) 440-445.
12. S. J. Wang, H. H. Park, "Properties of one-step synthesized Pt nanoparticle-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid films", Thin Solid Films (2010).
13. C. N. Zhang, K. Wang, L. Hu, F. Kong, L. Guo, "Improved performance of solid-state dye-sensitized solar cells with p/p-type nanocomposite electrolyte", Journal of Photochemistry and Photobiology A: Chemistry 189 (2007) 329-333.
14. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, "Transparent graphene/PEDOT:PSS composite films as counter electrodes of dye –sensitized solar cells", Electrochemistry Communications 10 (2008) 1555-1558.
15. T. Muto, M. Ikegami, T. Miyasaka, "Polythiophene-based mesoporous counter electrodes for plastic dye-sensitized solar cells", Journal of The Electrochemical Society 157 (8) (2010) B2295-B1200.
16. M. Gratzel, "Photoelectrochemical cells", Nature vol.414 (2001).
17. G. P. Smestad, M. Gratzel, "Demonstrating electron transfer and nanotechnology:a natural dye-sensitized nanocrystalline energy converter", Journal of Chemical Education vol.75 (1998).
18. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K.Nazeeruddin, M. Gratzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %", Thin Solid Films 516 (2008) 4613-4619.
19. 銓盛光科公司網頁, http://tw.myblog.yahoo.com/ingot-aluminium/article?mid=1588&prev=1595&next=1586&l=f&fid=1.
20. N. Papageorgiou, "Counter-electrode function in nanocrystalline photoelectrochemical cell configurations", Coordination Chemistry Review 248 (2004) 1421-1446.
21. J. Halme, M. Toivola, A. Tolvanen, P. Lund, "Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates", Solar Energy Materials & Solar Cells 90 (2006) 872-886.
22. T. N. Murakami, M. Gratzel, "Counter electrode for DSC: Application of functional materials as catalysts", Inorganica Chimica Acta 361 (2008) 572-580.
23. L. Y. Lin, C. P. Lee, R. Vittal, K. C. Ho, "Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode", Journal of Power Sources 195 (2010) 4344-4349.
24. K. Sun, B. Fan, J. Ouyang, "Nanostructured platinum films deposited by polyol reduction of a platinum precursor and their application as counter electrode of dye-sensitized solar cells", Journal of Physical Chemistry C 114 (2010) 4237-4244.
25. H. Chang, T. L. Chen, K. D. Huang, S. H. Chien, K. C. Hung, "Fabrication of highly efficient flexible dye-sensitized solar cells", Journal of Alloys and Compounds 504S (2010) S435-S438.
26. M. Biancardo, K. West, F. C. Krebs, "Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies", Journal of Photochemistry and Photobiology A: Chemistry 187 (2007) 395-401.
27. A. D. Pasquier, "An approach to laminated flexible dye sensitized solar cells", Electrochimica Acta 52 (2007) 7469-7474.
77
28. D. Zhang, T. Yoshida, K. Furuta, H. Minoura, "Hydrothermal preparation of nano-crystalline TiO2 electrodes for flexible solar cells ", Journal of Photochemistry and Photobiology A:Chemistry 164 (2004) 159-166.
29. J. Halme, J. Saarinen, P. Lund, "Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates", Solar Energy Materials & Solar Cells 90 (2006) 887-899.
30. K. Miettunen, J. Halme, P. Vahermaa, T. Saukkonen, M. Toivola, P. Lund, "Dye sensitized cells on ITO-PET substrate with TiO2 recombination blocking layers", Journal of The Electrochemical Society 156 (2009) B876-B883.
31. E. Stathatos, Y. Chen, D. D. Dionydiou, "Quasi-solid-state dye-sensitized solar cells employing nanocrystalline TiO2 films made at low temperature", Solar Energy Materials & Solar Cells 92 (2008) 1358-1365.
32. K. Fan, T. Peng, J. Chen, K. Dai, "Effects of tetrabutoxytitanium on photoelectrochemical properties of plastic-based TiO2 film electrodes for flexible dye-sensitized solar cells", Journal of Power Sources 196 (2011) 2939-2944.
33. X. Huang, P. Shen, B. Zhao, X. Feng, S. Jiang, H. Chen, H. Li, S. Tan, "Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells", Solar Energy Materials & Solar Cells 94 (2010) 1005-1010.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信