淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0508201910453800
中文論文名稱 氣-液熱管熱交換器之數值模擬
英文論文名稱 Numerical analysis of Gas to Liquid Heat Pipe Heat Exchanger
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生中文姓名 古佩笛
研究生英文姓名 Pratik Prakash Gupta
學號 605355014
學位類別 碩士
語文別 英文
口試日期 2019-07-15
論文頁數 55頁
口試委員 指導教授-康尚文
委員-陳育堂
委員-蔡孟昌
中文關鍵字 数值分析  Fluent   
英文關鍵字 Numerical analysis  Fluent  Fins 
學科別分類 學科別應用科學機械工程
中文摘要 熱管熱交換器是非常可靠和有效的裝置。本研究的目的是確定熱管式換熱器在不同輸入條件下的行為,以便對各種情況進行優化和理解。熱交換器採用用於實驗研究的模型進行設計,並用ANSYS Fluent進行模擬,輸入條件與實驗條件相同,以比較和分析其行為。由於環境沒有損失,模擬模型顯示出比實驗模型更好的效率和傳熱,但顯示出相同的趨勢。與0.577的實驗相比,數值模型的最大有效性為0.977。然後通過擴展蒸發器部分的面積並通過向熱管蒸發器添加不同區域的翅片來增強模擬設計。蒸發器部分區域增量和翅片的增加都增加了傳熱,翅片面積增量進一步提高了性能。加入翅片的最大傳熱量為853.3685 W,在相同輸入條件下增加19.7%。
英文摘要 The heat pipe heat exchanger is a very reliable and efficient device. The purpose of this study is to determine the behavior of heat pipe operated heat exchanger in different input conditions to optimize and understand for putting in various situation. The heat exchanger is designed with the model used for experimental research and simulated with ANSYS Fluent with same input condition with experimental conditions to compare and analyze the behavior. The model for simulation shows a better effectiveness and heat transfer then the experimental model due to no loss in the environment, but showed the same trends. The numerical model has maximum effectiveness of 0.977 compared to 0.577 of experiment. The simulation design is then enhanced by extending the area of evaporator section and by adding fins of different areas to the heat pipe evaporator. The heat transfer is increased for both the evaporator section area increment and addition of fins, with the fin area increment further enhanced the performance. The maximum heat transfer with fins added is 853.3685 W, which is 19.7% increase with same input condition.
論文目次 Acknowledgement V
Nomenclature VI
List of Figures IX
List of Tables X
Chapter 1 Introduction 1
1.1 History of heat pipe heat exchanger 1
1.2 Literature review 3
1.3 Motivation and Aim of the research 8
Chapter 2 Theory of HPHE and ANSYS Fluent 10
2.1 Case of simulation 10
2.1.1 The Fluent Duel cell mechanism 11
2.1.2 The input conditions and factors 11
2.2 Driving equation and assumptions 12
2.2.1 The Energy equation 12
2.2.2 Assumptions for the case 13
2.3 Theory of heat pipe heat exchanger 14
Chapter 3 Design and Model of Analysis 16
3.1 design of Heat Pipe Heat Exchanger 17
3.1.1 Experimental design of Heat Pipe Heat Exchanger 17
3.1.2 Design for comparison with experimental analysis 18
3.1.3 Design with extended Evaporator section 21
3.1.4 design with Individual Fins 22
3.1.5 design with Combined Fin 24
3.2 Input parameters and Materials 26
3.2.1 Input parameters for different designs 26
3.2.2 Material for the Parts and heat Pipe 28
3.3 Conditions of Simulation 28
3.3.1 Simulation inputs and Requirements 28
3.3.2 Monitors for Result Analysis 29
Chapter 4 Results and discussion 30
4.1 Result and comparison of heat pipe heat exchanger with experiment 31
4.1.1 Comparison of heat transfer 32
4.1.2 Comparison of temperature outputs 33
4.1.3 Comparison of Effectiveness 36
4.2 Result of the heat pipe heat exchanger with variable evaporator length 37
4.2.1 heat transfer with heat transfer area of pipe 38
4.3 Results of the HPHE with Fin 40
4.3.1 Comparison of Individual Fins with Different Areas 42
4.3.2 Comparison of Combined Fin with Individual Fins of Different Areas 43
Chapter 5 Summary 45
5.1 Conclusion 45
5.2 Future work 46
Reference 48
Appendix I 50
Appendix II 51
Fig 1 The basic working mechanism of Heat pipe heat Exchanger 16
Fig 2 Sectional view of Heat pipe heat exchanger 17
Fig 3 Schematic of experimental setup of Heat pipe Heat Exchanger 18
Fig 4 Pictures of the Experimental setup of Heat pipe Heat Exchanger 18
Fig 5 the design of heat pipe heat exchanger with parts and direction of flow 19
Fig 6 Dimensions of the heat pipe and dimension of the inclosing 20
Fig 7 Design of the heat pipe heat exchanger with extended evaporator section. 21
Fig 8 Dimensions of the individual fins with different diameter of fins 22
Fig 9 Heat pipe heat exchanger with individual fins 23
Fig 10 The combined fins with the arrangement mentioned in mm 24
Fig 11 Heat pipe heat exchanger with combined fins 25
Fig 12 Resulting temperature difference shown for different Inlet air velocity 30
Fig 13 Pressure difference for both fluid sections. 30
Fig 14 Velocity profile shown at different Inlet air velocity 31
Fig 15 Comparison of heat transfer from experiment and simulation. 32
Fig 16 Temperature comparison between the Simulation and Experimental value of the heat pipe heat exchanger 35
Fig 17 The effectiveness comparison of simulation and experiment. 37
Fig 18 The heat transfer difference between Lh/L=0.6322 and Lh/L= 0.7290 39
Fig 19 Comparison of the individual fins mounted from number 1 to 10 42
Fig 20 The comparison of the different fins design. 44
Table 1 Different application for heat pipe heat exchanger 3
Table 2 The effective areas of different fins 25
Table 3 Input parameters of Experiment and Simulation 27
Table 4 The area increment of the evaporator section with the addition of fins. 41
參考文獻 [1] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
[2] Hamidreza Shabgard, Michael J. Allen, Nourouddin Sharifi, Steven P. Benn, Amir Faghri and Theodore L. Bergman, “Heat Pipe Heat Exchangers and Heat Sinks: Opportunities, Challenges, Applications, Analysis and State of the art,” International Journal of Heat and Mass Transfer 89 (2015) 138–158.
[3] A. R. Lukitobudi, A. Akbarzadeh, P. W. Johnson and P. Hendy, “Design, Construction and Testing of a Thermosyphon Heat Exchanger For Medium Temperature Heat Recovery In Bakeries,” Heat Recovery Systems & CHP Vol. 15, No. 5, pp. 481--49t, 1995.
[4] Francisco Javier Rey Martinez, Mario Antonio Elvarez-Guerra Plasencia, Eloy Velasco Gomeza, Fernando Varela Diez and Ruth Herrero Martin, “Design and Experimental Study of a Mixed Energy Recovery System Heat Pipes and Indirect Evaporative Equipment for Air Conditioning,” Energy and Buildings 35 (2003) 1021–1030.
[5] W. Srimuang and P. Amatachaya, “A Review of the Applications of Heat Pipe Heat Exchangers for Heat Recovery,” Renewable and Sustainable Energy Reviews 16 (2012) 4303– 4315.
[6] E. Azad and F. Geoola, “A Design Procedure for Gravity-Assisted Heat Pipe Heat Exchanger,” Heat Recovery Systems Vol. 4, No. 2, pp. 101-111, 1984.
[7] Wei-Jei Hung, Chen-Yu Lu, Cheng-Wei Wang and Shung-Wen Kang, “development of heat pipe heat exchanger” Joint 19th IHPC and IHPS, june 10-14 2018.
[8] Bing Xia, Yebin Yin, Jinghong Lian, Guang Yang, Guoyou Xu, Xiang Goua, Enyu Wang, Liansheng Liu and Jinxiang Wu, “Numerical Simulation on Heat Pipe Heat Exchanger: Effects of Different Wind Speeds” 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015).
[9] Babak Rashidian, “Modeling of the Heat Pipe Heat Exchangers for Heat Recovery” Proceedings of the 2nd WSEAS International Conference on Engineering Mechanics, Structures and Engineering Geology.
[10] M. H. Saber and H. Mazaher Ashtiani, “Simulation and CFD Analysis of heat pipe heat exchanger using Fluent to increase of the thermal efficiency” Continuum Mechanics, Fluids, Heat, ISBN: 978-960-474-158-8.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信