§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0509201813384500
DOI 10.6846/TKU.2018.00182
論文名稱(中文) 微生物於電容去離子技術之影響
論文名稱(英文) Impact of Microorganisms on the Capacitive Deionization
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 王文增
研究生(英文) Wen-Zeng Wang
學號 606480100
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-07-18
論文頁數 95頁
口試委員 指導教授 - 彭晴玉
共同指導教授 - 簡義杰
委員 - 侯嘉洪
委員 - 林正嵐
關鍵字(中) 電容去離子技術
電吸附
E. coli
關鍵字(英) Capacitive Deionization
Electrosorption
E. coli
第三語言關鍵字
學科別分類
中文摘要
本研究以活性碳電極應用於電容去離子技術,分別以批次式(Batch mode)及單流式(Single-pass mode) CDI系統,探討E. coli於CDI系統中所產生之影響。
在Batch-mode CDI中,分別施加1.5 V和1.8 V並吸附193分鐘,不含E. coli的NaCl溶液,其溶液導電度去除效率為31 %及55 %,而添加E. coli的NaCl溶液中,導電度去除效率降為23 %與52 %,E. coli的去除率為5.1和3.6 log,結果發現,提高電壓能提升導電度去除率,且E. coli會抑制CDI對離子的電吸附情形,CDI於1.5 V的E. coli的去除效果較1.8 V佳。
透過SYBR Green I核酸染色觀察E. coli總數變化,施加1.2 V時,總數維持100%;但施加1.8 V時,總數降至59%;此外,藉由螢光分析法觀察細胞損傷情形,發現施加1.2 V時,CDI系統造成菌數下降主要原因為細胞損傷,並非細胞破裂引起;但施加1.8 V時,造成大量菌數下降原因主要是由於細胞破裂所導致。因此,提高電壓值會使E. coli細胞破裂,進而達到電化學滅菌的附加功能。
在Single-pass-mode CDI中,施加1.3 V及1.8 V時,E. coli的去除率為0.18、0.34 log;進行1.3 V的單組與4組串聯實驗,E. coli的去除率分別為0.10和0.28 log,整體而言,串聯CDI系統有助於提高對E. coli之去除效率。
本研究證實E. coli的存在會抑制CDI對離子的電吸附情形,因此當電容去離子技術應用於實際污水或廢水時,微生物對CDI系統的影響需謹慎評估。
英文摘要
In this study, we used activated carbon for the electrodes and applied to the capacitive deionization (CDI). Our main object is to explore impact of E. coli on batch mode CDI and single-pass mode CDI.
In batch-mode CDI, the NaCl solution without E. coli had a conductivity removal efficiency of 31.00% and 54.91 % at 1.5 V and 1.8 V, respectively; while that with E. coli the conductivity removal efficiency was reduced to 22.77% and 52.40%, , respectively, and E. coli log removal efficiencies was 5.1 and 3.6 log. Therefore, we found that increasing the voltage can enhance the conductivity removal rate, and E. coli will inhibit the electrosorption of ions in CDI system. E. coli log removal efficiencies at 1.5 V is better than 1.8 V. 
In addition, the quantity changes of E. coli was observed by SYBR Green I nucleic acid staining. E. coli quantity can keep almost the same (100%) when applied 1.2 V in 1000 ppm NaCl solution; but E. coli quantity reduce to 59% when 1.8 V applied. Based on fluorescence analyses to determine the damage of cells resulting from CDI processes, we found that the amount of cells drops is due to cell damaged, not cell disrupted when applied 1.2 V. However, when applied 1.8 V, the significant E. coli amount decrease is mainly because of cell disrupted. Therefore, increase in voltage can disrupt E. coli cells to achieve additional function of electrochemical disinfection in the CDI system.
However, in single-pass-mode CDI, E. coli log removal efficiencies was 0.18 and 0.34 log at applied 1.3 V and 1.8 V. In 1 set and 4 sets of series connection single-pass-mode CDI experiments, E. coli log removal efficiencies were 0.10 and 0.28 log, respectively. Overall, the series connection single-pass-mode CDI can improve removal efficiencies of E. coli.
This study confirms that the presence of E. coli inhibits the electrosorption of ions in CDI. Therefore, if capacitive deionization is applied to treat actual sewage or wastewater, impact of microorganisms on CDI systems needs to be carefully evaluated.
第三語言摘要
論文目次
目錄
第一章 緒論................................................................................................1
1.1 前言................................................................................................1
1.2 研究緣起........................................................................................1
1.3 研究目的........................................................................................2
第二章 文獻回顧........................................................................................3
2.1 海水淡化........................................................................................3
2.2 電容去離子(CDI)技術原理..........................................................4
2.3 電容去離子(CDI)之電極材料......................................................7
2.3.1 活性碳 (Activated Carbons)....................................................7
2.3.2 石墨烯 (Graphene) ..................................................................9
2.4 電容去離子其他應用潛力..........................................................10
2.4.1 砷(As)的處理 .........................................................................10
2.4.2 硬水軟化 ................................................................................11
2.4.3 消毒副產物控制 ....................................................................11
2.4.4 生活汙水處理 ........................................................................12
2.5 水體中常見致病菌......................................................................14
2.5.1 指標微生物 (Indicator Microorganism)................................15
2.5.2 大腸桿菌(E.coli) ....................................................................16
2.6 電容去離子(CDI)電極積垢問題................................................18
2.7 電化學滅菌 (Electrochemical sterilization)...............................20
第三章 研究材料及方法..........................................................................26
3.1 實驗架構......................................................................................26
3.2 實驗藥品與設備..........................................................................28
3.2.1 實驗藥品 ................................................................................28

3.2.2 實驗儀器設備 ........................................................................30
3.3 活性碳電極的製備......................................................................31
3.3.1 活性碳材料清洗 ....................................................................31
3.3.2 製備活性碳電極 ....................................................................31
3.4 E.coli 的培養與保存...................................................................33
3.4.1 E.coli 培養..............................................................................33
3.4.2 E.coli 保存..............................................................................33
3.5 E.coli 檢測方法...........................................................................34
3.5.1 色質大腸菌/大腸菌群培養基配置 .......................................34
3.5.2 抗生素—萬古黴素(Vancomycin)濃縮液配置......................34
3.5.3 檢測方法 ................................................................................35
3.6 螢光法(Fluorescence) E. coli 計數及活性 .................................36
3.6.1 核酸染色定量分析 ................................................................36
3.6.2 細胞膜完整性(Live/Dead)測定.............................................36
3.7 實驗分析方法..............................................................................41
3.7.1 掃描式電子顯微鏡分析(SEM)..............................................41
3.7.2 BET 孔徑與表面積分析........................................................41
3.7.3 循環伏安法(CV)....................................................................41
3.7.4 計時電位法(CP).....................................................................43
3.7.5 計時電流法(CA)....................................................................43
3.7.6 電化學阻抗譜分析(EIS)........................................................43
3.8 電容去離子技術(CDI)................................................................44
3.8.1 批次式系統(Batch-mode) ......................................................44
3.8.2 單流式系統(Single-pass-mode).............................................44
第四章 結果與討論..................................................................................49

4.1 大腸桿菌對批次式(batch-mode) CDI 系統之影響...................49
4.1.1 活性碳表面特性分析 ............................................................49
4.1.2 活性碳電化學特性分析 ........................................................53
4.1.3 批次式(batch mode)電容去離子(CDI)系統..........................60
4.2 批次式(batch mode)電容去離子(CDI)系統對 E. coli 之影響 ..70
4.3 大腸桿菌對單流式(single-pass-mode) CDI 系統之影響..........76
第五章 結論與建議..................................................................................86
References 88

List of Figure
Figure 2.2.1 Schematic representation of CDI process (Wei Huang et al.,
2013). .....................................................................................................5
Figure 2.2.2 (left) The double layer model of H. Helmholtz and J. Parrin (qe
and qs are charge densities of the electrode and solution respectively,
qe=qs), (right) the potential profile with distance across the electrode–
solution interface (AlMarzooqi et al., 2014)..........................................6
Figure 2.3.1.1 CV diagram of a non-treated (left) and the KOH-treated
(right) carbon sheet at a scan rate of 2 mV/s (Park et al., 2007)............8
Figure 2.5.2.1 Example charge-regulation results showing the pH at the E.
coli cell surface (solid lines) and glass and amine-coated surfaces
(dashed lines) as the bacterium approaches each of the two surfaces
(Albert & Brown, 2015).......................................................................17
Figure 2.7.1 Photograph of shaped ACF surface after an experiment in SEM
(A) 0 V vs. SCE; (B) 0.8 V vs. SCE (Tadashi et al., 1993). ................23
Figure 2.7.2 The working hypothesis describing the effect of adhesion on
bacterial metabolic activity, depicted here for a Gram-negative
bacterium adhering to a negatively charged surface, links cellular
bioenergetics to the charge-regulation effect. (a) In cellular
bioenergetics, protons are pumped across the inner (cytoplasmic)
membrane (IM) during respiration, setting up pH and electrostatic
gradients across the IM, which are quantified as the proton motive
force. (b) The protons are then allowed back across the IM via the
ATP-Synthase enzyme complex and the energy is captured to produce
ATP from ADP and phosphate. When cells approach a charged surface, 

the charge-regulation effect alters the proton concentration at the cell
surface. We hypothesize that the alteration in proton concentration at
the cell surface (c) propagates through the outer membrane and affects
the pH gradient across the IM. Similar results would be expected with
Gram-positive bacteria (Albert & Brown, 2015).................................24
Figure 2.7.3 ATP concentration, presented as Relative Light Units
normalized to the value at pH 7.2 (nRLU), as a function of the solution
pH. Gray and black symbols are replicate experiments with bacteria
starved for one day. White symbols are bacteria starved for one week
(Albert & Brown, 2015).......................................................................25
Figure 3.1.1 Schematic experimental structure for CDI system. .................27
Figure 3.3.2.1 Fabrication of activated carbon electrode.............................32
Figure 3.6.1.1 Fluorescence calibration curve of E. coli by stained with
SYBR Green I......................................................................................38
Figure 3.6.2.1 Calibration curve of relative viability of E. coli suspensions
in a fluorescence microplate reader. (a) relationship between % live
bacteria (x) and ratio G/R (y), (b) relationship between log-Cells/ml (x)
and ratio G/R (y). .................................................................................39
Figure 3.6.2.2 Estimated calibration curve of relative viability of E. coli
suspensions in a fluorescence microplate reader. (a) 1.2 V, (b) 1.8 V..40
Figure 3.8.1 The structure of CDI system....................................................46
Figure 3.8.1.1 The schematic of CDI batch-mode experiments.. ................47
Figure 3.8.2.1 The schematic of CDI single-pass-mode experiments.. .......48
Figure 4.1.1.1 The SEM of activated carbon electrode.(a) 200 X, (b) 605 X,
(c) 3.16 KX, (d) 19.16 KX...................................................................50

Figure 4.1.1.2 N2 adsorption/desorption isotherms of the AC.....................52
Figure 4.1.2.1 Cyclic voltammograms of AC at various scan rates in 1 M
NaCl. ....................................................................................................54
Figure 4.1.2.2 Specific capacitance of AC at different scan rates in 1 M
NaCl. ....................................................................................................54
Figure 4.1.2.3 Charge-discharge curves of AC at various current densities in
1 M NaCl..............................................................................................56
Figure 4.1.2.4 iR drops of the AC electrodes as a function of current density.
..............................................................................................................56
Figure 4.1.2.5 The current-time response obtained at applied cyclic potential
on AC. ..................................................................................................57
Figure 4.1.2.6 The electrochemical impedance spectra (EIS) measured at
frequency range of 0.01 Hz to 100 kHz for AC...................................59
Figure 4.1.3.1 Electrosorption-desorption cycles of the AC electrodes with
an applied different voltage in 1000 ppm NaCl. (a) only NaCl, (b) with
E.coli. ...................................................................................................63
Figure 4.1.3.2 Electrosorption-desorption cycles of Removal efficiencies of
the AC electrodes at various applied voltage in 1000 ppm NaCl. (a)
only NaCl, (b) with E.coli....................................................................64
Figure 4.1.3.3 Representative desalination performance and E. coli quantity
of the AC electrodes in 1000 ppm NaCl at applied (a) 1.5 V (b) 1.8 V.
..............................................................................................................68
Figure 4.1.3.4 E. coli log removal efficiencies at applied 1.5 V & 1.8 V in
batch mode CDI experiment. ...............................................................69
Figure 4.2.1 Desalination performance of the AC electrodes in 1000 ppm 

NaCl with E. coli at applied (a) 1.2 V (b) 1.8 V...................................72
Figure 4.2.2 E.coli in 1000 ppm NaCl at applied 1.2 V and 1.8 V by CDI
system. (a) E coli quantity change percentage (%), (b) Disrupted and
damaged E.coli cells percentage (%). ..................................................75
Figure 4.3.1 Na+
removal efficiencies in single pass mode CDI experiments
of the AC electrodes with an applied voltage (a) 1.3 V and (b) 1.8 V in
200 ppm NaCl......................................................................................78
Figure 4.3.2 E. coli log removal efficiencies at applied 1.3 V & 1.8 V in
single pass mode CDI experiment. ......................................................80
Figure 4.3.3 Conductivity removal effciencies in 4 sets of series connection
CDI experiment of the AC electrodes with an applied 1.3 V in 200 ppm
NaCl. ....................................................................................................83
Figure 4.3.4 E. coli log removal efficiencies at applied 1.3 V in 4 sets of
series connection CDI experiment. ......................................................84
Figure 4.3.5 E. coli log removal efficiencies at applied 1.3 V in 1 set & 4
sets of series connection CDI experiment............................................85

List of Table
Table 2.4.4.1 The water quality indexes of the original and treated domestic
wastewater biotreated effluent. (Wang et al., 2015a)...........................13
Table 2.6.1 Water quality of CDI feed solutions (Mossad & Zou, 2013)....19
Table 2.7.1 Respiration activity of various microorganisms at
controlled-potential electrolysis (Matsunaga et al., 1984)...................22
Table 3.2.1.1 Manufacturers and purity of experimental chemicals............28
Table 3.2.1.2 Manufacturers and purity of experimental chemicals............29
Table 3.2.2.1 Manufacturers and model of instruments...............................30
Table 4.1.1.1 Pore characterization of the activated carbon (AC) samples. 52
Table 4.1.2.1 Specific capacitance of AC in 1 M NaCl at different scan rates.
..............................................................................................................54
Table 4.1.2.2 iR drops of the AC electrodes as a function of current density.
..............................................................................................................56
Table 4.1.3.1 Electrosorption-desorption cycles of pH values at various
applied voltages in 1000 ppm NaCl without E.coli. ............................65
Table 4.1.3.2 Electrosorption-desorption cycles of pH values at various
applied voltages in 1000 ppm NaCl with E.coli. .................................65
Table 4.1.3.3 E. coli quantity variation at applied 1.5 V & 1.8 V in batch
mode CDI experiment..........................................................................69
Table 4.1.3.4 E. coli log removal efficiencies at applied 1.5 V & 1.8 V in
batch mode CDI experiment. ...............................................................69
Table 4.2.1 Electrosorption-desorption cycles of pH values at 1.2 V and 1.8
V in 1000 ppm NaCl with E. coli. .......................................................72
Table 4.2.2 Through CDI system treat at applied 1.2 V of Fluorescence 

analysis Data of E. coli. .......................................................................73
Table 4.2.3 Through CDI system treat at applied 1.8 V of Fluorescence
analysis Data of E. coli. .......................................................................74
Table 4.3.1 The pH values at applied 1.3 V and 1.8 V in 200 ppm NaCl
without E.coli.......................................................................................79
Table 4.3.2 The pH values at applied 1.3 V and 1.8 V in 200 ppm NaCl with
E.coli. ...................................................................................................79
Table 4.3.3 E. coli log removal efficiencies at applied 1.3 V & 1.8 V in
single pass mode CDI experiment. ......................................................80
Table 4.3.4 E. coli log removal efficiencies at applied 1.3 V in 4 sets of
series connection CDI experiment. ......................................................84
參考文獻
References
Albert, L. S., & Brown, D. G. (2015). Variation in bacterial ATP concentration
during rapid changes in extracellular pH and implications for the activity of attached
bacteria. Colloids and Surfaces B: Biointerfaces, 132, 111-116.
Alencherry, T., A.R., N., Ghosh, S., Daniel, J., & R., V. (2017). Effect of
increasing electrical conductivity and hydrophilicity on the electrosorption capacity of
activated carbon electrodes for capacitive deionization. Desalination, 415(Supplement
C), 14-19.
AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N. (2014). Application
of capacitive deionisation in water desalination: A review. Desalination, 342, 3-15.
Ashbolt, N. J., Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial
water quality. 289-316
Asquith, B. M., Meier-Haack, J., & Ladewig, B. P. (2015). Poly(arylene ether
sulfone) copolymers as binders for capacitive deionization activated carbon electrodes.
Chemical Engineering Research and Design, 104, 81-91. 
89
Cabral, J. P. S. (2010). Water microbiology. bacterial pathogens and water.
International Journal of Environmental Research and Public Health, 7(10),
3657-3703.
Cai P.F, Su C.J, Chang W.T, Chang F.C, Peng C.Y, Sun I.W, Wei Y.L, Jou C.J,
Wang H. P. (2014). Capacitive deionization of seawater effected by nano ag and
Ag@C on graphene. Marine Pollution Bulletin, 85(2), 733-737.
Donohue, M. D., & Aranovich, G. L. (1998). Classification of gibbs adsorption
isotherms. Advances in Colloid and Interface Science, 76-77, 137-152.
Fan, C., Tseng, S., Li, K., & Hou, C. (2016). Electro-removal of arsenic(III) and
arsenic(V) from aqueous solutions by capacitive deionization. Journal of Hazardous
Materials, 312, 208-215.
Haibo, L., Linda, Z., Likun, P., & Zhuo, S. (2010). Novel graphene-like
electrodes for capacitive deionization. Environmental Science & Technology, 44(22),
8692-8697.
Hou, C., Huang, J., Lin, H., & Wang, B. (2012). Preparation of activated carbon
sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of
Chemical Engineers, 43(3), 473-479. 
90
Hussein, F. H., Halbus, A. F., Lafta, A. J., & Athab, Z. H. (2015). Preparation
and characterization of activated carbon from iraqi khestawy date palm. Journal of
Chemistry, 1-8.
Jung, Y. J., Baek, K. W., Oh, B. S., & Kang, J. (2010). An investigation of the
formation of chlorate and perchlorate during electrolysis using pt/ti electrodes: The
effects of pH and reactive oxygen species and the results of kinetic studies. Water
Research, 44(18), 5345-5355.
Laxman, K., Myint, M. T. Z., Al Abri, M., Sathe, P., Dobretsov, S., & Dutta, J.
(2015). Desalination and disinfection of inland brackish ground water in a capacitive
deionization cell using nanoporous activated carbon cloth electrodes. Desalination,
362, 126-132.
Lee, J., Bae, W., & Choi, J. (2010). Electrode reactions and
adsorption/desorption performance related to the applied potential in a capacitive
deionization process. Desalination, 258(1), 159-163.
Li, N., An, J., Wang, X., Wang, H., Lu, L., & Ren, Z. J. (2017). Resin-enhanced
rolling activated carbon electrode for efficient capacitive deionization. Desalination,
419, 20-28. 
91
Liu, D., Wang, X., Xie, Y. F., & Tang, H. L. (2016). Effect of capacitive
deionization on disinfection by-product precursors. Science of the Total Environment,
568, 19-25.
Liu, X., Chen, T., Qiao, W., Wang, Z., & Yu, L. (2017a). Fabrication of
graphene/activated carbon nanofiber composites for high performance capacitive
deionization. Journal of the Taiwan Institute of Chemical Engineers, 72(Supplement
C), 213-219.
Liu, X., Chen, T., Qiao, W., Wang, Z., & Yu, L. (2017b). Fabrication of
graphene/activated carbon nanofiber composites for high performance capacitive
deionization. Journal of the Taiwan Institute of Chemical Engineers, 72, 213-219.
Matsunaga, T., Nakasono, S., & Masuda, S. (1992). Electrochemical sterilization
of bacteria adsorbed on granular activated carbon. FEMS Microbiology Letters, 93(3),
255-259.
Matsunaga, T., Namba, Y., & Nakajima, T. (1984). 751—Electrochemical
sterilization of microbial cells. Bioelectrochemistry and Bioenergetics, 13(4),
393-400. 
92
Mossad, M., & Zou, L. (2013). Study of fouling and scaling in capacitive
deionisation by using dissolved organic and inorganic salts. Journal of Hazardous
Materials, 244, 387-393.
Nadakatti, S., Tendulkar, M., & Kadam, M. (2011). Use of mesoporous
conductive carbon black to enhance performance of activated carbon electrodes in
capacitive deionization technology. Desalination, 268(1), 182-188.
Park, K., Lee, J., Park, P., Yoon, S., Moon, J., Eum, H., & Lee, C. (2007).
Development of a carbon sheet electrode for electrosorption desalination.
Desalination, 206(1), 86-91.
Raluy, G., Serra, L., & Uche, J. (2006). Life cycle assessment of MSF, MED and
RO desalination technologies. Energy, 31(13), 2361-2372.
Seo, S., Jeon, H., Lee, J. K., Kim, G., Park, D., Nojima, H., Lee, J., Moon, S.
(2010). Investigation on removal of hardness ions by capacitive deionization (CDI)
for water softening applications. Water Research, 44(7), 2267-2275.
Shahabi, M. P., McHugh, A., & Ho, G. (2015). Environmental and economic
assessment of beach well intake versus open intake for seawater reverse osmosis
desalination. Desalination, 357(Supplement C), 259-266. 
93
Shapira, B., Avraham, E., & Aurbach, D. (2016). Side reactions in capacitive
deionization (CDI) processes: The role of oxygen reduction. Electrochimica Acta, 220,
285-295.
Tadashi, M., Satoshi, N., Voji, K., & Kazuo, H. (1993). Electrochemical
disinfection of bacteria in drinking water using activated carbon fibers. Biotechnology
Bioengineering, 43(5), 429-433
Tsai, Y., & Doong, R. (2016). Hierarchically ordered mesoporous carbons and
silver nanoparticles as asymmetric electrodes for highly efficient capacitive
deionization. Desalination, 398, 171-179.
Wang, C., Song, H., Zhang, Q., Wang, B., & Li, A. (2015a). Parameter
optimization based on capacitive deionization for highly efficient desalination of
domestic wastewater biotreated effluent and the fouled electrode regeneration
Wang, C., Song, H., Zhang, Q., Wang, B., & Li, A. (2015b). Parameter
optimization based on capacitive deionization for highly efficient desalination of
domestic wastewater biotreated effluent and the fouled electrode regeneration.
Desalination, 365, 407-415. 
94
Wei Huang, Yimin Zhang, Shenxu BAO, & Shaoxian Song. (2013). Desalination
by capacitive deionization with carbon-based materials as electrode: A review. World
Scientific, 20(6), 1330003-1-10.
Xu, X., Pan, L., Liu, Y., Lu, T., & Sun, Z. (2015). Enhanced capacitive
deionization performance of graphene by nitrogen doping. Journal of Colloid and
Interface Science, 445, 143-150.
Yeh, C., Hsi, H., Li, K., & Hou, C. (2015). Improved performance in capacitive
deionization of activated carbon electrodes with a tunable mesopore and micropore
ratio. Desalination, 367, 60-68.
Yu, J., Jo, K., Kim, T., Lee, J., & Yoon, J. (2018). Temporal and spatial
distribution of pH in flow-mode capacitive deionization and membrane capacitive
deionization. Desalination, 439, 188-195.
Yu, T., Shiu, H., Lee, M., Chiueh, P., & Hou, C. (2016a). Life cycle assessment
of environmental impacts and energy demand for capacitive deionization technology.
Desalination, 399(Supplement C), 53-60. 
95
Yu, T., Shiu, H., Lee, M., Chiueh, P., & Hou, C. (2016b). Life cycle assessment
of environmental impacts and energy demand for capacitive deionization technology.
Desalination, 399, 53-60.
Yu-Hsuan, L., Hsing-Cheng, H., Kung-Cheh, L., & Chia-Hung, H. (2016).
Electrodeposited manganese dioxide/activated carbon composite as a
high-performance electrode material for capacitive deionization. Acs Sustainable
Chemistry & Engineering, 4(9), 4762-4770.
Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in
capacitive deionization (CDI) - problems and possibilities: A review. Water Research,
128, 314-330.
Zhao, Y., Hu, X., Jiang, B., & Li, L. (2014). Optimization of the operational
parameters for desalination with response surface methodology during a capacitive
deionization process. Desalination, 336, 64-71.
Zou, L., Li, L., Song, H., & Morris, G. (2008). Using mesoporous carbon
electrodes for brackish water desalination. Water Research, 42(8), 2340-2348.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信