淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0602201215315600
中文論文名稱 金屬箔片方杯微深引伸成形極限與破裂之研究
英文論文名稱 Study of Forming Limit and Fracture in Micro Deep Drawing of Square Cup for Metallic Foil
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 100
學期 1
出版年 101
研究生中文姓名 蔡坤男
研究生英文姓名 Kun-Nan Tsay
學號 694340042
學位類別 博士
語文別 中文
口試日期 2012-01-11
論文頁數 132頁
口試委員 指導教授-葉豐輝
委員-蔡國忠
委員-盧永華
委員-蔡慧駿
委員-李經綸
委員-葉豐輝
中文關鍵字 金屬箔片  成形極限  微深引伸成形  適應性網路模糊推論系統  連體損傷力學 
英文關鍵字 Metallic foil  Forming limit  Micro deep drawing  Adaptive network fuzzy inference system  Continuum damage mechanics 
學科別分類
中文摘要 本文係應用顯性動態有限元素法結合適應性網路模糊推論系統(ANFIS) 與連體損傷力學(CDM),進行方杯微深引伸之成形極限與破裂分析。研究中首先針對金屬箔片進行拉伸試驗及摩擦試驗,獲取數值分析所需之材料參數,並利用影像處理之非接觸方式得到材料之異向性值。其次利用數值分析探討不同沖頭及沖模圓弧角對於方杯微深引伸成形極限之影響,將不同料片直徑及其成形極限圖中料片應變與破裂成形曲線最短距離之資料建立資料庫,經由ANFIS複合式學習演算法,逆向預測達成形極限之初始料片直徑,並透過CDM所計算之損傷曲線及刪除元素法完成精微成形之破裂分析。
本研究為驗證模擬分析之可信度,設計一組模具進行實驗,經由數值分析與實驗結果之沖頭負荷與衝程關係、杯高分佈、工件套疊及初始破裂等比較,其結果一致,顯示本研究應用顯性動態有限元素法分別結合ANFIS與CDM能精確預測金屬箔片方杯微深引伸成形極限與破裂分析,將可作為相關精微成形之研究參考。
英文摘要 This thesis combines the explicit dynamic finite element method with Adaptive Network Fuzzy Inference System (ANFIS) and Continuum Damage Mechanics (CDM) to study the forming limit and fracture analysis in the micro deep drawing of square cup. First, the tensile and friction test are conducted to obtain the material parameters of the metallic foil for numerical analysis. The anisotropic value is obtained by the noncontact image process in the present study. Then, this study uses numerical analysis to discuss the forming limit for various arc radii of punch and die in the micro deep drawing of square cup. The various blank diameters and the minimum distance between strain of blank and forming limit curve fracture in forming limit diagram are used to establish a rule data base. From the hybrid-learning algorithm in ANFIS, the blank diameter with forming limit can be predicted inversely. The damage curve of CDM is computed to appear the fracture analysis by eroding element method.
This study designs a set of tools for experiments to verify the reliability of simulation. By comparison of numerical and experimental results, it shows that the punch load-stroke relationship, the distribution of cup height, the deformed profile of square cup and the initial fracture are consistent. It proves that the explicit dynamic finite element method based on ANFIS and CDM can predicts accurately forming limit and fracture analysis in the micro deep drawing of square cup. The results of this thesis can be the reference to the relative research in micro forming.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.3.1 精微成形及尺寸效應之定義及相關研究 2
1.3.2 精微成形之種類 4
1.3.3 精微成形材料試驗方法及設備之規劃 5
1.3.4 精微成形模具之製造定位量測 7
1.3.5 金屬箔片精微成形極限之探討 9
1.3.6 連體損傷力學 11
1.4 論文之構成 13
第二章 基本理論 15
2.1 顯性動態有限元素法 15
2.2 適應性網路模糊控制理論 21
2.2.1 模糊推論系統之架構 22
2.2.2 適應性網路模糊推論系統之架構 25
2.2.3 複合學習演算法 28
2.3 連體損傷力學 29
2.3.1 等效應變原理 29
2.3.2 損傷方程式 31
第三章 金屬箔片之材料試驗 35
3.1 金屬箔片之拉伸試驗 35
3.1.1 拉伸試驗之設備與程序 35
3.1.2 拉伸試驗之實驗原理 36
3.1.3 拉伸試驗之下料準備步驟 37
3.1.4 拉伸試驗之實驗步驟 39
3.1.5 拉伸試驗之實驗結果 39
3.2 金屬箔片之異向性值試驗 41
3.2.1 異向性值試驗之設備與程序 41
3.2.2 異向性值試驗之影像處理程序 42
3.2.3 異向性值試驗之實驗原理 48
3.2.4 異向性值試驗之實驗結果 48
3.3 金屬箔片之摩擦試驗 49
3.3.1 摩擦試驗之設備與程序 49
3.3.2 摩擦試驗之實驗原理 50
3.3.3 摩擦試驗之實驗步驟 51
3.3.4 摩擦試驗之實驗結果 52
第四章 金屬箔片精微成形之實驗與數值分析 54
4.1 電解銅箔於方杯微深引伸成形之分析 54
4.1.1 電解銅箔於微深引伸成形之實驗設備與方法 54
4.1.2 電解銅箔於微深引伸成形之實驗步驟 55
4.1.3 電解銅箔於微深引伸成形之數值分析 57
4.1.4 電解銅箔於微深引伸成形之結果與討論 61
4.1.5 電解銅箔於微深引伸成形極限之分析 64
4.1.6 電解銅箔於微深引伸成形破裂之分析 73
4.2 SPCC鋼箔於方杯微深引伸成形之分析 76
4.2.1 SPCC鋼箔於微深引伸成形之實驗設備與方法 76
4.2.2 SPCC鋼箔於微深引伸成形之實驗步驟 77
4.2.3 SPCC鋼箔於微深引伸成形之數值分析 78
4.2.4 SPCC鋼箔於微深引伸成形之結果與討論 79
4.2.5 SPCC鋼箔於微深引伸成形極限之分析 84
4.2.6 SPCC鋼箔於微深引伸成形破裂之分析 108
第五章 結論與未來展望 115
5.1 結論 115
5.2 未來展望 117
參考文獻 119
符號索引 130

圖目錄
圖2-1:連續體物體於卡氏座標系統變形 16
圖2-2:運動方程式之邊界條件示意圖 17
圖2-3:吊鐘形歸屬函數示意圖 23
圖2-4:Sugeno模糊推論系統圖 26
圖2-5:適應性網路模糊推論系統之架構圖 26
圖3-1:拉伸試驗設備之整體系統配置圖 36
圖3-2:ASTM D412 Type-D拉伸試驗之試片尺寸 36
圖3-3:不同裁切方式之試片邊緣 38
圖3-4:拉伸試片固定板之示意圖 38
圖3-5:厚度0.035mm電解銅箔於不同方向之真實應力-真實應變
曲線 40
圖3-6:厚度0.050mm SPCC鋼箔於不同方向之真實應力-真實應變
曲線 41
圖3-7:試片上方標記挾持位置、標距長度及寬度 42
圖3-8:開啟IMAQ程式,並匯入試片圖檔 43
圖3-9:RGB色彩空間 43
圖3-10:RGB色彩轉換灰階之原理 44
圖3-11:圖檔影像灰階化 44
圖3-12:調整影像亮度及對比 45
圖3-13:不同亮度、對比之影像直方圖 45
圖3-14:設定閥值 46
圖3-15:二值化之原理 46
圖3-16:開啟量測功能選項 47
圖3-17:量測試片之標距長度及寬度,並將數據輸出至Excel 47
圖3-18:拉伸後之試片 48
圖3-19:摩擦試驗設備之整體系統配置圖 50
圖3-20:摩擦實驗之受力作用示意圖 51
圖4-1:微深引伸成形實驗設備之整體系統配置圖 55
圖4-2:方杯微深引伸成形模具示意圖 56
圖4-3:方杯微深引伸成形之沖模網格分割 58
圖4-4:方杯微深引伸成形之壓料板網格分割 59
圖4-5:方杯微深引伸成形之沖頭網格分割 60
圖4-6:料片網格分割及邊界條件設定 60
圖4-7:沖模圓弧角Rd=0.3mm,厚度0.035mm電解銅箔於不同沖
頭圓弧角方杯微深引伸成形後之衝程負荷圖 62
圖4-8:沖模圓弧角Rd=0.3mm,厚度0.035mm電解銅箔於不同沖
頭圓弧角方杯微深引伸成形後之杯高分佈圖 62
圖4-9:厚度0.035mm電解銅箔於方杯微深引伸成形之成形歷程圖
63
圖4-10:厚度0.035mm電解銅箔於不同沖頭圓弧角方杯微深引伸
成形後之工件外形比較 63
圖4-11:厚度0.035mm電解銅箔於不同沖頭圓弧角方杯微深引伸
成形後之厚度分佈 64
圖4-12:料片直徑 5.7mm、5.8mm之電解銅箔於Rp=0.2mm、Rd
=0.3mm,方杯微深引伸成形後之衝程負荷圖 65
圖4-13:料片直徑 6.1mm、6.2mm之電解銅箔於Rp=0.5mm、Rd
=0.3mm,方杯微深引伸成形後之衝程負荷圖 65
圖4-14:料片直徑 6.3mm、6.4mm之電解銅箔於Rp=0.8mm、Rd
=0.3mm,方杯微深引伸成形後之衝程負荷圖 66
圖4-15:不同料片直徑之電解銅箔於Rp=0.2mm、Rp=0.5mm、Rp=
0.8mm,方杯微深引伸成形極限之杯高分佈圖 66
圖4-16:料片直徑 5.8mm之電解銅箔於Rp=0.2mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 68
圖4-17:料片直徑 5.7mm之電解銅箔於Rp=0.2mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 68
圖4-18:料片直徑 6.2mm之電解銅箔於Rp=0.5mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 69
圖4-19:料片直徑 6.1mm之電解銅箔於Rp=0.5mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 69
圖4-20:料片直徑 6.4mm之電解銅箔於Rp=0.8mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 70
圖4-21:料片直徑 6.3mm之電解銅箔於Rp=0.8mm、Rd=0.3mm之
方杯微深引伸成形發生破裂之FLD圖 70
圖4-22:料片直徑 5.8mm、 6.2mm、 6.4mm之電解銅箔於不同
頭圓弧角方杯微深引伸成形後之厚度分佈 71
圖4-23:料片直徑 5.7mm、 6.1mm、 6.3mm之電解銅箔於不同
頭圓弧角方杯微深引伸成形後之厚度分佈 71
圖4-24:料片直徑 5.7mm、 5.8mm之電解銅箔於Rp=0.2mm方杯
微深引伸成形後工件套疊圖 72
圖4-25:料片直徑 6.1mm、 6.2mm之電解銅箔於Rp=0.5mm方杯
微深引伸成形後工件套疊圖 72
圖4-26:料片直徑 6.3mm、 6.4mm之電解銅箔於Rp=0.8mm方杯
微深引伸成形後工件套疊圖 72
圖4-27:厚度0.035mm之電解銅箔Swift Model之損傷曲線 73
圖4-28:料片直徑 5.8mm之電解銅箔於Rp=0.2mm方杯微深引伸
發生破裂之厚度歷程圖 74
圖4-29:料片直徑 6.2mm之電解銅箔於Rp=0.5mm方杯微深引伸
發生破裂之厚度歷程圖 75
圖4-30:料片直徑 6.4mm之電解銅箔於Rp=0.8mm方杯微深引伸
發生破裂之厚度歷程圖 76
圖4-31:沖模圓弧角Rd=0.2mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之衝程負荷圖 80
圖4-32:沖模圓弧角Rd=0.4mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之衝程負荷圖 80
圖4-33:沖模圓弧角Rd=0.2mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之杯高分佈圖 81
圖4-34:沖模圓弧角Rd=0.4mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之杯高分佈圖 82
圖4-35:沖模圓弧角Rd=0.2mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之厚度分佈圖 83
圖4-36:沖模圓弧角Rd=0.4mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之厚度分佈圖 83
圖4-37:沖模圓弧角Rd=0.2mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之工件外形比較 83
圖4-38:沖模圓弧角Rd=0.4mm,厚度0.050mmSPCC鋼箔於不同
沖頭圓弧角方杯微深引伸成形後之工件外形比較 84
圖4-39:料片直徑 6.5mm、 6.6mm、 6.8mm之SPCC鋼箔於Rp
=0.5mm、Rd=0.2mm方杯微深引伸成形後之衝程負荷圖 85
圖4-40:料片直徑 6.8mm、 7.0mm之SPCC鋼箔於Rp=0.8mm、
=Rd=0.2mm方杯微深引伸成形後之衝程負荷圖 85
圖4-41:料片應變與FLCF最短距離之示意圖 86
圖4-42:料片直徑 6.0mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 87
圖4-43:料片直徑 6.1mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 88
圖4-44:料片直徑 6.2mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 88
圖4-45:料片直徑 6.3mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 89
圖4-46:料片直徑 6.4mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 89
圖4-47:料片直徑 6.5mm於Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形後之FLD圖 90
圖4-48:不同料片直徑Rp=0.2mm、Rd=0.2mm方杯微深引伸成形
後之FLD圖 90
圖4-49:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後之FLD圖 91
圖4-50:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後初始料片與工件比較 92
圖4-51:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後之沖衝負荷圖 93
圖4-52:不同料片直徑Rp=0.2mm、Rd=0.2mm方杯微深引伸成形
後之杯高分佈圖 93
圖4-53:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後之工件套疊圖 94
圖4-54:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後之厚度分佈圖 95
圖4-55:料片直徑 6.20221mm Rp=0.2mm、Rd=0.2mm方杯微深引
伸成形後之成形歷程圖 95
圖4-56:料片直徑 6.8mm、 7.0mm之SPCC鋼箔於Rp=0.5mm、
=Rd=0.4mm方杯微深引伸成形後之衝程負荷圖 96
圖4-57:料片直徑 7.1mm、 7.2mm之SPCC鋼箔於Rp=0.8mm、
=Rd=0.4mm方杯微深引伸成形後之衝程負荷圖 97
圖4-58:料片直徑 6.5mm於Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之FLD圖 98
圖4-59:料片直徑 6.6mm於Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之FLD圖 98
圖4-60:料片直徑 6.7mm於Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之FLD圖 99
圖4-61:料片直徑 6.8mm於Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後之FLD圖 99
圖4-62:料片直徑 6.9mm於Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後之FLD圖 100
圖4-63:料片直徑 7.0mm於Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後之FLD圖 100
圖4-64:不同料片直徑Rp=0.2mm、Rd=0.4mm方杯微深引伸成形
後之FLD圖 101
圖4-65:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後之FLD圖 102
圖4-66:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後初始料片與工件比較 103
圖4-67:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深
引伸成形後之沖衝負荷圖 103
圖4-68:不同料片直徑Rp=0.2mm、Rd=0.4mm方杯微深引伸成形
後之杯高分佈圖 104
圖4-69:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之工件套疊圖 105
圖4-70:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之厚度分佈圖 105
圖4-71:料片直徑 6.74663mm Rp=0.2mm、Rd=0.4mm方杯微深引
伸成形後之成形歷程圖 106
圖4-72:不同沖模圓弧角Rd於方杯微深引伸成形極限之杯高分
佈比較圖 108
圖4-73:厚度0.050mm之SPCC鋼箔Swift Model之損傷曲線 109
圖4-74:料片直徑 6.25mm Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形發生破裂之FLD圖 110
圖4-75:料片直徑 6.25mm Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形發生破裂之沖衝負荷圖 110
圖4-76:料片直徑 6.25mm Rp=0.2mm、Rd=0.2mm方杯微深引伸
成形發生破裂之厚度歷程圖 111
圖4-77:料片直徑 6.75mm Rp=0.2mm、Rd=0.4mm方杯微深引伸
成形發生破裂之FLD圖 112
圖4-78:料片直徑 6.75mm Rp=0.2mm、Rd=0.4mm方杯微深引伸
成形發生破裂之沖衝負荷圖 113
圖4-79:料片直徑 6.75mm Rp=0.2mm、Rd=0.4mm方杯微深引伸
成形發生破裂之厚度歷程圖 114

表目錄
表1-1:國內近年來各種金屬箔片於尺寸效應之相關研究 4
表1-2:不同拉伸試驗標準規範之比較 7
表3-1:SPCC鋼箔之異向性值 49
表3-2:電解銅箔Side-A與工具鋼之間的摩擦係數 52
表3-3:電解銅箔Side-B與工具鋼之間的摩擦係數 53
表3-4:SPCC鋼箔與工具鋼之間的摩擦係數 53
表4-1:厚度0.035mm電解銅箔之方杯微深引伸成形模具尺寸參
數 56
表4-2:厚度0.050mmSPCC鋼箔之方杯微深引伸成形模具尺寸參
數 77
表4-3:ANFIS預測Rd=0.2mm方杯微深引伸成形極限之知識規則
庫 107
表4-4:ANFIS預測Rd=0.4mm方杯微深引伸成形極限之知識規則
庫 107

參考文獻 參考文獻
1. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel, “Microforming,” CIRP Annals - Manufacturing Technology, Vol. 50(2), pp. 445-462, 2001.
2. U. Engel and R. Eckstein, “Microforming—from basic research to its realization,” Journal of Materials Processing Technology, Vol. 125-126, pp. 35-44, 2002.
3. 邱先拿,〝台灣在金屬精微成形系統技術之研究方向與策略〞,金屬精微製作技術研討會技術資料集,2003年。
4. A. Ilzhöfer, H. Schneider, and C. H. Tsakmakis, “Tensile Testing Device for Microstructured Specimens,” Microsystem Technologies, Vol. 4, pp. 46-50, 1997.
5. N. Tiesler, U. Engel, and M. Geiger, “Forming of Microparts - Effects of Miniaturization on Friction,” Advanced Technology of Plasticity Proceedings of the 6th ICTP, Vol. 2, pp. 889-894, 1999.
6. L. V. Raulea, L. E. Govaert, and F. P. T. Baaijens, “Grain and Specimen Size Effects in Processing Metal Sheets,” Advanced Technology of Plasticity, Proceedings of the 6th ICTP, Vol. 2, pp. 939-944, 1999.
7. N. Bontcheva and G. Petzov, “Microstructure evolution during metal forming processes”, Computational Materials Science, Vol. 28, pp. 563-573, 2003.
8. T. A. Kals and R. Eckstein, “Miniaturization in sheet metal working” Journal of Materials Processing Technology, Vol. 103, pp. 95-101, 2000.
9. J. F. Michel and P. Picart, “Size effects on the constitutive behaviour for brass in sheet metal forming,” Journal of Materials Processing Technology, Vol. 141, pp. 439-446, 2003.
10. J. Cao, N. Krishnan, and Z. Wang, “Microforming: Experimental Investigation of the Extrusion Process for Micropins and its Numerical Simulation Using RKEM,” Transactions American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering, Vol. 126, pp. 642-652, 2004.
11. T. Fülöp, W. A. M. Brekelmans, and M. G. D. Geers, “Size Effects from Grain Statistics in Ultra-Thin Metal Sheets,” Journal of Materials Processing Technology, Vol. 174, pp. 233-238, 2006.
12. F. K. Chen and J. W. Tsai, “A study of size effect in micro-forming with micro-hardness tests,” Journal of Materials Processing Technology, Vol. 177, pp. 146-149, 2006.
13. 葉豐輝、李經綸、盧永華、蔡坤男,〝微小板材外緣內曲摺邊成形之研究〞,中華民國力學學會第三十一屆全國力學會議,2009年。
14. 丁永健,〝金屬精微成形實驗規範之建立與尺寸效應機制之研究〞,台灣大學機械工程學系,碩士論文,2005年。
15. 劉元榮,〝尺寸效應及軋延方向對鈹銅機械性質之影響〞,台灣科技大學機械工程系,碩士論文,2007年。
16. 劉銘倫,〝銅板材微成形之尺寸效應對材料機械性質之影響〞,台灣科技大學機械工程系,碩士論文,2008年。
17. 李紹琮,〝材料微結構對微深引伸成形極限之影響〞,台灣科技大學機械工程系,碩士論文,2009年。
18. 施文傑,〝不銹鋼薄板精微彎曲成形之研究〞,台灣大學機械工程系,碩士論文,2009年。
19. 蘇弘軒,〝不銹鋼薄板圓筒精微引伸成形分析〞,台灣大學機械工程系,碩士論文,2010年。
20. 吳孟賢,〝不同厚度與晶粒尺寸之比值對微引伸成形之影響〞,台灣科技大學機械工程系,碩士論文,2010年。
21. 陳麟翰,〝考慮晶粒尺寸效應對精微薄板成形之成形極限預測〞,成功大學機械工程系,碩士論文,2010年。
22. Y. Saotome, K. Yasuda, and H. Kaga, “Microdeep drawability of very thin sheet steels,” Journal of Materials Processing Technology, Vol. 113, pp. 641-647, 2001.
23. N. Witulski, H. Justinger, and G. Hirt, “Validation of FEM-Simulation for Micro Deep Drawing Process Modeling,” Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Vol. 712, pp. 952-957, 2004.
24. K. Manabe, T. Shimizu, and H. Koyama, “Evaluation of Milli-Scale Cylindrical Cup in Two-Stage Deep Drawing Process,” Journal of Materials Processing Technology, Vol. 187-188, pp. 245-249, 2007.
25. K. Manabe, T. Shimizu, H. Koyama, M. Yang, and K. Ito, “Validation of FE Simulation Based on Surface Roughness Model in Micro-Deep Drawing,” Journal of Materials Processing Technology, Vol. 204, pp. 89-93, 2008.
26. L. V. Raulea, A. M. Goijaerts, L. E. Govaert, and F. P. T. Baaijens, “Size effects in the processing of thin metal sheets,” Journal of Materials Processing Technology, Vol. 115, pp. 44-48, 2001.
27. J. T. Gau, C. Principe, and J. W. Wang, “An Experimental Study on Size Effects on Flow Stress and Formability of Aluminm and Brass for Microforming,” Journal of Materials Processing Technology, Vol. 184, pp. 42-46, 2007.
28. B. Weiss, V. Groger, G. Khatibi, A. Kotas, P. Zimprich , R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sensors and Actuators, A 99, pp. 172-182, 2002.
29. H. Hoffmann and C. Vogl, ”Determination of True Stress-Strain-Curves and Normal Anisotropy in Tensile Tests with Optical Strain Measurement,” CIRP Annals-Manufacturing Technology, Vol. 52, Issue 1, pp. 217-220, 2003.
30. 江偉傑,〝數位影像法於變形量測〞,雲林科技大學機械工程系,碩士論文,2004年。
31. 王厚鈞,〝基因演算法應用於數位影像關係法及薄膜變形量測〞,雲林科技大學機械工程系,碩士論文,2005年。
32. 陳文璟,〝以超微距近拍之高畫素格線影像量測試片圓孔前端之應力與應變分佈曲線〞,中國機械工程學會第二十五屆全國學術研討會,2008年。
33. CNS 2112,G2014,金屬材料拉伸試驗片,中華民國國家標準。
34. ISO 6892, “Metallic Materials-Tensile test at Ambient Temperature,” Annual Book of ISO Standards.
35. ASTM E8M, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards.
36. ASTM E345, “Standard Test Methods of Tension Testing of Metallic Foil,” Annual Book of ASTM Standards.
37. ASTM D412, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension,” Annual Book of ASTM Standards.
38. JIS Z2201, “Method of Tensile Test for Metallic Materials,” Annual Book of JIS Standards.
39. G. Simons, Ch. Weippert, J. Dual, and J. Villain, “Size effects in tensile testing of thin cold rolled and annealed Cu foils,” Materials Science and Engineering A, Vol. 416, pp. 290-299, 2006.
40. T. Mori, K. Nakashima, and D. Tokurpzoto, “Ultra-Fine Piercing by SiC Fiber punch,” Proceedings of the International Symposium on Micromechatronics and Human Science, pp. 51-56, 1998.
41. G. L. Chern, Y. J. Wu, and S. F. Liu, “Development of a Micro-Punching Machine and Study on the Influence of Vibration Machining in Micro-EDM,” Journal of Materials Processing Technology, Vol. 180, pp. 102-109, 2006.
42. T. Masuzawa, “State of the Art of Micromachining,” CIRP Annals - Manufacturing Technology, Vol. 49, pp. 473-488, 2000.
43. K. J. Stout, “Three Dimensional Surface Topography; Measurement, Interpretation and Application,” Penton Press, 1994.
44. 葉希豪,〝影像處理及CATIA/CAM 在自動切割的應用〞,中原大學機械工程學系,碩士論文,1994年。
45. 張東明,〝影像處理於加工定位之應用〞,台灣大學機械工程學系,碩士論文,1996年。
46. 李高明,〝機器視覺在物體尺寸精密量測之應用研究〞,中原大學機械工程學系,碩士論文,1997年。
47. 黃建銘,〝應用非接觸影像量測技術於微小元件外型尺寸量測之研究〞,淡江大學航空太空工程學系,碩士論文,2003年。
48. 蕭裕昌,〝應用影像量測技術於微小元件之外型尺寸量測之研究〞,淡江大學航空太空工程學系,碩士論文,2004年。
49. 彭嘉俊,〝運用影像量測技術於三維輪廓量測及重建之研究〞,淡江大學航空太空工程學系,碩士論文,2005年。
50. 王迪藝,〝非接觸式單CCD 義齒鑲製關鍵邊緣線掃描量測系統〞,大同大學機械工程學系,碩士論文,2008年。
51. 劉咨貝,〝垂直移動式單CCD光學3D座標樑測系統的研究〞,大同大學機械工程學系,碩士論文,2009年。
52. M. Khelifa, M. Oudjene, and A. Khennane, “Fracture in sheet metal forming-Effect of ductile damage evolution,” Computers and Structures, Vol. 85, pp. 205-212, 2007.
53. M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, J. Niklewicz, and H. Hadavinia, “Ductile crack growth based on damage criterion: Experimental and numerical studies,” Mechanics of Materials, Vol. 39, pp. 623-636, 2007.
54. H. Huang and L. Xue, “Prediction of slant ductile fracture using damage plasticity theory,” International Journal of Pressure Vessels and Piping, Vol. 86, pp. 319-328, 2009
55. X. Teng, “Numerical prediction of slant fracture with continuum damage mechanics,” Journal of Materials Processing Technology, Vol. 75, pp. 2020-2041, 2008.
56. K. Komori, “Simulation of shearing by node separation method,” Computers and Structures, Vol. 79, pp. 197-207, 2001.
57. K. Komori, “Simulation of tensile test by node separation method,” Journal of Materials Processing Technology, Vol. 125-126, pp. 608-612, 2002.
58. K. Komori, “Ductile fracture criteria for simulating shear by node separation method,” Theoretical and Applied Fracture Mechanics, Vol. 43, pp. 101-114, 2005.
59. Y. M. Huang and S. Kuriyama, “Numerical analysis for bifurcation fracture of sheet metal forming,” Journal of Materials Processing Technology, Vol. 192-193, pp. 602-606, 2007.
60. S. P. Keeler and W. A. Backofen, “Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches,” Trans. ASM, Vol. 56, pp. 25, 1963.
61. G. M. Goodwin, “Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop,” SAE Paper, No.680093, 1968.
62. R. Venter, W. Johnson, and M. C. deMalherbe, “The Limit Strains of Inhomogeneous Sheet Metal in Biaxial Tension,” International Journal of Mechanical Sciences, Vol. 13, pp. 299-308, 1971.
63. W. Bleck, Z. Deng, K. Papamantellos, and C. O. Gusek, “A comparative study of the forming-limit diagram models for sheet metals,” Journal of Materials Processing Technology, Vol. 83, pp. 223-230, 1998.
64. D. Banabic and M. Jain, “Limit strains in the sheet metals by using the new Hill’s yield criterion,” Journal of Materials Processing Technology, Vol. 92-93, pp. 429-432, 1999.
65. M. Jain, J. Allin, and D. J. Lloyd, “Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet,” International Journal of Mechanical Sciences, Vol. 41 (10), pp. 1273-1288, 1999.
66. H. Takuda, K. Mori, H. Fujimoto, and N. Hatta, “Prediction of forming limit in bore-expanding of sheet metals using ductile fracture criterion,” Journal of Materials Processing Technology, Vol. 92-93, pp. 433-438, 1999.
67. H. Takuda, K. Mori, and N. Hatta, “The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals,” Journal of Materials Processing Technology, Vol. 95, pp. 116-121, 1999.
68. M. G. Cockcroft and D. J. Latham, “Ductility and the workability of metals,” Journal of the Institute of Metals, Vol. 96, pp. 33-39, 1968.
69. P. Brozzo and B. Deluca, “A new method for the prediction of formability in metal sheets,” In: Proceedings of the 7th Biennial Conference of IDDRG on Sheet Metal Forming and Formability, msterdam, 1972.
70. M. Oyane and T. Sato, “Criteria for ductile fracture and their applications.” Journal of Mechanical Working and Technology, Vol. 4, pp. 65-81, 1980.
71. F. Ozturk and D. Lee, “Analysis of forming limits using ductile fracture criteria,” Journal of Materials Processing Technology, Vol. 147, pp. 397-404, 2004.
72. Z. Yu, Z. Lin, and Y. Zhao, “Evaluation of fracture limit in automotive aluminium alloy sheet forming,” Materials and Design, Vol. 28, pp. 203-207 (2007).
73. Y. Yang, Z. Yu, X. Li, and Z. Sun, “A new ductile fracture criterion and its application to the prediction of forming limit in deep drawing,” Journal of Materials Science and Technology, Vol. 19, pp. 217-219, 2003.
74. J. Chen, X. Zhou, and J. Chen, “Sheet metal forming limit prediction based on plastic deformation energy,” Journal of Materials Processing Technology, Vol. 210, pp. 315-322, 2010.
75. Y. M. Huang and K. H. Chien, “The formability limitation of the hole-flanging process,” Journal of Materials Processing Technology, Vol. 117, pp. 43-51, 2001.
76. C. L. Li, Y. M. Huang, and Y. W. Tsai, “The analysis of forming limit in re-penetration process of the hole-flanging of sheet metal,” Journal of Materials Processing Technology, Vol. 201 pp. 256-260, 2008.
77. Y. M. Huang, Y. W. Tsai, and C. L. Li, “Analysis of forming limits in metal forming processes,” Journal of Materials Processing Technology, Vol. 201, pp. 385-389, 2008.
78. J. Lemaitre, “A continuous damage mechanics model for ductile fracture,” Journal of Engineering Materials and Technology, Vol. 107, pp. 83-89, 1985.
79. J. L. Chaboche, “Continuum damage mechanics: part I-general concepts,” Journal of Applied Mechanics, Vol. 55, pp. 59-64, 1988.
80. J. L. Chaboche, “Continuum damage mechanics: part II-damage growth, crack initiation, and crack growth,” Journal of Applied Mechanics, Vol. 55, pp. 65-72, 1988.
81. T. J. Wang, “Prediction of sheet forming limits using a new continuum damage mechanics criterion for ductile fracture,” Engineering fracture mechanics, Vol. 51, pp. 275-279, 1995.
82. I. Pether, G. Gloria, Q. Gleima, and F. Julio, “Model of Damage for Steel Frame Members,” Engineering Structures, Vol. 21, pp. 954-964, 1999.
83. V. Kevin and R. Vaziri, “Application of a damage mechanics model for predicting the impact response of composite materials,” Computer and Structures, Vol. 79, pp. 997-1011, 2001.
84. M. Mashayekhi and S. Ziaei-Rad, “Identification and validation of a ductile damage model for A533 steel,” Journal of Materials Processing Technology, Vol. 177, pp. 291-295, 2006.
85. P. Teixeira, A. D. Santos, F. M. Andrade Pires, and J. M. A. César de Sá, “Finite element prediction of ductile fracture in sheet metal forming processes,” Journal of materials, Vol. 177, pp. 278-281, 2006.
86. M. Khelifa, M. Oudjene, and A. Khennane, “Fracture in sheet metal forming-Effect of ductile damage evolution,” Computers and Structures, Vol. 85, pp. 205-212, 2007.
87. M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, J. Niklewicz, and H. Hadavinia, “Ductile crack growth based on damage criterion: Experimental and numerical studies,” Mechanics of Materials, Vol. 39, pp. 623-636, 2007.
88. 蔡傑丞,〝應用連體損傷力學於微金屬板材拉伸斷裂之研究〞,淡江大學機械與機電工程學系,碩士論文,2008年。
89. Y. H. Lu, F. H. Yeh, C. L. Li, M. T. Wu, and C. H. Liu, “Study of ductile fracture and preform design of upsetting process using adaptive network fuzzy inference system,” Journal of Materials Processing Technology, Vol. 140, pp. 576-582, 2003.
90. John O. Hallquist, “LS-DYNA THEORETICAL MANUAL”, 2006.
91. J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23(3), pp. 665-685, 1993.
92. C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part Ⅰ,” IEEE Transactions on System, Man, and Cybernetic, Vol. 20(2), pp. 404-418, 1990.
93. 王文俊,〝認識Fuzzy〞,全華科技圖書股份有限公司,2000年。
94. 楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂編著,〝模糊控制理論與技術〞,全華科技圖書股份有限公司,1996年。
95. M. S. Fox, “AI and Expert System Myths, Legends, and Facts,” IEEE Expert, pp. 8-20, 1990.
96. T. Takagi and M. Sugeno, “Derivation of Fuzzy Control Rules From Human Operator’s Control Actions,” in Proc. IFAC Symp. Fuzzy Inform., Knowledge Representation and Decision Analysis, pp. 55-60, 1983.
97. J. S. R. Jang and C. T. Sun, “Neuro-fuzzy Modeling and Control,” IEEE of the Proceedings, Vol. 83(3), pp. 378-406, 1995.
98. M. T. Hagan, H. B. Demuth, and Mark Beale, “Neural Network Design,” PWS Publishing Company, 1995.
99. J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neuro-Fuzzy and Soft Computing,” Hall International, Inc. 1997.
100. J. Lemaitre, “Engineering Damage Mechanics”, Springer Berlin Heidelberg, 2005.
101. J. Lemaitre, “A Course on Damage Mechanics,” Springer-Verlag, 1992.
102. F. Gong, B. Guo, C. Wang, and D. Shan, “Micro deep drawing of micro cups by using DLC film coated blank holders and dies”, Diamond & Related Materials, Vol. 20, pp. 196-200, 2011.
103. ASTM D 1894-01, “Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting,” Annual Book of ASTM Standards.
104. F. K. Chen and S. Y. Lin, “A formability index for the deep drawing of stainless steel,” International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 878-888, 2007.
105. M. Gotoh, M. Yamashita, and M. Itoh, “An experimental study on the deep-drawing of metal-wire Cloth,” Journal of Materials Processing Technology, Vol. 138, pp. 564-571, 2003.
106. 鄧維明,〝金屬板材方杯深引伸成形極限之動顯函有限元素分析〞,淡江大學機械與機電工程學系,碩士論文,2005年。
107. 林星佑,〝電解鎳箔與壓延鎳箔應用於微成形之可行性研究〞,台灣科技大學機械工程系,碩士論文,2011年。
108. ASTM E112, “Standard Test Methods for Determining Average Grain Size,” Annual Book of ASTM Standards.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-02-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-02-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信