§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0508201914271800
DOI 10.6846/TKU.2019.00134
論文名稱(中文) 改變配方組成製備碳化矽薄膜及在薄膜乳化之應用
論文名稱(英文) Manufacturing silicon carbide membrane by different formula compositions and its application in membrane emulsification
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 蔡昇釗
研究生(英文) Sheng-Chao Tsai
學號 606400199
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-07-15
論文頁數 105頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 童國倫(kltung@ntu.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw)
關鍵字(中) 碳化矽
無機膜
薄膜乳化
液滴尺寸
關鍵字(英) Silicon carbide
inorganic membrane
membrane emulsification
droplet size
第三語言關鍵字
學科別分類
中文摘要
本研究使用燒結法製備多孔性碳化矽薄膜應用於薄膜乳化,探討不同比例之黏著劑、助燒結劑和成孔劑對於薄膜性質之影響,進而控制薄膜的孔徑與其分布,並探討不同操作條件下對於薄膜乳化之成果。
實驗使用單軸壓錠成型與高溫爐進行燒結成膜,分析不同製膜條件對於薄膜微結構、膜機械強度、孔洞尺寸分布、孔隙度與晶相成份之影響。在薄膜乳化實驗部分,經由分析液滴尺寸、Span Value與分散相通量,探討不同製膜條件與操作條件對薄膜乳化成果之影響。最後進行薄膜清洗確認薄膜重複利用的可能性。
研究結果顯示,當黏著劑添加量變多,造成Span Value增加 23%,但會使孔隙率下降。當助燒結劑添加量變多,造成薄膜提升49%的機械強度且縮小59%的乳化液滴尺寸,但會使孔隙率下降。當成孔劑添加量變多,造成提升60%的分散相通量,但會使薄膜表面出現大孔洞使Span Value上升。操作條件在透膜壓差80 kPa,使用SDS當作界面活性劑以及低分散相黏度時,能夠有最佳乳化結果。而使用0.2 wt%的Derquim LM 03清潔劑水溶液以250kPa逆洗後,回復率高達近89%,是有效的清潔方法。
英文摘要
In this study, SiC-base inorganic membranes were fabricated via uniaxial pressing, followed by sintering at 1350℃. The effects of adhesive, sintering aid and pore former additions on the membrane properties were thoroughly investigated. Accordingly, membrane pore size and pore size distribution were controlled through adjusting additive amounts. The membranes were further evaluated with regards to their structural properties, pore characteristics and cleaning was used to confirm the possibility of reusing in the membrane emulsification.
The results show that with the increase of adhesive additive amounts, Span value increased by 23%, while its porosity decreased. Additionally, membrane mechanical strength was enhanced by 49% under higher sintering aid concentrations, accompanied by the reduction of membrane porosity and oil droplet size by 59%. When the concentration of pore former was increased, although the dispersed phase flux increase by 60%, but it caused the broad of oil droplet size distributed, and larger pores appeared on the membrane surface. In this study, the optimum emulsification performance was obtained under the transmembrane pressure of 80 kPa and a lower dispersion phase viscosity with the use of SDS as a surfactant. High flux recovery rate of 89% was obtained after backwash cleaning with 0.2 wt% of Derquim LM 03 aqueous solution, verifying the effectiveness of this cleaning method.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	VIII
第一章 緒論	1
1-1 前言	1
1-2 薄膜乳化背景	4
1-3 薄膜乳化的近期應用	8
1-4 應用於薄膜乳化的薄膜材料	10
1-5 研究動機與目的	12
第二章 文獻回顧	13
2-1 無機薄膜的製備	14
2-2 多孔碳化矽薄膜製備	16
2-3 黏著劑與助燒結劑的選用	18
2-4 薄膜乳化的操作模式	21
2-5 影響乳化液滴尺寸的操作參數	23
2-6 薄膜清潔效率	26
第三章  實驗材料、裝置與方法	27
3-1	碳化矽薄膜製備	27
3-1-1	實驗藥品	27
3-1-2	實驗設備	28
3-1-3	薄膜燒結程序	30
3-1-4	薄膜製備程序	30
3-1-5	薄膜編號	32
3-1-6	薄膜性質檢測	32
3-2	薄膜乳化實驗	36
3-2-1	實驗藥品	36
3-2-2	實驗裝置	38
3-2-3	實驗方法	39
3-2-4	檢測儀器與分析方法	40
3-3	薄膜清洗實驗	43
3-3-1	實驗藥品、儀器	43
3-3-2	實驗裝置	43
3-3-3	實驗方法	44
第四章  結果與討論	45
4-1	改變黏著劑添加量對於薄膜乳化之結果探討	46
4-1-1	薄膜結構分析	46
4-1-2	薄膜孔隙分析	50
4-1-3	薄膜晶相分析	53
4-1-4	薄膜機械強度分析	55
4-1-5	薄膜乳化結果探討	57
4-2	改變助燒結劑添加量對於薄膜乳化之結果探討	59
4-2-1	薄膜結構分析	59
4-2-2	薄膜孔隙分析	63
4-2-3	薄膜晶相與機械強度分析	65
4-2-4	薄膜乳化結果探討	68
4-3	改變成孔劑添加量對於薄膜乳化之結果探討	70
4-3-1	薄膜結構分析	70
4-3-2	薄膜孔隙與機械強度分析	74
4-3-3	薄膜乳化結果探討	76
4-4	改變透膜壓差對於薄膜乳化之結果探討	78
4-5	改變界面活性劑濃度對於薄膜乳化之結果探討	81
4-6	改變不同界面活性劑種類對於薄膜乳化之結果探討	84
4-7	改變不同連續相黏度對於薄膜乳化之結果討論	86
4-8	薄膜清洗與通量回復	89
第六章 結論	91
參考文獻	94

圖目錄
Fig. 1-1 三種傳統乳化裝置示意圖	3
Fig. 1-2 薄膜乳化液滴的形成與受力分析示意圖[6]	6
Fig. 1-3 各種影響薄膜乳化的參數[4]	6
Fig. 1-4 每年發表薄膜乳化的專利量[4]	7
Fig. 1-5 薄膜乳化技術的發展階段[6]	7
Fig. 2-1 直接薄膜乳化(A)與預混合薄膜乳化(B)[6]	22
Fig. 2-2 動態薄膜乳化模式(A)與靜態薄膜乳化模式(B)[47]	22
Fig. 2-3 不同種清潔條件水通量之回復率[58]	26
Fig. 3-1 薄膜燒結溫度曲線	30
Fig. 3-2 三點負荷示作用示意圖	34
Fig. 3-3 薄膜乳化實驗裝置示意圖	38
Fig. 3-4 薄膜清洗實驗裝置示意圖	43
Fig. 4-1 碳化矽薄膜示意圖	45
Fig. 4-2 破裂薄膜示意圖	46
Fig. 4-3不同黏著劑添加量其表面SEM圖	48
Fig. 4-4不同黏著劑添加量之孔徑分布	49
Fig. 4-5 不同黏著劑添加量對於薄膜孔隙率度	52
Fig. 4-6 不同黏著劑添加量與薄膜燒結前後密度比較	52
Fig. 4-7 不同黏著劑添加量與X光繞射分析圖譜	54
Fig. 4-8 不同黏著劑添加量之機械強度比較	56
Fig. 4-9 不同黏著劑添加量對於乳化液滴尺寸與Span Value	58
Fig. 4-10 不同黏著劑添加量對於分散相通量	58
Fig. 4-11 不同助燒結劑添加量其表面(左)與截面(右)之SEM影像	60
Fig. 4-12 不同助燒結劑添加量其截面放大5000倍SEM影像	61
Fig. 4-13 不同助燒結劑添加量之孔徑分布	62
Fig. 4-14 不同助燒結劑添加量對於薄膜孔隙度	64
Fig. 4-15 不同助燒結劑添加量與薄膜燒結前後密度比較	64
Fig, 4-16 不同助燒結劑添加量與X光繞射分析圖譜	66
Fig. 4-17 不同助燒結劑添加量之機械強度比較	67
Fig, 4-18 不同助燒結劑添加量對於乳化液滴尺寸與Span Value	69
Fig. 4-19 不同助燒結劑添加量對於分散相通量	69
Fig. 4-20 不同成孔劑添加量表面500倍(左)1000倍(右)SEM圖	71
Fig. 4-21 不同成孔劑添加量其截面之1000倍SEM圖	72
Fig. 4-22 不同成孔劑添加量之孔徑分布	73
Fig. 4-23 不同成孔劑添加量之薄膜孔隙度比較	75
Fig. 4-24 不同成孔劑添加量之機械強度比較	75
Fig. 4-25 不同成孔劑添加量對於乳化液滴尺寸與Span Value	77
Fig. 4-26 不同成孔劑添加量對於分散相通量	77
Fig. 4-27 改變透膜壓差對於薄膜乳化之影響	80
Fig. 4-29 0.001 wt%SDS水溶液乳化結果	82
Fig. 4-28 改變界面活性劑濃度對於薄膜乳化之影響	83
Fig. 4-30 高濃度界面活性劑在不同透膜壓差之薄膜乳化結果	83
Fig. 4-31 改變不同界面活性劑種類對於薄膜乳化之影響	85
Fig. 4-33 PEG於分散相中溶解實驗實際影像	87
Fig. 4-34 添加PEG對於薄膜乳化之影響示意圖	87
Fig. 4-32 改變不同連續相黏度對於薄膜乳化之影響	88
Fig. 4-36 薄膜乳化實驗前(A)後(B)表面放大1000倍影像	90
Fig. 4-35 重複乳化對於薄膜乳化之結果	90

表目錄
Table 1-1 不同乳化方式其結果整理表[4]	3
Table 2-1常見的基材及其物化性質[41]	20
Table 2-2常使用的黏著劑[41]	20
Table 3-1 碳化矽薄膜所有製備條件	32
Table 3-2 大豆油相特性分析	36
Table 4-1 不同黏著劑添加量之孔徑大小	48
Table 4-2 薄膜厚度表(M0410, M0710, M1010)	56
Table 4-3 不同助燒結劑添加量之孔徑大小	61
Table 4-4薄膜厚度表(M0705, M0710, M0715)	67
Table 4-5 不同成孔劑添加量之孔徑大小	72
Table 4-6 薄膜厚度表(M0710, M0710-02, M0710-05)	74
Table 4-7 不同界面活性劑其表面張力	85
參考文獻
[1]	W. Liu, X.-L. Yang, W.S. Winston Ho, Preparation of Uniform-Sized Multiple Emulsions and Micro/Nano Particulates for Drug Delivery by Membrane Emulsification, Journal of Pharmaceutical Sciences, 100 (2011), 75-93.
[2]	A.J. Gijsbertsen-Abrahamse, A. van der Padt, R.M. Boom, Status of cross-flow membrane emulsification and outlook for industrial application, Journal of Membrane Science, 230 (2004), 149-159.
[3]	C. Charcosset, Preparation of emulsions and particles by membrane emulsification for the food processing industry, Journal of Food Engineering, 92 (2009), 241-249.
[4]	E. Piacentini, L. Giorno, A. Figoli, E. Drioli, Membrane Emulsification Advances and Perspectives, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017.
[5]	L. Giorno, G.D. Luca, A. Figoli, E. Piacentini, E. Drioli, Membrane Emulsification: Principles and Applications, Membrane Operations, Membrane Operations: Innovative Separations and Transformations, 2009.
[6]	E. Piacentini, E. Drioli, L. Giorno, Membrane emulsification technology: Twenty-five years of inventions and research through patent survey, Journal of Membrane Science, 468 (2014), 410-422.
[7]	T. Nakashima, M. Shimizu, M. Kukizaki, Particle control of emulsion by membrane emulsification and its applications, Advanced Drug Delivery Reviews, 45 (2000), 47-56.
[8]	S. Higashi, N. Tabata, K.-H. Kondo, Y. Maeda, M. Shimizu, T. Nakashima, T. Setoguchi, Size of Lipid Microdroplets Effects Results of Hepatic Arterial Chemotherapy with an Anticancer Agent in Water-in-Oil-in-Water Emulsion to Hepatocellular Carcinoma, Journal of Pharmacology and Experimental Therapeutics, 289 (1999), 816-819.
[9]	Y. Zhang, W. Wei, P. Lv, L. Wang, G. Ma, Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin, European Journal of Pharmaceutics and Biopharmaceutics, 77 (2011), 11-19.
[10]	T. Ma, L. Wang, T. Yang, G. Ma, S. Wang, Homogeneous PLGA-lipid nanoparticle as a promising oral vaccine delivery system for ovalbumin, Asian Journal of Pharmaceutical Sciences, 9 (2014), 129-136.
[11]	J. Han, Z. Hou, Y. Wang, G. Xiong, Synthesis and Evaluation of Hydroxycamptothecin-encapsulated Chitosan Nanospheres for the Treatment of Liver Cancer, 14 (2014), 111-117.
[12]	L. Pan, J. Zhou, F. Ju, H. Zhu, Intranasal delivery of α-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification, Drug Delivery and Translational Research, 8 (2018), 83-96.
[13]	X. Fu, S. Ohta, M. Kamihira, Y. Sakai, T. Ito, Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique, Langmuir, 35 (2019), 4094-4100.
[14]	R. Berendsen, C. Güell, O. Henry, M. Ferrando, Premix membrane emulsification to produce oil-in-water emulsions stabilized with various interfacial structures of whey protein and carboxymethyl cellulose, Food Hydrocolloids, 38 (2014), 1-10.
[15]	M. Matos, G. Gutiérrez, O. Iglesias, J. Coca, C. Pazos, Characterization, stability and rheology of highly concentrated monodisperse emulsions containing lutein, Food Hydrocolloids, 49 (2015), 156-163.
[16]	K. Suzuki, I. Fujiki, Y. Hagura, Preparation of Corn Oil/Water and Water/Corn Oil Emulsions Using PTFE Membranes, Food Science and Technology International, Tokyo, 4 (1998), 164-167.
[17]	S. Gehrmann, H. Bunjes, Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification, European Journal of Pharmaceutics and Biopharmaceutics, 126 (2018), 140-148.
[18]	V. Schröder, H. Schubert, Production of emulsions using microporous, ceramic membranes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152 (1999), 103-109.
[19]	J. Jiang, J. Liu, C. Liu, G. Zhang, X. Gong, J. Liu, Roles of oleic acid during micropore dispersing preparation of nano-calcium carbonate particles, Applied Surface Science, 257 (2011), 7047-7053.
[20]	J. Zhu, D. Barrow, Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes, Journal of Membrane Science, 261 (2005), 136-144.
[21]	V. Schadler, E.J. Windhab, Continuous membrane emulsification by using a membrane system with controlled pore distance, Desalination, 189 (2006), 130-135.
[22]	M. Matos, M.A. Suárez, G. Gutiérrez, J. Coca, C. Pazos, Emulsification with microfiltration ceramic membranes: A different approach to droplet formation mechanism, Journal of Membrane Science, 444 (2013), 345-358.
[23]	M. Issaoui, L. Limousy, Low-cost ceramic membranes: Synthesis, classifications, and applications, Comptes Rendus Chimie, 22 (2019), 175-187.
[24]	M.C. Fraga, S. Sanches, J.G. Crespo, V.J. Pereira, Assessment of a New Silicon Carbide Tubular Honeycomb Membrane for Treatment of Olive Mill Wastewaters, Membranes, 7 (2017), 1-16.
[25]	C.F. Yang, H.P. Hsu, C.W. Lan, A rapid thermal process for silicon recycle and refining from cutting kerf-loss slurry waste, Separation and Purification Technology, 149 (2015), 38-46.
[26]	Y. Zhang, Y. Hu, H. Zeng, L. Zhong, K. Liu, H. Cao, W. Li, H. Yan, Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production, Journal of Hazardous Materials, 329 (2017), 22-29.
[27]	B.-H. Chen, S.-I. Chuang, W.-R. Liu, J.-G. Duh, A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries, ACS Applied Materials & Interfaces, 7 (2015), 28166-28176.
[28]	M. Kim, I. Oh, J. Kim, Porous silicon carbide flakes derived from waste silicon wafer for electrochemical supercapacitor, Chemical Engineering Journal, 289 (2016), 170-179.
[29]	G.T. Vladisavljević, Fabrication of Nanoemulsions by Membrane Emulsification, in Nanoemulsions, S.M. Jafari and D.J. McClements, Editors, Academic Press, (2018).
[30]	M. Kukizaki, T. Nakashima, Acid Leaching Process in the Preparation of Porous Glass Membranes from Phase-separated Glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 System, membrane, 29 (2004), 301-308.
[31]	M. Kukizaki, M. Goto, Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification, Journal of Membrane Science, 299 (2007), 190-199.
[32]	M. Kukuzaki, K. Fujimoto, S. Kai, K. Ohe, T. Oshima, Y. Baba, Ozone mass transfer in an ozone–water contacting process with Shirasu porous glass (SPG) membranes—A comparative study of hydrophilic and hydrophobic membranes, Separation and Purification Technology, 72 (2010), 347-356.
[33]	A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, Basic Aspects in Inorganic Membrane Preparation, Comprehensive Membrane Science and Engineering, 2010.
[34]	D. da Silva Biron, V. dos Santos, M. Zeni, Ceramic Membranes Preparation, Ceramic Membranes Applied in Separation Processes, ed, D. da Silva Biron, V. dos Santos, and M. Zeni, Cham, Springer International Publishing, 31-48, 2018.
[35]	S. Liu, Y.-P. Zeng, D. Jiang, Fabrication and characterization of cordierite-bonded porous SiC ceramics, Ceramics International, 35 (2009), 597-602.
[36]	B.V.M. Kumar, J.-H. Eom, Y.-W. Kim, I.-H. Song, H.-D. Kim, Effect of aluminum hydroxide content on porosity and strength of porous mullite-bonded silicon carbide ceramics, Journal of the Ceramic Society of Japan, 119 (2011), 367-370.
[37]	F. Han, Z. Zhong, F. Zhang, W. Xing, Y. Fan, Preparation and Characterization of SiC Whisker-Reinforced SiC Porous Ceramics for Hot Gas Filtration, Industrial & Engineering Chemistry Research, 54 (2015), 226-232.
[38]	C.-y. Bai, Y. Li, Z.-m. Liu, P.-w. Liu, X.-y. Deng, J.-b. Li, J. Yang, Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source, Ceramics International, 41 (2015), 4391-4400.
[39]	W. Shi, B. Liu, X. Deng, J. Li, Y. Yang, In-situ synthesis and properties of cordierite-bonded porous SiC membrane supports using diatomite as silicon source, Journal of the European Ceramic Society, 36 (2016), 3465-3472.
[40]	Y. Yang, F. Han, W. Xu, Y. Wang, Z. Zhong, W. Xing, Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid, Ceramics International, 43 (2017), 3377-3383.
[41]	曾令可, 王慧, 羅民華, 多孔功能陶瓷製備與應用, 中國化學工業出版社, 北京, 2005.
[42]	K. Iida, A. Otsuka, K. Danjo, H. Sunada, Measurement of Adhesive Force between Particles and Polymer Films, Chemical and Pharmaceutical Bulletin, 40 (1992), 189-192.
[43]	S.K. Hubadillah, M.H.D. Othman, T. Matsuura, A.F. Ismail, M.A. Rahman, Z. Harun, J. Jaafar, M. Nomura, Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review, Ceramics International, 44 (2018), 4538-4560.
[44]	A.K. CHAKRABORTY, D.K. GHOSH, Reexamination of the Kaolinite-to-Mullite Reaction Series, Journal of the American Ceramic Society, 61 (1978), 170-173.
[45]	A.K. Chakravorty, D.K. Ghosh, Kaolinite–Mullite Reaction Series: The Development and Significance of a Binary Aluminosilicate Phase, Journal of the American Ceramic Society, 74 (1991), 1401-1406.
[46]	A. Nazir, K. Schroën, R. Boom, Premix emulsification: A review, Journal of Membrane Science, 362 (2010), 1-11.
[47]	G.T. Vladisavljević, Structured microparticles with tailored properties produced by membrane emulsification, Advances in Colloid and Interface Science, 225 (2015), 53-87.
[48]	M. Kukizaki, M. Goto, A Comparative Study of SPG Membrane Emulsification in the Presence and Absence of Continuous-Phase Flow, Journal of chemical engineering of Japan, 42 (2009), 520-530.
[49]	Y. Mine, M. Shimizu, T. Nakashima, Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane, Colloids and Surfaces B: Biointerfaces, 6 (1996), 261-268.
[50]	H. Yuyama, T. Watanabe, G.-H. Ma, M. Nagai, S. Omi, Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168 (2000), 159-174.
[51]	M. Yasuno, M. Nakajima, S. Iwamoto, T. Maruyama, S. Sugiura, I. Kobayashi, A. Shono, K. Satoh, Visualization and characterization of SPG membrane emulsification, Journal of Membrane Science, 210 (2002), 29-37.
[52]	S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, M. Seki, Characterization of Spontaneous Transformation-Based Droplet Formation during Microchannel Emulsification, The Journal of Physical Chemistry B, 106 (2002), 9405-9409.
[53]	V. Schröder, O. Behrend, H. Schubert, Effect of Dynamic Interfacial Tension on the Emulsification Process Using Microporous, Ceramic Membranes, Journal of Colloid and Interface Science, 202 (1998), 334-340.
[54]	N.C. Christov, D.N. Ganchev, N.D. Vassileva, N.D. Denkov, K.D. Danov, P.A. Kralchevsky, Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209 (2002), 83-104.
[55]	D.M. Lloyd, I.T. Norton, F. Spyropoulos, Process optimisation of rotating membrane emulsification through the study of surfactant dispersions, Journal of Food Engineering, 166 (2015), 316-324.
[56]	M. Kukizaki, M. Goto, Effects of Interfacial Tension and Viscosities of Oil and Water Phases on Monodispersed Droplet Formation Using a Shirasu-porous-glass(SPG)Membrane, membrane, 31 (2006), 215-220.
[57]	A. Trentin, C. Güell, T. Gelaw, S. de Lamo, M. Ferrando, Cleaning protocols for organic microfiltration membranes used in premix membrane emulsification, Separation and Purification Technology, 88 (2012), 70-78.
[58]	M. Matos, G. Gutiérrez, A. Lobo, J. Coca, C. Pazos, J.M. Benito, Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes, Journal of Membrane Science, 520 (2016), 749-759.
[59]	A. Taher, S. Thahab. Experimental study of improvement shear strength and moisture effect PVP adhesive joints by addition PVA. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.
[60]	A.M. Szczotok, M. Carmona, A.-L. Kjøniksen, J.F. Rodriguez, Equilibrium adsorption of polyvinylpyrrolidone and its role on thermoregulating microcapsules synthesis process, Colloid and Polymer Science, 295 (2017), 783-792.
[61]	X. Wang, Z. Zak Fang, M. Koopman, The relationship between the green density and as-sintered density of nano-tungsten compacts, International Journal of Refractory Metals and Hard Materials, 53 (2015), 134-138.
[62]	P.J. Jorgensen, M.E. Wadsworth, I.B. Cutler, Oxidation of silicon carbide, Reviews on Advanced Materials Science, 42 (1959), 613-616.
[63]	Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering, Journal of Asian Ceramic Societies, 6 (2018), 95-101.
[64]	V. Ischenko, Y.-S. Jang, M. Kormann, P. Greil, N. Popovska, C. Zollfrank, J. Woltersdorf, The effect of SiC substrate microstructure and impurities on the phase formation in carbide-derived carbon, Carbon, 49 (2011), 1189-1198.
[65]	E.J. Opila, Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure, Journal of the American Ceramic Society, 82 (1999), 625-636.
[66]	T.N. Wittberg, P.S. Wang, S.M. Hsu, Surface oxidation kinetics of SiC powders in wet and dry air studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy, Surface and Interface Analysis, 35 (2003), 773-778.
[67]	J. Roy, S. Chandra, S. Das, S.J.R.o.a.m.s. Maitra, Oxidation behaviour of silicon carbide-a review, Reviews on Advanced Materials Science, 38 (2014), 29-39.
[68]	J. She, J.-F. Yang, N. Kondo, T. Ohji, S. Kanzaki, Z.-Y. Deng, High-Strength Porous Silicon Carbide Ceramics by an Oxidation-Bonding Technique, Journal of the American Ceramic Society, 85 (2002), 2852-2854.
[69]	E. Zohourvahid-Karimi, A. Moloodi, J.V. Khaki, A study on carbon nanotubes/nanofibers production via SHS method in C-Al-Fe2O3 system, Journal of Materials Research and Technology, 7 (2018), 212-217.
[70]	X. Tian, G. Hong, Y. Liu, B. Jiang, Y. Yang, Catalytic performance of AuIII supported on SiO2 modified activated carbon, RSC Advances, 4 (2014), 36316-36324.
[71]	P.R.C. Correia, J.S. Santana, I.G. Ramos, A.E.G. Sant’Ana, H.F. Goulart, J.I. Druzian, Development of Membranes Composed of Poly(butylene adipate-co-terephthalate) and Activated Charcoal for Use in a Controlled Release System of Pheromone, Journal of Polymers and the Environment, 27 (2019), 1781-1789.
[72]	I. Scherze, K. Marzilger, G. Muschiolik, Emulsification using micro porous glass (MPG): surface behaviour of milk proteins, Colloids and Surfaces B: Biointerfaces, 12 (1999), 213-221.
[73]	T. Nakashima, M. Shimizu, M. Kukizaki, Membrane Emulsification by Microporous Glass, Key Engineering Materials, 61-62 (1992), 513-516.
[74]	R.D. Hancocks, F. Spyropoulos, I.T. Norton, Comparisons between membranes for use in cross flow membrane emulsification, Journal of Food Engineering, 116 (2013), 382-389.
[75]	M. Kukizaki, Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure, Journal of Membrane Science, 327 (2009), 234-243.
[76]	K. van Dijke, I. Kobayashi, K. Schroën, K. Uemura, M. Nakajima, R. Boom, Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification, Microfluidics and Nanofluidics, 9 (2010), 77-85.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信