§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0508201914240700
DOI 10.6846/TKU.2019.00133
論文名稱(中文) 聚偏二氟乙烯複合膜應用於間隔式薄膜蒸餾之海水淡化研究
論文名稱(英文) A study on PVDF composite membrane in gap membrane distillation for seawater desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 張聰譯
研究生(英文) Cong-Yi Zhang
學號 606400165
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-15
論文頁數 83頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 童國倫(kltung@ntu.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw)
關鍵字(中) 聚偏二氟乙烯
平板薄膜
間隙式薄膜蒸餾
直接接觸式薄膜蒸餾
關鍵字(英) Poly(vinylidene fluoride)(PVDF)
flat-sheet membrane
gap membrane distillation
direct contact membrane distillation
第三語言關鍵字
學科別分類
中文摘要
本研究以濕式相轉換法製備薄膜應用於薄膜蒸餾中,並以聚偏二氟乙烯(PVDF)作為膜材、磷酸三乙酯(TEP)為溶劑以及Tween 20作為成孔劑,探討有無使用親水支撐層以及沉澱槽中溶劑含量為20、40與60 wt%對於薄膜結構、孔徑、接觸角等影響。
在薄膜蒸餾中,將以AGMD與WGMD於不同進料溫度(50~70 oC)、流速(0.4、0.6、0.8 L/min)與間隙寬度(0、1、3 mm)進行性能探討,以及對薄膜進行回復性與耐久性之測試。最後將WGMD與DCMD進行滲透通量與產出比率(GOR)之比較,探討不同薄膜蒸餾之優缺點。
結果顯示,當沉澱槽中的TEP濃度上升以及使用親水支撐層,所製備的薄膜表面孔徑、孔洞數、孔隙度與接觸角皆有增加的趨勢,而且會使薄膜表面的緻密皮層不易形成,因此將有利於薄膜蒸餾之滲透通量的提升。
在薄膜蒸餾中,WGMD的通量皆比AGMD高,而且隨著間隙寬度的降低、進料溫度與流速的增加,皆可使滲透通量上升,其中在WGMD中進料溫度70 oC、流速0.8 L/min、間隙寬度為0 mm且薄膜為T60時可得到最高的滲透通量31.82 L/m2hr。薄膜回復性測試中顯示出三種薄膜於3.5 wt%的NaCl進料中皆有良好的回復性,且在連續48小時的WGMD操作中,T60薄膜保持著穩定的滲透通量與99.99%以上的阻隔率,代表此薄膜在長時間操作下有良好的穩定性。最後在WGMD與DCMD的性能比較中,雖然DCMD的滲透通量皆比WGMD高,但在WGMD的GOR皆高於DCMD,代表WGMD在熱能的使用效率較DCMD好,因此WGMD仍具有一定的優勢。
英文摘要
This work studied the preparation of the flat-sheet polyvinylidene fluoride (PVDF) membrane by immersion-precipitation for applying in membrane distillation. The casting dope comprise PVDF, triethyl phosphate and Tween 20.In this work, TEP was selected as solvent, and the effect of TEP concentration(20, 40, and 60, respectively) in the coagulation bath on the morphology of membrane was investigated. In membrane distillation, the performance of air gap membrane distillation (AGMD) and water gap membrane distillation (WGMD) at different feed temperature (50-70 oC), flow rate (0.4-0.8 L/min), gap width (0, 1, 3 mm) was investigated. Finally, the advantages and the disadvantages between DCMD and WGMD was investigated by permeate flux and gained output ratio (GOR).
The experimental results indicated that the pore size, porosity and contact angle of membrane became larger and the thickness of skin layer smaller as increase in TEP concentration. The water has higher thermal conductivity than air, thereby the flux of WGMD is higher than AGMD. The flux of membrane distillation increased as the decrease in the gap width and increase the feed temperature and flow rate. The highest flux of WGMD is 31.82 L/m2hr, when the feed temperature is 70 oC, flow rate is 0.8 L/min and the gap width is 0 mm. 
The results of long-term operation show that the flux of the T60 membrane decrease 4%, and the salt rejection maintain 99.99%. This result represents that the T60 membrane have good stability in long-term operation. In the performance comparison between WGMD and DCMD, although the flux of DCMD is higher than WGMD, the GOR of WGMD is higher than DCMD, which means that WGMD is better than DCMD in energy efficiency.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VII
表目錄	X
第一章 緒論	1
1.1 前言	1
1.2 海水淡化技術	3
1.3 薄膜蒸餾技術	4
1.4 研究動機與目的	7
第二章 文獻回顧	8
2.1 間隙式薄膜蒸餾的發展	8
2.2 影響薄膜蒸餾通量的因素	11
2.2.1	薄膜性質	11
2.2.2	進料溶液之影響	13
2.2.3	操作條件之影響	14
2.3 高分子薄膜製備	16
第三章 實驗裝置與方法	22
3.1 實驗藥品	22
3.2 實驗設備	24
3.3 PVDF薄膜製備	26
3.3.1	PVDF製膜液配置	26
3.3.2	PVDF鑄膜方式	26
3.3.3	薄膜編號	26
3.4 薄膜性質分析	31
3.4.1	薄膜結構與表面孔洞分析	31
3.4.2	薄膜膜厚與孔隙度量測	31
3.4.3	薄膜接觸角量測	32
3.4.4	薄膜機械強度測試	32
3.5 薄膜蒸餾裝置	33
3.5.1	直接接觸式薄膜蒸餾實驗模組	33
3.5.2	間隙式薄膜蒸餾實驗模組	33
3.6 薄膜蒸餾實驗	39
3.6.1	薄膜蒸餾實驗步驟	39
3.6.2	薄膜蒸餾操作條件	41
3.7 薄膜蒸餾結果分析	43
3.7.1	滲透通量分析與計算	43
3.7.2	薄膜蒸餾產出比率分析	43
3.7.3	鹽類含量之分析方法與阻隔率計算	43
3.8 PVDF之XRD分析	45
第四章 結果與討論	48
4.1	薄膜結構與性質分析	48
4.1.1	薄膜SEM結構分析	48
4.1.2	薄膜孔徑與孔隙度分析	53
4.1.3	薄膜接觸角分析	54
4.1.4	薄膜機械強度分析	54
4.2	間隙式薄膜蒸餾	56
4.2.1	AGMD與WGMD之滲透通量比較	56
4.2.2	薄膜於WGMD中有無支撐層之影響	60
4.2.3	薄膜於WGMD中不同操作條件探討	62
4.2.4	各薄膜於不同進料濃度之回復性探討	68
4.2.4	薄膜於長時間操作中之結果	70
4.3	DCMD與WGMD性能分析	72
第五章 結論	74
參考文獻	76

圖目錄
圖1-1 2040年各國家水資源壓力預測圖[1]	2
圖1-2 薄膜蒸餾模組配置[4]	6
圖2-1 DCMD、AGMD與PGMD的蒸氣傳輸機制圖[11]	10
圖2-2 高分子-溶劑-非溶劑之三相圖[59]	20
圖2-3 製膜液與沉澱槽擴散示意圖[42]	20
圖2-4 是否含有表面活性劑的薄膜於製膜液、相轉換過程與初生薄膜之示意圖[54]	21
圖3-1 親水支撐層之SEM圖	27
圖3-2 親水支撐層示意圖[Precise公司]	27
圖3-3 PVDF製膜流程示意圖	28
圖3-4 DCMD模組示意圖	34
圖3-5 DCMD 壓克力模組示意圖(進料與滲透側)	35
圖3-6 AGMD與WGMD模組示意圖	36
圖3-7 AGMD與WGMD進料側壓克力模組示意圖	37
圖3-8 AGMD與WGMD冷卻側壓克力模組示意圖	38
圖3-9 直接接觸式薄膜蒸餾裝置示意圖	42
圖3-10 間隙式薄膜蒸餾裝置示意圖	42
圖3-11 氯化鈉水溶液檢量線	44
圖3-12 PVDF粉末之XRD分析圖	46
圖3-13 PVDF三種結晶相(、、)於XRD分析圖[60]	46
圖4-1 10000倍薄膜上表面SEM圖	51
圖4-2 30000倍薄膜上表面SEM圖	51
圖4-3 1000倍薄膜橫截面SEM圖	52
圖4-4 5000倍薄膜橫截面SEM圖	52
圖4-5 薄膜於AGMD中不同間隙寬度之滲透通量圖	58
圖4-6 薄膜於WGMD中不同間隙寬度之滲透通量圖	59
圖4-7 T60薄膜於AGMD與WGMD之滲透通量比較圖	59
圖4-8 薄膜鑄膜於支撐層或玻璃板之滲透通量比較圖	61
圖4-9 T60薄膜於60 oC下不同進料流量與間隙寬度之通量圖	64
圖4-10 薄膜於60 oC下不同進料流量與間隙寬度3 mm之通量圖	64
圖4-11 薄膜於60 oC下不同進料流量與間隙寬度1 mm之通量圖	65
圖4-12 薄膜於60 oC下不同進料流量與間隙寬度0 mm之通量圖	65
圖4-13 T60薄膜於間隙寬度0 mm中不同進料溫度與流量之通量圖	66
圖4-14 薄膜於間隙寬度0 mm以及50 oC下不同進料流量之通量圖	66
圖4-15 薄膜於間隙寬度0 mm以及60 oC下不同進料流量之通量圖	67
圖4-16 薄膜於間隙寬度0 mm以及70 oC下不同進料流量之通量圖	67
圖4-17 薄膜於WGMD中進料3.5 wt%鹽水前後之純水通量圖	69
圖4-18 薄膜於WGMD中進料15 wt%鹽水前後之純水通量圖	69
圖4-19 薄膜於WGMD中操作48小時之滲透通量與導電度圖	71
圖4-20 DCMD與WGMD於不同薄膜下的滲透通量與GOR比較圖	73

表目錄
表3-1 親水支撐層性質表	29
表3-2 薄膜製備條件表	29
表3-3 薄膜編號表	30
表3-4 薄膜蒸餾操作條件表	41
表3-5 PVDF三種結晶相(、、)之晶面與2表[60]	47
表4-1 薄膜性質分析表	55
表4-2 薄膜拉伸強度分析表	55
參考文獻
[1]	T. Luo, R. Young, P. Reig, Aqueduct projected water stress country rankings, Technical Note, 2015.
[2]	J. Morillo, J. Usero, D. Rosado, H. El Bakouri, A. Riaza, F.-J. Bernaola, Comparative study of brine management technologies for desalination plants, Desalination, 336 (2014), 32-49.
[3]	A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: A comprehensive review, Desalination, 287 (2012), 2-18.
[4]	M. Khayet, T. Matsuura, Membrane distillation: principles and applications, Membrane Distillation, (2011), 1-16.
[5]	K.W. Lawson, D.R. Lloyd, Membrane distillation, Journal of Membrane Science, 124 (1997), 1-25.
[6]	E. El-Zanati, K.M. El-Khatib, Integrated membrane –based desalination system, Desalination, 205 (2007), 15-25.
[7]	R. Huo, Z. Gu, K. Zuo, G. Zhao, Preparation and properties of PVDF-fabric composite membrane for membrane distillation, Desalination, 249 (2009), 910-913.
[8]	J. Koschikowski, M. Wieghaus, M. Rommel, V.S. Ortin, B.P. Suarez, J.R. Betancort Rodríguez, Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas, Desalination, 248 (2009), 125-131.
[9]	L. Francis, N. Ghaffour, A.A. Alsaadi, G.L. Amy, Material gap membrane distillation: A new design for water vapor flux enhancement, Journal of Membrane Science, 448 (2013), 240-247.
[10]	A.E. Khalifa, Water and air gap membrane distillation for water desalination – An experimental comparative study, Separation and Purification Technology, 141 (2015), 276-284.
[11]	L. Eykens, T. Reyns, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, How to select a membrane distillation configuration? Process conditions and membrane influence unraveled, Desalination, 399 (2016), 105-115.
[12]	M. Essalhi, M. Khayet, Application of a porous composite hydrophobic/hydrophilic membrane in desalination by air gap and liquid gap membrane distillation: A comparative study, Separation and Purification Technology, 133 (2014), 176-186.
[13]	H. Geng, Q. He, H. Wu, P. Li, C. Zhang, H. Chang, Experimental study of hollow fiber AGMD modules with energy recovery for high saline water desalination, Desalination, 344 (2014), 55-63.
[14]	G. Rao, S.R. Hiibel, A. Achilli, A.E. Childress, Factors contributing to flux improvement in vacuum-enhanced direct contact membrane distillation, Desalination, 367 (2015), 197-205.
[15]	B.R. Bodell, Silicone rubber vapor diffusion in saline water distillation, 1963, United States Patent Serial.
[16]	P.K. Weyl, Recovery of demineralized water from saline waters, 1967, United States Patent US3340186A.
[17]	M.E. Findley, Vaporization through Porous Membranes, Industrial & Engineering Chemistry Process Design and Development, 6 (1967), 226-230.
[18]	V.V. Ugrozov, I.B. Elkina, V.N. Nikulin, L.I. Kataeva, Theoretical and experimental research of liquid-gap membrane distillation process in membrane module, Desalination, 157 (2003), 325-331.
[19]	L. Gao, J. Zhang, S. Gray, J.-D. Li, Modelling mass and heat transfers of Permeate Gap Membrane Distillation using hollow fibre membrane, Desalination, 467 (2019), 196-209.
[20]	L. Gao, J. Zhang, S. Gray, J.-D. Li, Experimental study of hollow fiber permeate gap membrane distillation and its performance comparison with DCMD and SGMD, Separation and Purification Technology, 188 (2017), 11-23.
[21]	A.E. Khalifa, S.M. Alawad, Air gap and water gap multistage membrane distillation for water desalination, Desalination, 437 (2018), 175-183.
[22]	D. Winter, J. Koschikowski, M. Wieghaus, Desalination using membrane distillation: Experimental studies on full scale spiral wound modules, Journal of Membrane Science, 375 (2011), 104-112.
[23]	D. Amaya-Vías, E. Nebot, J.A. López-Ramírez, Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels, Desalination, 429 (2018), 44-51.
[24]	D. Amaya-Vías, L. Tataru, B. Herce-Sesa, J.A. López-López, J.A. López-Ramírez, Metals removal from acid mine drainage (Tinto River, SW Spain) by water gap and air gap membrane distillation, Journal of Membrane Science, 582 (2019), 20-29.
[25]	L.D. Tijing, Y.C. Woo, J.-S. Choi, S. Lee, S.-H. Kim, H.K. Shon, Fouling and its control in membrane distillation—A review, Journal of Membrane Science, 475 (2015), 215-244.
[26]	H.M. Cassard, H.G. Park, How to select the optimal membrane distillation system for industrial applications, Journal of Membrane Science, 565 (2018), 402-410.
[27]	D. Zhao, J. Zuo, K.-J. Lu, T.-S. Chung, Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation, Desalination, 413 (2017), 119-126.
[28]	Z. Wang, Y. Tang, B. Li, Excellent wetting resistance and anti-fouling performance of PVDF membrane modified with superhydrophobic papillae-like surfaces, Journal of Membrane Science, 540 (2017), 401-410.
[29]	S. Jeong, B. Shin, W. Jo, H.-Y. Kim, M.-W. Moon, S. Lee, Nanostructured PVDF membrane for MD application by an O 2 and CF 4 plasma treatment, Desalination, 399 (2016), 178-184.
[30]	M. Gryta, Fouling in direct contact membrane distillation process, Journal of Membrane Science, 325 (2008), 383-394.
[31]	F.A. Banat, J. Simandl, Theoretical and experimental study in membrane distillation, Desalination, 95 (1994), 39-52.
[32]	C. Liu, L. Chen, L. Zhu, Z. Wu, Q. Hu, M. Pan, The effect of feed temperature on biofouling development on the MD membrane and its relationship with membrane performance: An especial attention to the microbial community succession, Journal of Membrane Science, 573 (2019), 377-392.
[33]	L. Han, T. Xiao, Y.Z. Tan, A.G. Fane, J.W. Chew, Contaminant rejection in the presence of humic acid by membrane distillation for surface water treatment, Journal of Membrane Science, 541 (2017), 291-299.
[34]	L. Martı́nez-Dı́ez, M.I. Vázquez-González, Temperature and concentration polarization in membrane distillation of aqueous salt solutions, Journal of Membrane Science, 156 (1999), 265-273.
[35]	T.Y. Cath, V.D. Adams, A.E. Childress, Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, Journal of Membrane Science, 228 (2004), 5-16.
[36]	S. Alobaidani, E. Curcio, F. Macedonio, G. Diprofio, H. Alhinai, E. Drioli, Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, Journal of Membrane Science, 323 (2008), 85-98.
[37]	B.-G. Im, J.-G. Lee, Y.-D. Kim, W.-S. Kim, Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane, Journal of Membrane Science, 565 (2018), 14-24.
[38]	J. Xu, Y.B. Singh, G.L. Amy, N. Ghaffour, Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water, Journal of Membrane Science, 512 (2016), 73-82.
[39]	D. Amaya-Vias, J.A. Lopez-Ramirez, S. Gray, J. Zhang, M. Duke, Diffusion behavior of humic acid during desalination with air gap and water gap membrane distillation, Water Res, 158 (2019), 182-192.
[40]	T. Nohmi, T. Yamada, Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same, 1983, United States Patent US4399035A.
[41]	A. Bottino, G. Capannelli, A. Comite, Novel porous poly (vinylidene fluoride) membranes for membrane distillation, Desalination, 183 (2005), 375-382.
[42]	M. Mulder, Basic principles of membrane technology. Second, Kluwer Academic Pub, (1996).
[43]	A. Bottino, G. Capannelli, S. Munari, A. Turturro, High performance ultrafiltration membranes cast from LiCl doped solutions, Desalination, 68 (1988), 167-177.
[44]	H. Tompa, Polymer solutions, Butterworths Scientific Publications, 1956.
[45]	張旭賢, 多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺, 淡江大學化學工程與材料工程學系碩士班, 2005.
[46]	L.P. Cheng, A.H. Dwan, C.C. Gryte, Membrane formation by isothermal precipitation in polyamide‐formic acid‐water systems i. Description of membrane morphology, Journal of Polymer Science Part B: Polymer Physics, 33 (1995), 211-222.
[47]	D.-J. Lin, C.-L. Chang, C.-K. Lee, L.-P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, European Polymer Journal, 42 (2006), 356-367.
[48]	D.-J. Lin, H.-H. Chang, T.-C. Chen, Y.-C. Lee, L.-P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system, European Polymer Journal, 42 (2006), 1581-1594.
[49]	H.-H. Chang, S.-C. Chen, D.-J. Lin, L.-P. Cheng, Preparation of bi-continuous Nylon-66 porous membranes by coagulation of incipient dopes in soft non-solvent baths, Desalination, 313 (2013), 77-86.
[50]	D.-J. Lin, C.-L. Chang, F.-M. Huang, L.-P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system, Polymer, 44 (2003), 413-422.
[51]	E. Drioli, A. Ali, S. Simone, F. Macedonio, S.A. Al-Jlil, F.S. Al Shabonah, H.S. Al-Romaih, O. Al-Harbi, A. Figoli, A. Criscuoli, Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications, Separation and Purification Technology, 115 (2013), 27-38.
[52]	M.R.M. Abed, S.C. Kumbharkar, A.M. Groth, K. Li, Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique, Journal of Membrane Science, 407-408 (2012), 145-154.
[53]	A. Rahimpour, S. Madaeni, Y. Mansourpanah, The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration, Journal of Membrane Science, 296 (2007), 110-121.
[54]	陳勝昌, 以非溶劑誘導相轉移法製備多孔型薄膜, 淡江大學化學工程與材料工程學系碩士班, 2013.
[55]	R. Thomas, E. Guillen-Burrieza, H.A. Arafat, Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD), Journal of Membrane Science, 452 (2014), 470-480.
[56]	S. Munirasu, F. Banat, A.A. Durrani, M.A. Haija, Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation, Desalination, 417 (2017), 77-86.
[57]	H.-H. Chang, S.-C. Chen, D.-J. Lin, L.-P. Cheng, The effect of Tween-20 additive on the morphology and performance of PVDF membranes, Journal of Membrane Science, 466 (2014), 302-312.
[58]	J. Chang, J. Zuo, L. Zhang, G.S. O'Brien, T.-S. Chung, Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation, Journal of Membrane Science, 539 (2017), 295-304.
[59]	R.W. Baker, Membrane technology and applications, John Wiley & Sons, 2012.
[60]	P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Progress in Polymer Science, 39 (2014), 683-706.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信