§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0508201514172900
DOI 10.6846/TKU.2015.00156
論文名稱(中文) 設計並實作自動化無人機航空測繪系統
論文名稱(英文) Design and Implementation of Autonomous Aerial Surveying System using Unmanned Aerial Vehicle
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 張睿宇
研究生(英文) Jui-Yu Chang
學號 602460023
學位類別 碩士
語言別 英文
第二語言別
口試日期 2015-07-06
論文頁數 50頁
口試委員 指導教授 - 劉寅春
委員 - 江東昇
委員 - 邱謙松
關鍵字(中) 無人飛行器
航空測繪
自動化
關鍵字(英) Unmanned Aerial Vehicle
Aerial Survey
Autonomous
第三語言關鍵字
學科別分類
中文摘要
在本篇論文中, 提出設計並實作高度整合的自動化無人飛行器(UAV)航空測繪系統。傳統地面測量耗費大量人力資源與時間,而傳統的定翼機航空測量則受限於飛行高度的限制,需安裝昂貴的專業相機。有鑑於以上情境,本篇論文以開源UAV硬體實作並整合影像傳輸系統以及影像穩定系統,完成無人機自動化航空測量系統,其優點如下: 
1.大幅降低測量所需的時間。
2.優化航測路徑規劃並提高任務效率。
3.單一操作者即可完成複雜的測量任務。
    最後,將本論文所設計和實作的系統進行實地測試,並將所收集之影像資訊透過後製軟體,成功輸出為地理資訊數據。
英文摘要
This thesis proposes a systematic and unified approach for design and implementation of unmanned aerial vehicles in autonomous surveying. Traditional ground surveying consumes large human resources and time. On the other hand, fixed-wing aerial surveying is restricted by the cursing altitude, where a high-cost professional camera is needed. In light of the above, this thesis implements an open source UAV system which integrates first person view (FPV) and image stabilization systems.
The advantages of the approach are three fold: i) minimization of surveying time; ii) optimization of path efficiency; and iii) allowance of an individual person to execute complex tasks.
Finally, the proposed system is field tested with captured images processed into geospatial data.
第三語言摘要
論文目次
[Contents]
Acknowledgement I
Abstract in Chinese II
Abstract in English III
Contents IV
List of Figures VII
1 Introduction 1
2 Problem Statement 2
 2.1 Autonomous Unmanned Aerial Vehicle 2
 2.2 Ground Control Station 2
 2.3 Surveying Mission Efficiency Optimization 2
3 UAV System 4
 3.1 Frame Structure 5
  3.1.1 Composite material Frame 7
  3.1.2 Motor 8
  3.1.3 Propeller 9
  3.1.4 Electronic Speed Controller 11
  3.1.5 Battery 12
  3.1.6 Wiring 13
 3.2 Autopilot System 13
  3.2.1 Main Controller 14
  3.2.2 GPS Module 17
  3.2.3 Power Module 18
  3.3 Image Capture System 19
  3.3.1 Camera 19
  3.3.2 Gimbal System 20
  3.3.3 Trigger Module 21
 3.4 Wireless System 22
  3.4.1 Radio Controller 22
  3.4.2 Data-link Module 23
  3.4.3 Video transmission system 25
4 Practical Implementation 27
 4.1 UAV Platform 27
  4.1.1 Hardware configuration 27
  4.1.2 Hardware setup 28
 4.2 Ground Control Station 29
  4.2.1 Flight Controller Setup and Calibration 29
 4.3 Autonomous Surveying Procedure and Post Process 34
  4.3.1 Surveying Site Inspection 34
  4.3.2 Determining Surveying Conditions 34
  4.3.3 Planning Surveying Mission 34
  4.3.4 Pre-flight Check 35
  4.3.5 Execute Surveying Mission 35
  4.3.6 Surveying Data analysis 35
  4.3.7 Post-Process 36
  4.3.8 Surveying Results 36
5 Practical Results 44
 5.1 UAV Platform 44
 5.2 Ground Control Station 46
 5.3 Autonomous Surveying Mission 46
6 Conclusion and Future Work 49
 6.1 Conclusions 49
 6.2 Future Works 49
References 50

[List of Figure]
3.1 Different types of UAVs. (a) Fix-wind, (b) Helicopter, (c) Multicopter 4
3.2 Frame structure of tricopter. [1] 5
3.3 Frame structure of quadcopter. [1] 5
3.4 Frame structure of hexacopter. [1] 6
3.5 Frame structure of octacopter. [1] 6
3.6 Different types of UAVs. (a) Brushless DC motor, (b) Brushed DC motor 8.
3.7 Performance data of MN5212 motor. [2] 10
3.8 Plastic propeller. 11
3.9 Carbon fiber propeller. 12
3.10 Wooden propeller. [3] 12
3.11 HOBBYWING 40A electronic speed controller (ESC). 13
3.12 Li-Po battery. 14
3.13 Data sheet of wires with different insulators. [4] 15
3.14 Pixhawk advanced autopilot controller which made by 3D Robotics. 16
3.15 GPS module which made by 3D Robotics. 17
3.16 Power module made by 3D Robotics. 18
3.17 GoPro HERO 4 camera. 20
3.18 SONY NEX-7 with 24mm ZEISS lens. 20
3.19 DJI Z15 3-axis gimbal system with SONY A7. [5] 21
3.20 Camera IR triggering module 21
3.21 2.4GHz Wireless radio controller. 22
3.22 2.4GHz Wireless radio receiver. 23
3.23 3DR telemetry modules. 24
3.24 Xbee Pro 900HP telemetry module 24
3.25 Connex wireless Full-HD video transmit system. [6] 25
3.26 Boscam 5.8 GHz 500mW wireless transmitter. 26
3.27 An FPV monitor with build-in 5.8GHz receiver. 26
4.1 UAV power system design flow chart. 27
4.2 Surveying UAV hardware setup. 37
4.3 Implementation of surveying UAV hardware setup. 38
4.4 The user interface of Mission Planner. 39
4.5 The user interface of APM Planner 2.0. 39
4.6 The connect button of Mission Planner on the upper right. 40
4.7 Firmware update menu. 40
4.8 Frame type menu.. 40
4.9 Compass calibration menu. 41
4.10 Radio calibration menu. 41
4.11 Power module calibration menu. 41
4.12 Flight mode setup menu. 42
4.13 Autonomous mission planning menu. 42
4.14 Flight controller parameter tunning menu. 42
4.15 Autonomous surveying procedure flow chart. 43
5.1 The response of pitch angle. 44
5.2 The response of roll angle. 44
5.3 The response of yaw angle. 45
5.4 The setup of the ground control station. 45
5.5 Schematic diagram of optimized surveying system . 46
5.6 The autonomous mission planning interface in Mission Planner. 47
5.7 The 3D point cloud generated by Pix4Dmapper. 48
參考文獻
[1] Ardupilot, “Connect escs and motors,” July 2015. [Online].
Available: http://copter.ardupilot.com/wiki/initial-setup/assembly-instructions/connect-escs-and-motors-pixhawk
[2] Tiger-Motor, “Mn5212 data sheet,” July 2015. [Online]. Available: http://www.yiyangcable.com/tw/page/custom188-203
[3] T. Motor, “Beech wood prop,” July 2015. [Online]. Available: http://www.rctigermotor.com/html/2014/wood-prop 0531/207.html
[4] TSK, “Technical data,” July 2015. [Online]. Available: http://www.tskdenko.com.tw/appendix/technicaldata.pdf
[5] DJI, “Zenmuse z15-a7,” July 2015. [Online]. Available: http://www.dji.com/cn/product/zenmuse-z15-a7
[6] CONNEX, “The product,” July 2015. [Online]. Available: http://connex.amimon.com/products
[7] S. I. CORPORATION, “Satellite sensors,” July 2015. [Online]. Available:http://www.satimagingcorp.com/
[8] L. Kimball, “Aerial photographic equipment,” 2011, cDI Infrastructure, LLC.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信