淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0509200520083300
中文論文名稱 Photo-Fenton相關程序氫氧自由基生成及分解染料之研究
英文論文名稱 Hydroxyl radicals generation and dye degradation by photo-Fenton related processes
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 游非庸
研究生英文姓名 Fei-Yung Yu
學號 888330031
學位類別 博士
語文別 中文
口試日期 2005-07-21
論文頁數 200頁
口試委員 指導教授-李奇旺
委員-王根樹
委員-康世芳
委員-徐錠基
委員-高思懷
委員-李奇旺
中文關鍵字 photo-Fenton  氫氧自由基  脫色  分解  礦化  硫酸根  硝酸根 
英文關鍵字 photo-Fenton  hydroxyl radical  discoloration  degradation  mineralization  sulfate  nitrate 
學科別分類
中文摘要 本研究針對photo-Fenton相關程序進行氫氧自由基(OH•)生成及分解染料之研究,反應水樣有純水及模擬染料廢水,模擬染料廢水包括Reactive Blue 19(RB19)、Eriochrome Black T(EBT)及Fast Green FCF(FGF)三種染料,反應在photo-Fenton程序反應器及Fenton程序反應器下進行。
比較photo-Fenton相關程序之OH•生成初始濃度及10分鐘的累積濃度依序為photo-Fenton> Fenton>H2O2/UV>Fenton-like程序,且Fenton程序約為photo-Fenton程序的61%及70%,意謂者Fenton程序OH•的發生量為photo-Fenton程序的關鍵。在FGF染料廢水,photo-Fenton相關程序脫色效率最高,其次為染料分解,最差為DOC去除,顯示photo-Fenton相關程序對於染料去除,只能達到氧化而無法達到礦化的程度;以染料分解反應速率常數比較效率順序為photo-Fenton>Fenton>H2O2/UV>Fenton-like。
Fenton程序處理RB19、EBT及FGF三種化學結構式相異的染料,不管是色度去除、染料分解及DOC去除效率及速率因為受到官能基影響,均為RB19>FGF>EBT。進行脫色反應時,由UV/vis及FTIR光譜顯示,OH•會先攻擊助色團官能基,此時最大吸收波長吸收度會下降或向短波長移動,及助色團、發色團官能基特性光譜吸收會消失,即此時染料上的官能基,被OH•取代氧化產生SO42-及NO3-,SO42-生成速率較NO3-生成速率快,但NO3-生成濃度較SO42-生成濃度高,且濃度大小為RB19>FGF>EBT。利用質量平衡推導RB19、EBT及FGF三種染料生成SO42-及NO3-模式時,僅有一個磺酸根官能基參與反應,但有二個可能生成NO3-官能基參與反應。
英文摘要 In this study, investigates the hydroxyl radicals (OH•) generation and dye degradation by photo-Fenton related processes. A synthetic dye wastewaters containing Reactive blue 19 (RB19), Eriochrome Black T (EBT) and Fast Green FCF (FGF). Experiments were conducted in a bath photoreactor and flasks.
As a results, the initial and accumulate of OH• concentration were in the order of photo-Fenton > Fenton > H2O2/UV > Fenton-like. The ratios of Fenton process was 61% and 70% of photo-Fenton. It was indicated the Fenton process was key process of the photo-Fenton. Treatment synthetic FGF dye wastewater by photo-Fenton related processes, the removal efficiencies were in the order of color > dye > dissolved organic carbon (DOC). An ineffective DOC removal signifies the photo-Fenton related processes involving mainly oxidation with little mineralization. The rate constants of dye degradation describe the efficiencies of photo-Fenton related processes were in the order of photo-Fenton > Fenton > H2O2/UV > Fenton-like.
The removal of color, dye and DOC by Fenton was investigated using the synthetic dye wastewaters containing RB19, FGF and EBT, in the order of RB19 > FGF > EBT. According to UV-vis and FTIR spectroscopic analysis, OH• reacts with auxochrome and chromophore. The absorption maximums centered shift to short wavelength or decrease and characteristic frequencies disappeared resulting in discoloration and release of SO42- and NO3-. Although the SO42- species appeared was faster than the appearance of the NO3- species, are lower than NO3- concentration. The concentrations of SO42- and NO3- generated are in the order of RB19 > FGF > EBT. A mathematic model was proposed to formulate the formation of SO42- and NO3- during dye degradation. Results indicated that one S-containing and two N-containing functional groups are involved in the oxidation reaction.
論文目次 目錄
符號說明……………………………………………………………... I
目錄…………………………………………………………………... II
圖目錄………………………………………………………………... V
表目錄……………………………………………………................... X
第一章前言…………………………………………..………………. 1
1.1 研究背景………………………………………....………… 1
1.2研究目的…………………………………………................. 4
第二章文獻回顧………………………………………..……………. 7
2.1 photo-Fenton相關程序原理..……………………………… 7
2.1.1 photo-Fenton程序原理……………………………… 7
2.1.2 Fenton程序原理…………………………………….. 10
2.1.3 H2O2/UV程序原理………………………………….. 16
2.2 photo-Fenton相關程序去除有機物的影響因子………….. 21
2.3氫氧自由基量測及計算模式…………………………….… 24
2.3.1氫氧自由基的量測………………………………….. 24
2.3.2氫氧自由基的計量模式…………………………….. 26
2.4 photo-Fenton相關程序分解染料………………………….. 28
2.4.1染料化學結構與光譜……………………………….. 28
2.4.2 Fenton程序分解染料……………………………….. 32
2.4.3 photo-Fenton程序分解染料………………………… 34
第三章 實驗材料設備與方法………………………....…………… 35
3.1實驗材料與設備…..……………………………................... 35
3.1.1純水及人工染料廢水………….…………………… 35
3.1.2反應器設備……...…………..…………….………… 39
3.1.3實驗藥品…………………………………………….. 42
3.2實驗方法…………………..………………………………... 45
3.2.1 photo-Fenton相關程序……………………………… 45
3.2.2 Fenton程序..……………..………….………………. 47
3.2.3實驗操作條件….………………….….…………….. 49
3.3 水質分析………….…………...………………..………….. 51
第四章photo-Fenton相關程序氫氧自由基生成…………………. 59
4.1 photo-Fenton相關程序氫氧自由基生成之比較………...... 59
4.1.1 photo-Fenton程序氫氧自由基的生成……………... 59
4.1.2 photo-Fenton相關程序BuCl分解速率之比較……. 62
4.1.3 photo-Fenton相關程序過氧化氫分解速率之比較... 66
4.1.4氫氧自由基生成之比較…………………………….. 72
4.2 photo-Fenton程序氫氧自由基生成的影響因子….………. 77
4.2.1 pH對氫氧自由基生成的影響……………………… 77
4.2.2 過氧化氫加藥量對氫氧自由基生成的影響……… 83
4.2.3 亞鐵加藥量對氫氧自由基生成的影響……………. 90
4.2.4 UV照光強度對氫氧自由基生成的影響…………... 96
4.3 Fenton程序氫氧自由基生成的影響因子………………….. 102
4.3.1氫氧自由基生成…………………………………….. 102
4.3.2 過氧化氫加藥量對氫氧自由基生成的影響………. 105
4.3.3 亞鐵加藥量對氫氧自由基生成的影響……………. 113
第五章photo-Fenton相關程序處理染料廢水.…............................. 120
5.1 photo-Fenton相關程序分解染料的比較………................... 120
5.1.1 photo-Fenton程序染料分解與脫色………………... 120
5.1.2染料脫色的比較…………………………………….. 126
5.1.3染料分解的比較…………………………………….. 128
5.1.4染料礦化的比較………………………………….… 130
5.2染料光譜的比較………………..…………………………... 133
5.2.1 UV/vis光譜的比較…………………………………. 133
5.2.2 FTIR光譜的比較…………………………………… 135
5.3操作參數對處理染料廢水的影響………………………….. 137
5.3.1過氧化氫加藥量的影響…………………………… 137
5.3.2亞鐵加藥量的影響………………………………….. 139
5.3.3 UV照光強度的影響………………………………... 141
第六章Fenton程序分解化學結構式相異之染料…………………. 146
6.1 Fenton程序分解染料………………………………………... 146
6.2 及 的生成變化………………………….152
6.3 光譜比較…………………………………………………….. 168
6.3.1 UV/vis光譜………………………………………….. 168
6.3.2 FTIR光譜…………………………………………… 175
第七章結論…………………………………………………………... 180
參考文獻……………………………………………………………. 183
自述………………………………………………………………….. 199
著作發表……………………………………………………………. 200





圖目錄
Fig. 1-1 The framework of the study……..……………….............. 6
Fig. 3-1 The chemical structure of Reactive Blue 19……………... 37
Fig. 3-2 The chemical structure of Eriochrome Black T…............... 37
Fig. 3-3 The chemical structure of Fast Green FCF…..………….... 38
Fig. 3-4 UV Reactor…….………………..………………………... 40
Fig. 3-5 The chromatograph of GC………………………………... 53
Fig. 3-6 The HPLC of FGF after Fenton oxidation………………... 56
Fig. 3-7 The UV/vis absorbance of RB19…………………………. 57
Fig. 3-8 The UV/vis absorbance of EBT…………………………... 57
Fig. 3-9 The UV/vis absorbance of FGF…………………………... 58
Fig. 4-1 Residual profiles of H2O2, Fe2+ and BuCl in pure water system……………………………………………………..
61
Fig. 4-2 The residual profiles of BuCl in pure water………............. 63
Fig. 4-3 Plot of BuCl vs time. Line is linear regression to the data points for t > 15s…………………………………..............
65
Fig. 4-4 The residual profiles of H2O2 in pure water……………… 68
Fig. 4-5 Relation between H2O2 and BuCl decompose……………. 69
Fig. 4-6 Plot of H2O2 vs time. Line is linear regression to the data points for t > 15s…………………………………………..
71
Fig. 4-7 The OH• produce in pure water (instantaneous)………… 73
Fig. 4-8 The accumulation of OH• produced in pure water............. 75
Fig. 4-9 The accumulation of OH• after 10- min in pure water…. 76
Fig. 4-10 The residual profiles of BuCl in pure water……………… 78
Fig. 4-11 The rate constants of BuCl degradation………………….. 79
Fig. 4-12 The produce of OH• during photo-Fenton process in pure water (instantaneous)………...............................................
81
Fig. 4-13 The accumulation of OH• produced in pure water……… 82
Fig. 4-14 The residual profiles of H2O2 in pure water ……………… 83
Fig. 4-15 The effect of hydrogen peroxide dosage on the BuCl residual during photo-Fenton in pure water……………….
84
Fig. 4-16 The produce of OH•during photo-Fenton process in pure water (instantaneous)……………………………………...
85
Fig. 4-17 The accumulation of OH• produced in pure water……... 86
Fig. 4-18 The profiles of d{[OH•]/d(H2O2)} during photo-Fenton process …………………………………………………….
88
Fig. 4-19 The effect of hydrogen peroxide dosage on the produce of OH• during photo-Fenton process in pure water………...
89
Fig. 4-20 The effect of ferrous dosage on the BuCl residual during photo-Fenton in pure water………………………………..
90
Fig. 4-21 The rate constants of BuCl degradation…………………... 91
Fig. 4-22 The produce of OH•during photo-Fenton process in pure water (instantaneous)……………………………………...
92
Fig. 4-23 The accumulation of OH• produced in pure water…….. 93
Fig. 4-24 The effect of ferrous dosage on the produce of OH• during photo-Fenton process in pure water……………….
95
Fig. 4-25 The effect of UV power on the BuCl residual during photo-Fenton in pure water………………………………..
96
Fig. 4-26 The rate constants of BuCl degradation………………….. 97
Fig. 4-27 The produce of OH•during photo-Fenton process in pure water (instantaneous)……………………………………...
98
Fig. 4-28 The accumulation of OH• produced in pure water…….. 99
Fig. 4-29 The effect of UV power on the produce of OH• during photo-Fenton process in pure water……………………….
101
Fig. 4-30 Residual profiles of H2O2, Fe2+ and BuCl in pure water system……………………………………………………..
103
Fig. 4-31 The OH• production in pure water system by Fenton process……………………………………………………..
104
Fig. 4-32 The effect of hydrogen peroxide dosage on the BuCl residual…………………………………………………….
105
Fig. 4-33 The rate constants of BuCl degradation…………………... 106
Fig. 4-34 The effect of hydrogen peroxide dosage on the H2O2 residual…………………………………………………….
108
Fig. 4-35 The profiles of d(BuCl)/d(H2O2) during Fenton process…. 109
Fig. 4-36 The produce of OH• during Fenton process in pure water (instantaneous)…………………………………………….
110
Fig. 4-37 The accumulation of OH• produced in pure water……… 111
Fig. 4-38 The effect of hydrogen peroxide dosage on the produce of OH• during Fenton process in pure water………………
112
Fig. 4-39 The effect of ferrous dosage on the BuCl residual……….. 113
Fig. 4-40 The rate constants of BuCl degradation………………….. 114
Fig. 4-41 The produce of OH• during Fenton process in pure water (instantaneous)…………………………………………….
115
Fig. 4-42 The accumulation of OH• produced in pure water…….. 116
Fig. 4-43 The effect of ferrous dosage on the produce of OH• during Fenton process in pure water………………………
118
Fig. 5-1 Residual profiles of color, dye, DOC and BuCl in photo-Fenton process……………………………………...
122
Fig. 5-2 Line is linear regression to the data points……………….. 123
Fig. 5-3 UV/vis spectra of FGF during the photo-Fenton, as the reaction proceeds………………………………………….
125
Fig.5-4 Residual profiles of color…………………………………. 127
Fig.5-5 Residual profiles of dye …………………………………. 129
Fig.5-6 Residual profiles of DOC ………………………………… 131
Fig.5-7 UV/vis spectra of FGF during the AOPs…………………. 134
Fig.5-8 IR spectrum of FGF during the AOPs…………………….. 136
Fig.5-9 The effect of hydrogen peroxide dosage on the dye degradation………………………………………………...
138
Fig.5-10 The effect of ferrous dosage on the dye degradation……... 140
Fig.5-11 The effect of UV powers on the dye degradation………… 142
Fig. 6-1 Residual profiles of color…………………………………. 148
Fig. 6-2 Residual profiles of dye…………………………………... 149
Fig. 6-3 Residual profiles of DOC………………………………… 150
Fig. 6-4 Variation of pH of the solution during the Fenton process with reaction time……………………...............................
153
Fig. 6-5 Generation of SO42- and NO3- versus reaction time during Fenton process…………………………………………….
155
Fig. 6-6 Change of SO42- and NO3- concentrations in the solution during the Fenton process…………………………………
157
Fig. 6-7 Relation between dye removed and experimental concentrations of sulfate (a) and nitrate (b)……………….
160
Fig. 6-8 (a) Difference between predicted and experimental concentrations of sulfate and (b) nitrate calculated using Eq (6-16) with factors of either 1, 2 or 3 of RB19………...

163
Fig. 6-9 (a) Difference between predicted and experimental concentrations of sulfate (f=1) and (b) nitrate (f=2) of dyes………………………………………………………..

165
Fig. 6-10 Difference between predicted and experimental concentrations of nitrate (f=2) calculated using Eq (6-17) of dyes……………………………………………………..

167
Fig. 6-11 The UV/vis absorbance for the oxidation time of 10 minutes……………………………………………………
172
Fig. 6-12 The percentage reduction of UV/vis absorbance for the oxidation time of 10 minutes……………………………...
174
Fig. 6-13 (1) FTIR spectrum of RB19 sample, (2) after 10 min Fenton reaction…………………………………………….
176
Fig. 6-14 (1) FTIR spectrum of EBT sample, (2) after 10 min Fenton reaction…………………………………………
177
Fig. 6-15 (1) FTIR spectrum of FGF sample, (2) after 10 min Fenton reaction…………………………………………...
178

表目錄
Table 2-1 Papers on OH•measurement…………………………...... 25
Table 3-1 The properties of the synthetic dye wastewaters ……........ 38
Table 3-2 The operational parameters of AOPs investigated in pure water systems......................................................................
49
Table 3-3 The operational parameters of AOPs investigated in wastewater systems.………………………………………
50
Table 3-4 The conditions set for residual BuCl analysis with a GC and FID detector…………………………………………..
52
Table 3-5 The conditions of GC integrator…..……………………… 52
Table 4-1 The first order rate constants of BuCl degradation………. 65
Table 4-2 Relation between H2O2 and BuCl decompose……………. 69
Table 4-3 The first order rate constants of H2O2 degradation………. 71
Table 5-1 Rate constants for discoloration ……………………….. 126
Table 5-2 Rate constants for reaction……………………………….. 132
Table 5-3 Experimental conditions for dye degradation……………. 144
Table 6-1 Rate constants of Fenton process………………………… 151







參考文獻 Aleboyeh A., Moussa Y. and Aleboyeh H. (2005) The Effect of Operational Parameters on UV/H2O2 Decolourisation of Acid Blue 74. Dyes Pigments 66, 129-134.
Al-Momani F., Touraud E., Degorce-Dumas J. R., Roussy J. and Thomas O. (2002) Biodegradability enhancement of textile dyes and textile wastewater by VUV Photolysis. J. Photoch. Photobio. A53, 191-197.
Andreozzi R., Caprio V., Insola A. and Marotta R. (2000) The Oxidation of Metol (N-Methyl-P-Aminophenol) in Aqueous Solution by UV/H2O2 Photolysis. Water Res. 34, 463-472.
APHA, AWWA, WEF,”Standard Methods for the Examination of Water and Wastewater.”, 19th Edition (1993)
Aplin R. and Waite T. D. (2000) Comparison of Three Advance Oxidation Processes for Degradation of Textile Dyes. Water Sci. Technol. 42, 345-354.
Arnold S. M., Hickey W. J. and Harris R. F. (1995) Degradation of Atrazine by Fenton’s Reagent: Condition Optimization and Product Quantification. Environ. Sci. Technol. 29, 2083-2089.
Arslan I. and Balcioglu I. A. (1999) Oxidative Treatment of Simulated Dyehouse Effluent by UV and Near-UV Light Assisted Fenton’s Reagent. Chemosphere 39, 2767-2783.
Arslan I., Balcioglu I. A., Tuhkanen T. and Bahnemann D (2000) H2O2/UV-C and Fe2+/H2O2/UV-C Versus TiO2/UV-A Treatment for Reactive Dye Wastewater. J. Environ. Eng. 903-911.
Azbar N., Yonar T. and Kestioglu K. (2004) Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal from a Polyester and Acetate Fiber Dyeing Effluent. Chemosphere 55, 35-43.
Balanosky E., Herrera F., Lopez A. and Kiwi J. (2000) Oxidate Degradation of Textile Waste Water Modeling Reactor Performance. Water Res. 34, 582-596.
Behnajady M. A., Modirshahla N. and Shokri M. (2004) Photodestruction of Acid Orange 7 (AO7) in Aqueous Solutions by UV/H2O2: Influence of Operational Parameters. Chemosphere 55, 129-134.
Beltran F. J., Gonzalez M. and Gonzalez J. F. (1997) Industrial Wastewater Advanced Oxidation. Part 1. UV Radiation in the Presence and Absence of Hydrogen Peroxide. Water Res. 31, 2405-2414.
Brand N., Mailhot G. and Bolte M. (2000) The Interaction “Light, Fe(III)” as a Tool for Pollutant Removal in Aqueous. Chemosphere 40, 395-401.
Casero I., Sicilia D., Rubio S. and Perez-Bendito D. (1997) Chemical Degradation of Aromatic Amines by Fenton’s Reagent. Water Res. 31, 1985-1995.
Cater S. R, Stefan M. I., Bolton J. R. and Safarzadeh-Amiri A. (2000) UV/H2O2 Treatment of Methyl-tert-Butyl Ether in Contaminated Waters. Environ. Sci. Technol. 34, 659-662.
Chamarro E., Marco A. and Esplugas S. (2001) Use of Fenton Reagent to Improve Organic Chemical Biodegradability. Water Res. 35, 1047-1051.
Chang J. S., Chou C., Lin Y. C., Lin P. J., Ho J. Y. and Hu T. L. (2001) Kinetic Characteristics of Bacterial Azo-Dye Decolorization by Pseudomonas Luteola. Water Res. 35, 2841-2850.
Chang P. B. L. and Young T. M. (2000) Kinetic of Methyl Tert-Butyl Ether Degradation and By-Product Formation During UV/Hydrogen Peroxide Water Treatment. Water Res. 34, 2233-2240.
Chen R. and Pignatello J. J. (1997) Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds. Environ. Sci. Technol. 31, 2399-2406.
Chu W. and Ma C. W. (1998) Reaction Kinetics of UV-Decolourization for Dye Materials. Chemosphere 37, 961-974.
Chu W. and Tsui S. M. (1999) Photo-Sensitization of Diazo Disperse Dye in Aqueous Acetone. Chemosphere 39, 1667-1677.
De Laat J. and Gallard H. (1999) Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling. Environ. Sci. Technol. 33 , 2726-2732.
De laat J., Gallard H., Ancelin S. and Legube B. (1999) Comparative Study of the Oxidation of Atrazine and Acetone by H2O2/UV, Fe (III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere 39, 2693-2706.
De Laat J., Le Truong G.. and Legube B. (2004) A Comparative Study of the Effects of Chloride, Sulfate and Nitrate Ions on the Rates of Decomposition of H2O2 and Organic Compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55, 715-723.
Deng N., Fang T. and Tian S. (1996) Photodegradation of Dyes in Aqueous Solutions Containing Fe(III)-Hydroxy Complex I. Photodegradation Kinetics. Chemosphere 33, 547-557.
Deng N., Wu F., Luo F. and Xiao M. (1998) Ferric Citrate-Induced Photodegradation of Dyes in Aqueous Solution. Chemosphere 36, 3101-3112.
Deng N., Luo F., Wu F., Xiao M. and Wu X. (2000) Discoloration of Aqueous Reactive Dye Solutions in the UV/Fe0 System. Water Res. 34, 2408-2411.
Dercova K., Vrana B., Tandlich R. and Subova L. (1999) Fenton’s Type Reaction and Chemical Pretreatment of PCBs. Chemosphere 39, 2621-2628.
Esplugas S., Gimenez J., Contreras S., Pascual E. and Rodriguez M. (2002) Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Res. 36, 1034-1042.
Feng J., Hu X. and Yue P. L. (2005) Discoloration and Mineralization of Orange II by Using a Bentonite Clay-Based Fe Nanocomposite Film as a Heterogeneous Photo-Fenton Catalyst. Water Res. 39, 89-96.
Fukushima M., Tatsumi K. and Morimoto K. (2000) The Fate of Aniline after a Photo-Fenton Reaction in an Aqueous System Containing Iron(III), Humic Acid, and Hydrogen Peroxide. Environ. Sci. Technol. 34, 2006-2013.
Gallard H., De Laat J. and Legube B. (1999) Spectrophotometric Study on the Formation of Iron (III)-Hydroperoxy Complexes in Homogeneous Aqueous Solutions Spectrophotometric Study on the Formation of Iron (III)-Hydroperoxy Complexes in Homogeneous Aqueous Solutions. Water Res. 33, 2929-2936.
Gallard H. and De Laat J. (2000) Kinetic Modelling of Fe(III)/H2O2 Oxidation Reactions in Dilute Aqueous Solution Using Atrazine as a Model Organic Compound. Water Res. 34, 3107-3116.
Gao R., Yuan Z., Ding H. and Liu F. (1998) Use of Deoxyribose as a Probe for the Determination of Rate Constants for Reactions of Hydroxyl Radicals on Mercury Electrodes. Bioelectrochemistry and Bioenergetics, 123-126.
Goi A. and Trapido M. (2002) Hydrogen peroxide photolysis, Fenton Reagent and Photo-Fenton for the Degradation of Nitrophenols: a Comparative Study. Chemosphere 46, 913-922.
Gulyas H. (1997) Processes for the Removal of Recalcitrant Organics from Industrial Wastewaters. Water Sci. Technol. 36, 9-16.
Haag W. R., Hoigne J. (1985) Photo-Sensitized Oxidation in Nature Water via OH• Radicals. Chemosphere 14, 1659-1671.
Herrera F., Kiwi J., Lopez A. and Nadochenko V. (1999) Photochemical Decoloration of Remazol Brilliant Blue and Uniblue A in the Presence of Fe+3 and H2O2. Environ. Sci. Technol. 33, 3145-3151.
Hsueh C. L., Huang Y. H., Wang C. C. and Chen C. Y. (2005) Degradation of Azo Dyes Using Low Iron Concentration of Fenton and Fenton-like System. Chemosphere 58, 1409-1414.
Huston P. L. and Pignatello J. J. (1999) Degradation of Select Pesticide Active Ingredients and Commerical Formulations in Water by the Photo-Assisted Fenton Reaction Degradation of Select Pesticide Active Ingredients and Commerical Formulations in Water by the Photo-Assisted Fenton Reaction. Water Res. 33, 1238-1246.
Ince N. H. and Gonenc D. T. (1997) Treatability of a Textile Azo Dye by UV/H2O2. Environ. Technol. 118, 179-185.
Inmaculada C., Dolores S., Soledad R. and Dolores P. B. (1997) Chemical Degradation of Aromatic Amines by Fenton’s Reagent. Water Res. 31, 1985-1995.
Javier Benitez F., Beltran-Heredia J., Acero J. L. and Javier Rubio F. (2000) Contribution of Free Radical to Chlorophenols Decomposition by Several Advanced Oxidation Processes. Chemosphere 41, 1271-1277.
Javier Benitez F., Acero J. L. and Real F. J. (2002) Degradation of Carbofuran by Using Ozone, UV Radiation and Advanced Oxidation Processes. J. Hazard. Mater. 89, 51-65.
Kang J. W. and Lee K. H. (1997) A Kinetic Model of the Hydrogen Peroxide/UV Process for the Treatment of Hazardous Waste Chemical. Environ. Eng. Sci. 114, 183-192.
Kang S. F., Hsu S. C. and Chang H. M. (1997) Coagulation of Textile Secondary Effluents with Fenton’s Reagent. Water Sci. Technol. 36, 215-222.
Kang S. F., Liao C. H. and Hung H. P. (1999a) Peroxidation Treatment of Dye Manufacturing Wastewater in the presence of Ultraviolet Light and Ferrous Ions. J. Hazard. Mater. 65, 317-333.
Kang S. F., Wang T. H. and Lin Y. H. (1999b) Decolorization and Degradation of 2, 4-Dinitrophenol by Fenton’s Reagent. J. Environ. Sci. Heal. A34, 935-950.
Kang S. F., Liao C. H. and Po S. T. (2000) Decolorization of Textile Wastewater by Photo-Fenton Oxidation Technology. Chemosphere 41, 1287-1294.
Kang S. F., Liao C. H. and Chen M. C. (2002) Preoxidation and Coagulation of Textile Wastewater by Fenton Process. Chemosphere 46, 923-928.
Kang Y. W., Cho M. J. and Hwang K. Y. (1999) Correction of Hydrogen Peroxide Interference on Standard Chemical Oxygen Demand Test Correction of Hydrogen Peroxide Interference on Standard Chemical Oxygen Demand Test. Water Res. 33, 1247-1251.
Kang Y. W. and Hwang K. Y. (2000) Effects of Reaction Conditions on The Oxidation Efficiency in the Fenton Process. Water Res. 34, 2876-2790.
Kavitha V. and Palanivelu K. (2005) Degradation of Nitrophenols by Fenton and Photo-Fenton Processes. J. Photoch. Photobio. A170, 83-95.
Kavitha V. and Palanivelu K. (2004) The Role of Ferrous Ion in Fenton and Photo-Fenton Processes for the Degradation of Phenol. Chemosphere 55, 1235-1243.
Kim T. H., Park C., Yang J. and Kim S. (2004) Comparison of Disperse and Reactive Dye Removals by Chemical Coagulation and Fenton Oxidation. J. Hazard. Mater. 112, 95-103.
Koch M., Yediler A., Lienert D., Insel G. and Kettrup A. (2002) Ozonation of Hydrolyzed Azo Dye Reactive Yellow 84 (CI). Chemosphere 46, 109-113.
Kolthoff, I. M. and A. I. Medalla (1949) The Reaction Between Ferrous Iron and Peroxides I. Reaction with Hydrogen Peroxide in the Absence of Oxygen. J. Amer. Chem. Soc. 71, 3777.
Kong S. H., Watts R. J. and Choi J. H. (1998) Treatment of Petroleum-Contaminated Soils Using Iron Mineral Catalyzed Hydrogen Peroxide. Chemosphere 37, 1473-1482.
Koyama O., Kamagata Y. and Nakamura k. (1994) Degradation of Chlorinated Aromatics by Fenton Oxidation and Methanogenic Digester Sludge. Water Res. 28, 895-899
Krutzler T. and Bauer R. (1999) Optimization of a Photo-Fenton Prototype Reactor. Chemosphere 38, 2517-2532.
Kuo C. Y. and Lo S. L. (1999) Oxidation of Aqueous Chlorobiphenyls with Photo-Fenton Process. Chemosphere 38, 2041-2051.
Kuo W. G. (1992) Decolorizing Dye Wastewater with Fenton’s Reagent. Water Res. 26, 881-886.
Lee C. and Yoon J. (2004) Temperature Dependence of Hydroxyl Radical Formation in the hν/Fe3+/H2O2 and Fe3+/H2O2 System. Chemosphere 56, 923-934.
Li Z. M., Shea P. J. and Comfort S. D (1998) Nitrotpluene Destruction by UV-Catalyzed Fenton Oxidation. Chemosphere 36, 1849-1865.
Liao C. H. and Gurol M. D. (1995) Chemical Oxidation by Photolytic Decomposition of Hydrogen Peroxide. Environ. Sci. Technol. 29, 3007-3014.
Liao C. H., Kang S. F. and Hung H. P. (1999) Simultaneous Removals of COD and Color from Dye Manufacturing Process Wastewater Using Photo-Fenton Oxidation Process. J. Environ. Sci. Heal. A34, 989-1010.
Liao C. H., Kang S. F. and Wu F. A. (2001) Hydroxyl Radical Scavenging Role of Chloride and Carbonate Ions in the H2O2/UV Process. Chemosphere 44, 1193-1200.
Lin S. H. and Lai C. L. (2000) Kinetic Characteristics of Textile Wastewater Ozonation in Fluidized and Fixed Activated Carbon Beds. Water Res. 34, 763-772.
Lin S. H., Lin C. M. and Leu H. G. (1999) Operating Characteristics and Kinetic Studies of Surfactant Wastewater Treatment by Fenton Oxidation. Water Res. 33, 1735-1741.
Lin S. H. and Lo C. C. (1997) Fenton Process for Treatment of Desizing Wastewater. Water Res. 31, 2050-2056.
Lin S. S. and Gurol M. D. (1998) Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environ. Sci. Technol. 32, 1417-1423.
Lindsey M. E. and Tarr M. A. (2000a) Inhibited Hydroxyl Radical Degradation of Aromatic Hydrocarbons in the Presence of Dissolved Fulvic acid. Water Res. 34, 2385-2389.
Lindsey M. E. and Tarr M. A. (2000b) Quantitation of hydroxyl Radical During Fenton Oxidation Following a Single Addition of Iron and Peroxide. Chemosphere 41, 409-417.
Liu R. and Tang H. (2000) Oxidative Decolorization of Direct Light Red F3B Dye at Natural Manganese Mineral Surface. Water Res. 34, 4029-4035.
Lloyd R. V., Hanna P. M. and Mason R. P. (1997) The Origin of the Hydroxyl Radical Oxxygen in the Fenton Reaction. Free Radical Biology & Medicine 22, 885-888.
Lopez A., Bozzi A., Mascolo G. and Kiwi J. (2003) Kinetic Investigation on UV and UV/H2O2 Degradations of Pharmaceutical Intermediates in Aqueous Solution. J. Photoch. Photobio A156, 121-126.
Lu M. C., Chen J. N. and Chang C. P. (1997) Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide with Fenton’s Reagent. Chemosphere 35, 2285-2293.
Lucking F., Koser H., Jank M. and Ritter A. (1998) Iron Powder, Graphite and Activated Carbon as Catalysts for the Oxidation of 4-chlorophenol with Hydrogen Peroxide in Aqueous Solution. Water Res. 32, 2607-2614.
Lunar L., Sicilia D., Rubio S., Perez-Bendito D. and Nickel U. (2000) Degradation of Photographic Developers by Fenton’s Reagent: Condition Optimization and Kinetics for Metol Oxidation. Water Res. 34, 1791-1802.
Mccallum J. E. B., Madison S. A., Alkan S., Depinto R. L. and Rojas Wahl R. U. (2000) Analytical Studies on the Oxidative Degradation of the Reactive Textile Dye Uniblue A. Environ. Sci. Technol. 34, 5157-5164.
Mcginnis B. D. Adams V. D. and Middlebrooks E. J. (2000) Degradation of Ethylene Glycol in Photo Fenton Systems. Water Res. 34, 2346-2354.
Meric S., Kaptan D. and Olemz T. (2004) Color and COD Removal from Wastewater Containing Reactive Black 5 Using Fenton’s Oxidation Process. Chemosphere 54, 435-441.
Miller C. M. and Valentine R. L. (1999) Mechanistic Studies of Surface Catalyzed H2O2 Decomposition and Contaminant Degradation in the Pressence of Sand. Water Res. 33, 2805-2816.
Mohey El-Dein A., Libra J. A. and Wiesmann U. (2003) Mechanism and Kinetic Model for the Decolorization of the Azo Dye Reactive Black 5 by the Hydrogen Peroxide and UV radiation. Chemosphere 52, 1069-1077.
Muruganandham M. and Swaminathan M. (2004) Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton Oxidation Technology. Dyes Pigments 63, 315-321.
Nam S., Renganathan V. and Tratnyek P. G. (2001) Substituent Effects on Azo Dye Oxidation by the FeIII- EDTA- H2O2 System. Chemosphere 45, 59-65
Neamtu M., Siminiceanu I. and Kettrup A. (2000) Kinetics of Nitromusk Compounds Degradation in Water by Ultraviolet Radiation and Hydrogen Peroxide. Chemosphere 40, 1407-1410.
Neamtu M., Siminiceanu I., Yediler A. and Kettrup A. (2002) Kinetics of Decolorization and Mineralization of Reactive Azo Dyes in Aqueous Solution by the UV/H2O2 Oxidation. Dyes Pigments 53, 93-99.
Neamtu M., Yediler A., Siminiceanu I., Macoveanu M. and Kettrup A. (2004) Decolorization of Disperse Red 354 Azo Dye in Water by Several Oxidation Processes-a comparative study. Dyes Pigments 60, 61-68.
Oliveros E., Legrini O., Hohl M., Muller T. and Braun A. M. (1997) Industrial Waste Water Treatment: Large Scale Development of a Light- Enhanced Fenton Reaction. Chem. Eng. Process. 397-405.
Park T. R., Lee K. H., Jung E. J. and Kim C. W. (1999) Removal of Refractory Organics and Color in Pigment Wastewater with Fenton Oxidation. Water Sci. Technol. 39, 189-192.
Perez M., Torrades F., Domenech X. and Peral J. (2002) Fenton and Photo-Fenton Oxidation of Textile Effluents. Water Res. 36, 2703-2710.
Pignatello J. J. and Sun Y. (1995) Complete Oxidation of Metolachlor and Methyl Parathion in Water by the Photoassisted Fenton Reaction. Water Res. 29, 1837-1844.
Pupo Nogueira R. F. and Guimaraes J. R. (2000) Photodegradation of Dichloroacetic Acid and 2, 4-Dichlorophenol by Ferrioxalate/H2O2 System. Water Res. 34, 895-901.
Rodriguez M., Sarria V., Esplugas S. and Pulgarin C. (2002) Photo-Fenton Treatment of a Biorecalcitrant Wastewater Generated in Textile Activities: Biodegradability of the Photo-Treated Solution. J. Photoch. Photobio A51, 129-135.
Safarzadeh-Amiri A., Bolton J. R. and Cater S. R. (1997) Ferrioxalate- mediated Photodegradation of Organic Pollutants in Contaminated Water. Water Res. 31, 787-798.
Shen Y. S. and Wang D. K. (2002) Development of Photoreactor Design Equation for the Treatment of Dye Wastewater by UV/H2O2 Process. J. Hazard. Mater. 89, 267-277.
Shu H. Y. and Chang M. C. (2005) Decolorization Effect of six Azo Dyes by O3, UV/O3 and UV/H2O2 Processes. Dyes Pigments 65, 25-31.
Slokar Y. M. and Majcen-Le Marechal A. (1998) Methods of Decoloration of Textile Wastewater. Dyes Pigments 37, 335-356.
Solozhenko E. G., Soboleva N. M. and Goncharuk V. V. (1995) Decolourization of Azodye Solutions by Fenton’s Oxidation. Water Res. 29, 2206-2210.
Spanggord R. J., Yao D. and Mill T. (2000) Kinetics of Aminodintrotoluene Oxidations with Ozone and Hydroxyl Radical. Environ. Sci. Technol. 34, 450-454.
Stefan M. I. and Bolton J. R. (1999) Reinvestigation of the Acetone Degradation Mechanism in Dilute Aqueous Solution by the UV/H2O2 Process. Environ. Sci. Technol. 33, 870-873.
Stefan M. I., Mack J. and Bolton J. R. (2000) Degradation Pathways Durings the Treatment of Methyl-tert-Butyl Ether by the UV/H2O2 Process. Environ. Sci. Technol. 34, 650-658.
Sun Y. and Pignayello J. J. (1993) Photochemical Reactions Involved in the Total Mineralization of 2, 4-D by Fe3+/H2O2/UV. Environ. Sci. Technol. 27, 304-310.
Swaminathan K., Sandhya A., Carmalin Sophia A., Pachhade K. and Subrahmanyam Y. V. (2003) Decolorization and Degradation of H-acid and Other Dyes Using Ferrous-Hydrogen Peroxide System. Chemosphere 50, 619-625.
Tang W. Z. and Chen R. Z. (1996) Decolorization Kinetics and Mechanisms of Commerical Dyes by H2O2/Iron Powder System. Chemosphere 32, 947-958.
Tang W. Z. and Huang C. P. (1996) 2, 4-Dichlorophenol Oxidation Kinetics by Fenton’s Reagent. Environ. Technol. 117, 97-105.
Vaughan P. P. and Blough N. V. (1998) Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters. Environ. Sci. Technol. 32, 2947-2953.
Vel Leitner N. K. and Dore M. (1997) Mechanism of the Reaction between Hydroxyl Radicals and Glycolic, Glyoxylic, Acetic and Oxalic Acids in Aqueous Solution: Consequence on Hydrogen Peroxide Consumption in the H2O2/UV and O3/H2O2 System. Water Res. 31, 1383-1397.
Walling C. and Kato S. (1971) The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper Ion. J. Amer. Chem. Soc. 93, 4275-4281.
Walling C. and Goosen A. (1973) Mechanism of the Ferric Ion Catalyzed Decomposition of Hydrogen Peroxide. Effect of Organic Substrates. J. Amer. Chem. Soc. 95, 2987-2991.
Wang T. H., Kang S. F. and Lin Y. H. (1999) Comparison Among Fenton- Related Process to Removal 2, 4-Dinitrophenol. J. Environ. Sci. Heal. A34, 1267-1281.
Watts R. J., Bottenberg B. C., Hess T. F., Jensen M. D. and Teel A. L. (1999) Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton’s Reactions. Environ. Sci. Technol. 33, 3432-3437.
Wu F., Deng N. and Zuo Y. (1999) Discoloration of Dye Solutions Induced by Solar Photolysis of Ferrioxalate in Aqueous Solutions. Chemosphere 39, 2079-2085.
Wu F. and Deng N. (2000) Photochemistry of Hydrolytic Iron(III) Spcies and Photoinduced Degradation of Organic Compounds. A Minireview. Chemosphere 41, 1137-1147.
Wu F., Deng N. and Hua H. (2000) Degradation Mechanism of Azo Dye C. I. Reactive Red 2 by Iron Powder Reduction and Photooxidation in Aqueous Solutions. Chemosphere 41, 1233-1238.
Xiong Y., Strunk P. J., Xia H., Zhu X. and Karlsson H. T. (2001) Treatment of Dye Wastewater Containing Acid Orange II Using a Cell with Three-Phase Three-Dimensional Electrode. Water Res. 35, 4226-4230.
Xu Y. (2001) Comparative Studies of the Fe3+/2+-UV,H2O2-UV,TiO2-UV/vis Systems for the Decolorization of a Textile Dye X-3B in Water. Chemosphere 43, 1103-1107.
Yang M., Hu J. and Ito K. (1998) Characteristics of Fe+2/H2O2/UV Oxidation Process. Environ. Technol. 119, 183-191.
Yoshida M., Lee B. D. and Hosomi M. (2000) Decomposition of Aqueous Tetrachloroethylene by Fenton Oxidation Treatment. Water Sci. Technol. 42, 203-208.
Yu G., Zhu W. and Yang Z. (1998) Pretreatment and Biodegradability Enhancement of Dsd Acid Manufacturing Wastewater. Chemosphere 37, 487-494.
Zhang H. and Bartlett R. J. (2000) Light-Induced Disappearance of Nitrite in the Presence of Iron (III). Chemosphere 40, 411-418.
Zhu W., Yang Z. and Wang L. (1996) Application of Ferrous-Hydrogen Peroxide for the Treatment of H-Acid Manufacturing Process Wastewater. Water Res. 30, 2949-2954.
Zhu W., Yang Z. and Wang L. (2001) Application of Ferrous Hydrogen Peroxide for Treatment of Dsd-Acid Manufacturing Process Wastewater. Water Res. 35, 2087-2091.
Zoh K. D. and Stenstrom M. K. (2002) Fenton Oxidation of Hexahydro- 1, 3, 5-Trinitro-1, 3, 5-Triazine(RDX) and Octahydro-1, 3, 5, 7- tetranitro-1, 3, 5, 7- Tetrazocine (HMX). Water Res. 36, 1331-1341.
蔡奇峰,”工業化學”,大中國圖書公司,第11篇,1981
柯以侃,”儀器分析”,文京書局,1997
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-09-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-09-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信