§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0509201809250500
DOI 10.6846/TKU.2018.00179
論文名稱(中文) 電容去離子技術應用於硬水軟化
論文名稱(英文) Capacitive Deionization for Water Softening Application
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 王靖逸
研究生(英文) Ching Yi Wang
學號 606480142
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-07-18
論文頁數 106頁
口試委員 指導教授 - 彭晴玉(cypeng@mail.tku.edu.tw)
委員 - 侯嘉洪(chiahunghou@ntu.edu.tw)
委員 - 林正嵐(cllin@mail.tku.edu.tw)
關鍵字(中) 對稱/非對稱電容去離子
硬水軟化
錳/石墨烯複合材料
關鍵字(英) symmetrical/asymmetric capacitive deionization
hard water softening
manganese/graphene composites
第三語言關鍵字
學科別分類
中文摘要
全球發展造成水資源匱乏與工業用水激增,因此增加純淨水與硬水處理受到各地之關注。
電容去離子技術(Capacitive deionization, CDI)為一新穎的海水淡化技術,其原理為利用電吸附機制去除水中離子,具有低耗能、低成本、操作簡易與無二次汙染等優勢,應用層面廣泛,除可應用於脫鹽外,亦可應用於硬水軟化處理。
影響CDI技術的重要因素之一為電極材料之選擇,本研究其中一個目的為探討對環境友善之三種還原劑製備石墨烯為基本電極,進行鹽水與硬度離子之去除,其中以HMTA製備之石墨烯擁有最高之比電容量(82.71 F/g),對NaCl去除率達4.4 %,並對硬度離子Ca2+、Mg2+可分別達到2.74與0.56 mg/g之電吸附量。石墨烯對Ca2+、Mg2+、Na+電吸附之離子選擇性為Ca2+ > Mg2+ > Na+。
本研究另一目的為製備奈米Mn/rGO複合材料,藉由添加奈米錳提升原始石墨烯之親水性與比電容(111.42 F/g),並組成非對稱電容去離子系統去除硬度離子處理,對Ca2+、Mg2+、Na+ 分別達2.83、1.05與0.61 mg/g之吸附量,與對稱CDI系統相比,更有效提升其電吸附量。
英文摘要
Global development has led to water scarcity and increasing industrial water usage, so increasing pure water and treatment of hard water has received lots of attention worldwide.
Capacitive deionization (CDI) technology is a novel desalination technology. The principle of CDI is to remove ions in water by electrosorption mechanism, it has the advantages of low energy consumption, low cost, easy operation and no secondary pollution generated. CDI has a wide range of applications, in addition to desalination, it can also be applied to hard water softening treatment. One of the important factors affecting CDI technology is the selection of electrode materials. 
One of the objectives of this study was to investigate the differences of three environmentally friendly reducing agents used to prepare the graphene for removing NaCl and hardness ions. Among them, graphene prepared by HMTA has the highest specific capacitance (82.71 F/g), the NaCl removal efficiency is 4.4%, and the electrosorption capacity of hardness ions Ca2+ and Mg2+ can be achieved to 2.74 and 0.56 mg/g, respectively. The ion selectivity of graphene electrosorption is Ca2+ > Mg2+ > Na+.
Another purpose of this study is to prepare nano-Mn/rGO composites, which can improve the hydrophilic and specific capacitance (111.42 F/g) of the original graphene by adding nano-manganese. An asymmetric capacitive deionization system to remove the hardness ion was also compared in this study.
The electrosorption capacity of Ca2+, Mg2+, and Na+ was 2.83, 1.05, and 0.61 mg/g, respectively, in the symmetric CDI system. Compared with the symmetric CDI system, asymmetric capacitive deionization is more effective in increasing the electrosorption capacity.
第三語言摘要
論文目次
目錄
第一章	研究緣起	1
1.1	研究起源	1
1.2	研究目的	2
第二章	文獻回顧	3
2.1	淡化技術	3
2.2	CDI技術	6
2.2.1	原理	7
2.2.2	常用電極材料	9
2.3	石墨烯	10
2.3.1	石墨烯之化學改質	11
2.3.2	石墨烯之金屬複合物合成	13
2.4	對稱/非對稱之電容去離子技術	15
2.5	電容去離子應用於硬水軟化	19
第三章	材料與方法	23
3.1	實驗架構	23
3.2	實驗藥品與設備	25
3.2.1	實驗藥品	25
3.2.2	實驗儀器與設備	26
3.3	電極材料之製作	27
3.3.1	氧化石墨烯(Graphene Oxide, GO)之製備	27
3.3.2	石墨烯(Reduced Graphene Oxide, rGO)之製備	29
3.3.3	水熱法-錳/石墨烯複合材料(Mn/rGO)之製備	31
3.4	電極之製備	33
3.5	分析方法	35
3.5.1	X射線繞射分析 (XRD)	35
3.5.2	掃描式電子顯微鏡分析 (SEM)	35
3.5.3	孔徑與表面積分析 (BET)	36
3.5.4	接觸角測定實驗 (Contact angle)	36
3.5.5	循環伏安法 (Cyclic Voltammetry, CV)	37
3.5.6	計時電位法 (Chronopotentiometry, CP)	38
3.5.7	計時電流法 (Chronoamperometry, CA)	38
3.5.8	電化學阻抗譜分析 (EIS)	38
3.5.9	差分電容最小測量值 (Differential capacitance minimum measurements)	39
3.5.10	感應耦合電漿原子發射光譜儀 (ICP-OES)	39
3.6	電容去離子技術 (Capacitive deionization, CDI)	40
3.6.1	電容去離子系統 (CDI system)	40
3.6.2	非對稱電容去離子系統 (Asymmetric CDI system)	40
第四章	結果與討論	42
4.1	以不同還原劑製成石墨烯應用於電容去離子技術	42
4.1.1	不同石墨烯之表面特性分析	42
4.1.2	不同石墨烯之電化學特性	52
4.1.3	不同石墨烯應用於電容去離子技術	64
4.2	利用電容去離子技術去除水中硬度	68
4.2.1	單一離子去除	68
4.2.2	多離子之競爭	72
4.3	以錳/石墨烯複合材料應用於非對稱電容去離子技術	77
4.3.1	錳/石墨烯複合材料之表面特性分析	77
4.3.2	錳/石墨烯複合材料之電化學特性	82
4.3.3	錳/石墨烯複合材料應用於不對稱CDI系統去除水中硬度	90
第五章	結論與建議	95

 
List of Figure
Figure 2.2.1.1 Schematic illustration of the working principle of ion removal in CDI. (a) In charging phase, ions are temporarily electroadsorbed in porous carbon electrodes. (b) In discharging phase, most of the ions are released back into the solution (Yu et al., 2016).	8
Figure 2.3.1.1 (a) SEM image (cross-sectional view), (b) TEM image (Mohanapriya et al., 2016).	12
Figure 2.3.2.1 Cyclic voltammograms of MORGO with RGO and Mn3O4       (Yao et al., 2018).	14
Figure 2.4.1 Comparison of NaCl conductivity change curves of the four CDI cells: (a) Cell CS and Cell C; (b) Cell CN and Cell C; (c) Cell CSN and Cell C (Yang et al., 2013).	17
Figure 2.4.2 The assembly of the four cells and corresponding quantified desalting performances (Yang et al., 2013).	18
Figure 2.5.1 Normalized concentration of ions : Na (▲), Mg (■), and Ca (□) at a flow rate of 4 mL / min using the AC cloth type electrode. The applied voltage was 1.5 V with the feed solution of 1000 μS / cm conductivity. The apparent surface area of each compartment was 25 cm2 (Seo et al., 2010).	21
Figure 2.5.2 The electrosorption performance for different monovalent anions under an applied voltage of 1.2 V (Yingzhen Li et al., 2016).	22
Figure 3.1.1 Experimental structure for CDI system.	24
Figure 3.3.1.1 Graphene oxide (GO) preparation procedure.	28
Figure 3.3.2.1 Graphene (rGO) preparation procedure.	30
Figure 3.3.3.1 Manganese/Graphene (Mn/rGO) preparation procedure.	32
Figure 3.4.1 Carbon electrodes prepared with a modified evaporation casting method.	34
Figure 3.6.2.1 Schematic diagram of the CDI system.	41
Figure 4.1.1.1 XRD patterns of (a) Graphene oxide (GO), (b) Dithionite-rGO, (c) NaBH4 -rGO and (d) HMTA-rGO.	43
Figure 4.1.1.2 SEM images of (a), (b) Dithionite-rGO, (c), (d) NaBH4-rGO and (e), (f) HMTA-rGO.	45
Figure 4.1.1.3 Pore volume distribution of (a) Dithionite-rGO, (b) NaBH4-rGO and (c) HMTA-rGO.	47
Figure 4.1.1.4 Contact angle images of (a) Dithionite-rGO, (b) NaBH4-rGO and (c) HMTA-rGO.	50
Figure 4.1.2.1 Cyclic voltammograms of (a) Dithionite-rGO, (b) NaBH4 -rGO and (c) HMTA-rGO at various scan rates.	53
Figure 4.1.2.2 Cyclic voltammograms of (a) Dithionite-rGO, (b) NaBH4-rGO and (c) HMTA-rGO at scan rate of 50 mV/s.	54
Figure 4.1.2.3 Mass normalized specific capacitance of different rGO with respect to the scan rates.	56
Figure 4.1.2.4 Charge-discharge curves of (a) Dithionite-rGO, (b) NaBH4-rGO and (c) HMTA-rGO at various current densities.	58
Figure 4.1.2.5 Charge-discharge curves of different rGO at current densities of 1 A/g.	59
Figure 4.1.2.6 The current-time response obtained at applied cyclic potential on different rGO.	61
Figure 4.1.2.7 The electrochemical impedance spectra (EIS) measured at frequency range of 100 kHz to 0.01 Hz for different rGO.	63
Figure 4.1.3.1 Electrosorption/desorption profiles of the (a)Dithionite-rGO, (b) NaBH4-rGO and (c) HMTA-rGO electrode in 50 ppm NaCl solution (at 1.0 V).	66
Figure 4.1.3.2 Electrosorption/desorption profiles of the different rGO electrode.	67
Figure 4.2.1.1 Electrosorption/desorption of the HMTA-rGO electrode in 200 mg/L  (a) NaCl (b) MgCl2 and (c) CaCl2 solution (at 1.0 V).	70
Figure 4.2.2.1 Electrosorption/desorption of the HMTA-rGO electrode in        200 ppm Ca - Mg solution (at 1.0 V).	73
Figure 4.2.2.2 Electrosorption/desorption of the HMTA-rGO electrode in        200 ppm Ca - Na solution (at 1.0 V).	74
Figure 4.2.2.3 Electrosorption/desorption of the HMTA-rGO electrode in        200 ppm Mg - Na solution (at 1.0 V).	74
Figure 4.2.2.4 Electrosorption/desorption of the HMTA-rGO electrode in        200 ppm Ca - Mg - Na mixture solution (at 1.0 V).	75
Figure 4.3.1.1 XRD patterns of (a) HMTA-rGO and (b) Mn/rGO electrode materials.	78
Figure 4.3.1.2 SEM images of (a) HMTA - rGO (b) Mn/rGO and (c) EDS analyses of Mn/rGO.	79
Figure 4.3.1.3 The contact angle measurement of (a) HMTA-rGO, (b) Mn/rGO.	81
Figure 4.3.2.1 Cyclic voltammograms of Mn/rGO at various scan rates.	83
Figure 4.3.2.2 Cyclic voltammograms of HMTA-rGO and Mn/rGO at scan rate of 50 mV/s.	83
Figure 4.3.2.3 Mass normalized specific capacitance of HMTA-rGO and Mn/rGO with respect to the scan rates.	84
Figure 4.3.2.4 Charge-discharge curves of Mn/rGO at various current densities.	86
Figure 4.3.2.5 Charge-discharge curves of HMTA-rGO and Mn/rGO at current densities of 1 A/g.	86
Figure 4.3.2.6 The current-time response obtained at applied cyclic potential on HMTA-rGO and Mn/rGO.	87
Figure 4.3.2.7 The electrochemical impedance spectra (EIS) measured at frequency range of 100 kHz to 0.01 Hz for HMTA-rGO and Mn/rGO.	88
Figure 4.3.2.8 Normalized differential capacitance curves of HMTA-rGO and Mn/rGO.	89
Figure 4.3.3.1 Electrosorption/desorption of the Mn/rGO and HMTA-rGO electrode in 200 ppm (a) NaCl (b) MgCl2 (c) CaCl2 solution (at 1.0 V).	92
Figure 4.3.3.2 Electrosorption/desorption of the Mn/rGO and HMTA-rGO electrode in 200 ppm Ca - Mg - Na mixture solution (at 1.0 V).	93
 
List of Table
Table 2.1.1 Year 2011 global annual desalted water production and estimated associated saline feed water flow rates and gaseous emissions (Lior, 2017).	5
Table 2.5.1 The ion radius, hydrated radius, and hydration ratio of different anions (Yingzhen Li et al., 2016).	22
Table 3.2.1.1 Manufactures and purity of experimental medicines.	25
Table 3.2.2.1 Manufacturers and model of equipment.	26
Table 4.1.1.1 Surface areas and porosity ratio of different rGO.	48
Table 4.1.1.2 Contact angle analyses of different rGO.	51
Table 4.1.2.1 Mass normalized specific capacitance (F/g) of different rGO with respect to the scan rates.	56
Table 4.1.3.1 Removal efficiency and electrosorption capacity of different rGO.	67
Table 4.2.1.1 Removal efficiency and electrosorption capacity of different cations.	71
Table 4.2.1.2 The ion radius, hydration radius, and hydration ratio of three cations (Yingzhen Li et al., 2016).	71
Table 4.2.2.1 Removal efficiency and electrosorption capacity of the HMTA-rGO electrode in different cations mixture solutions.	76
Table 4.3.1.1 EDS elemental compositions of the Mn/rGO composite materials.	79
Table 4.3.1.2 Surface areas and porosity ratio of HMTA-rGO and Mn/rGO.	80
Table 4.3.2.1 Mass normalized specific capacitance (F/g) of HMTA-rGO and Mn/rGO with respect to the scan rates.	84
Table 4.3.3.1 Removal efficiency and electrosorption capacity of the Mn/rGO and HMTA - rGO asymmetric CDI system in different mixture solution.	94
參考文獻
References
Alotaibi, S., Ibrahim, O. M., Luo, S., & Luo, T. (2017). Modeling of a continuous water desalination process using directional solvent extraction. Desalination, 420, 114-124.
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856.
Ayokunle, O., Xin, G., James, L., & Kunlei, L. (2014). Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Applied Materials & Interfaces, 6(15), 12640-12649.
Brastad, K. S., & He, Z. (2013). Water softening using microbial desalination cell technology. Desalination, 309(15), 32-37.
Cai, W., Yan, J., Hussin, T., & Liu, J. (2017). Nafion-AC-based asymmetric capacitive deionization. Electrochimica Acta, 225(20), 407-415.
Carmalin Sophia, A., Bhalambaal, V. M., Lima, E. C., & Thirunavoukkarasu, M. (2016). Microbial desalination cell technology: Contribution to sustainable waste water treatment process, current status and future applications. Journal of Environmental Chemical Engineering, 4(3), 3468-3478.
Chen, Z., Zhang, H., Wu, C., Wang, Y., & Li, W. (2015). A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination, 369(3), 46-50.
Dar, R. A., Giri, L., Karna, S. P., & Srivastava, A. K. (2016). Performance of palladium nanoparticle–graphene composite as an efficient electrode material for electrochemical double layer capacitors. Electrochimica Acta, 196(1), 547-557.
Dey, D., Bhattacharjee, D., Chakraborty, S., & Hussain, S. A. (2013). Development of hard water sensor using fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 184(31), 268-273.
El-Deen, A. G., Barakat, N. A. M., & Kim, H. Y. (2014). Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination, 344(1), 289-298.
Fan, C., Tseng, S., Li, K., & Hou, C. (2016). Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 312(15), 208-215.
Godskesen, B., Hauschild, M., Rygaard, M., Zambrano, K., & Albrechtsen, H. -. (2012). Life cycle assessment of central softening of very hard drinking water. Journal of Environmental Management, 105, 83-89.
Haibo, L., Linda, Z., Likun, P., & Zhuo, S. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental Science & Technology, 44(22), 8692-8697.
Hou, C., & Huang, C. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314(2), 124-129.
Huang, H., Zhao, Z., Hu, W., Liu, C., Wang, X., Zhao, Z., & Ye, W. (2018). Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for efficiently catalytic reduction of 4-nitrophenol in wastewater. Journal of the Taiwan Institute of Chemical Engineers, 84, 101-109.
Huang, W., Zhang, Y., Bao, S., Cruz, R., & Song, S. (2014). Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination, 340, 67-72.
Ioniţă, M., Vlăsceanu, G. M., Watzlawek, A. A., Voicu, S. I., Burns, J. S., & Iovu, H. (2017). Graphene and functionalized graphene: Extraordinary prospects for nanobiocomposite materials. Composites Part B: Engineering, 121(15), 34-57.
Jo, H., Kim, K. H., Jung, M., Park, J. H., & Lee, Y. (2017). Fluorination effect of activated carbons on performance of asymmetric capacitive deionization. Applied Surface Science, 409(1), 117-123.
Lado, J. J., Pérez-Roa, R. E., Wouters, J. J., Tejedor-Tejedor, M. I., Federspill, C., Ortiz, J. M., & Anderson, M. A. (2017). Removal of nitrate by asymmetric capacitive deionization. Separation and Purification Technology, 183(7), 145-152.
Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., & Sun, Z. (2008). Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research, 42(20), 4923-4928.
Li, J., Chen, Y., Wu, Q., & Xu, H. (2017). Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures. Journal of Alloys and Compounds, 693(5), 373-380.
Li, J., Wang, X., Huang, Q., Gamboa, S., & Sebastian, P. J. (2006). Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. Journal of Power Sources, 158(1), 784-788.
Li, Y., Zhang, C., Jiang, Y., Wang, T., & Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399(1), 171-177.
Li, Z., Song, B., Wu, Z., Lin, Z., Yao, Y., Moon, K., & Wong, C. P. (2015). 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy, 11, 711-718.
Lior, N. (2017). Sustainability as the quantitative norm for water desalination impacts. Desalination, 401(2), 99-111.
Liu, Y., Shi, Y., Feng, Q., Chen, M., & Cao, D. (2018). Distribution-dependent capacitive and magnetic properties of Mn3O4 nanoparticles on reduced graphene oxide. Diamond and Related Materials, 84, 169-177.
Lu, G., Wang, G., Wang, P., Yang, Z., Yan, H., Ni, W., Zhang, Li., & Yan, Y. (2016). Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method. Desalination, 386(16), 32-38.
Mohanapriya, K., Ghosh, G., & Jha, N. (2016). Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode. Electrochimica Acta, 209(10), 719-729.
Morton, A. J., Callister, I. K., & Wade, N. M. (1997). Environmental impacts of seawater distillation and reverse osmosis processes. Desalination, 108(1-3), 1-10.
Niu, R., Li, H., Ma, Y., He, L., & Li, J. (2015). An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochimica Acta, 176, 755-762.
Nupearachchi, C. N., Mahatantila, K., & Vithanage, M. (2017). Application of graphene for decontamination of water; implications for sorptive removal. Groundwater for Sustainable Development, 5, 206-215.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 228(1), 10-29.
Park, J., Song, J., Yeon, K., & Moon, S. (2007). Removal of hardness ions from tap water using electromembrane processes. Desalination, 202(1), 1-8.
Peng, Z., Zhang, D., Yan, T., Zhang, J., & Shi, L. (2013). Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization. Applied Surface Science, 282(1), 965-973.
Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58(1), 224-231.
Ryoo, R., Joo, S. H., Jun, S., Tsubakiyama, T., & Terasaki, O. (2001). 07-O-01 - ordered mesoporous carbon molecular, sieves by templated synthesis: The structural varieties. Studies in Surface Science and Catalysis, 135, 150.
Sakthivel, T., Gunasekaran, V., & Kim, S. (2014). Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Materials Science in Semiconductor Processing, 19, 174-178.
Seo, S., Jeon, H., Lee, J. K., Kim, G., Park, D., Nojima, H., Lee, J., & Moon, S. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research, 44(7), 2267-2275.
Shah, H. U., Wang, F., Javed, M. S., Shaheen, N., Saleem, M., & Li, Y. (2018). Hydrothermal synthesis of reduced graphene oxide-Mn3O4 nanocomposite as an efficient electrode materials for supercapacitors. Ceramics International, 44(4), 3580-3584.
Sorg, T. J., Schock, M. R., & Lytle, D. A. (1999). Ion exchange softening: Effects on metal concentrations. Journal - American Water Works Association, 91(8), 85-97.
Tofighy, M. A., & Mohammadi, T. (2011). Permanent hard water softening using carbon nanotube sheets. Desalination, 268(1), 208-213.
Tuan, T. N., Chung, S., Lee, J. K., & Lee, J. (2015). Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide. Current Applied Physics, 15(11), 1397-1401.
Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., & Qiu, J. (2012). Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta, 69, 65-70.
Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., Zhong, H., Liang, J., & Ren, M. (2013). Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 195-196, 19-40.
Weingärtner, H., Franck, E, U., Wiegand, G., Dahmen, N., Schwedt, G., Frimmel, F, H., & Gordalla, B, C. (2000). Water Wiley-VCH Verlag GmbH & Co. KGaA.
Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: An alternative desalination solution. Desalination, 183(1), 327-340.
Wu, T., Wang, G., Dong, Q., Qian, B., Meng, Y., & Qiu, J. (2015). Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochimica Acta, 176(10), 426-433.
Wu, T., Wang, G., Zhan, F., Dong, Q., Ren, Q., Wang, J., & Qiu, J. (2016). Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Water Research, 93, 30-37.
Yang, J., Zou, L., & Choudhury, N. R. (2013). Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochimica Acta, 91, 11-19.
Yao, J., Yao, S., Gao, F., Duan, L., Niu, M., & Liu, J. (2018). Reduced graphene oxide/mn3O4 nanohybrid for high-rate pseduocapacitive electrodes. Journal of Colloid and Interface Science, 511(1), 434-439.
Yasin, A. S., Mohamed, H. O., Mohamed, I. M. A., Mousa, H. M., & Barakat, N. A. M. (2016). Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Separation and Purification Technology, 171, 34-43.
Yoon, H., Lee, J., Kim, S., & Yoon, J. (2017). Hybrid capacitive deionization with ag coated carbon composite electrode. Desalination, 422, 42-48.
Yu, T., Shiu, H., Lee, M., Chiueh, P., & Hou, C. (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53-60.
Zhang, D., Shi, L., Fang, J., Dai, K., & Li, X. (2006). Preparation and desalination performance of multiwall carbon nanotubes. Materials Chemistry and Physics, 97(2), 415-419.
Zhou, T., Chen, F., Kai, L., Hua, D., Qin, Z., Feng, J., & Fu, Q. (2011). A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology, 22(4), 045704-045709.
Zhou, T., Chen, F., Tang, C., Bai, H., Zhang, Q., Deng, H., & Fu, Q. (2011). The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Composites Science and Technology, 71(9), 1266-1270.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信