淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0508201415290100
中文論文名稱 設計溢流管結構以提升水旋風分離器之分離效率
英文論文名稱 Design of overflow conduit structure for improving hydrocyclone separation efficiency
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 周詩評
研究生英文姓名 Shih-Ping Chou
學號 601400079
學位類別 碩士
語文別 中文
口試日期 2014-07-14
論文頁數 126頁
口試委員 指導教授-黃國楨
委員-童國倫
委員-鄭東文
中文關鍵字 水旋風分離器;溢流管;分離效率 
英文關鍵字 hydrocyclone  overflow conduit  separation efficiency 
學科別分類
中文摘要 水旋風分離器的幾何結構會影響其內部流場與分離效率,本研究以直徑為10 mm水旋風分離器為例,探討溢流管之幾何結構對流體之流態與固體粒子之分離效率的影響。探討的溢流管結構可分成5種型式,其中A型為寬型進口,B、C、D與E型為窄型進口,A與B型兩者同為溢流管均勻加厚結構,其中初始結構A-I溢流管厚度為1 mm之型式,做為基礎比較,C型為縮減分離器圓柱區直徑之結構,D與E型同樣將溢流管之外表面的一部分製作成圓錐形,但方向相反。本研究使用平均粒徑為10 μm的碳酸鈣粒子樣品進行數值模擬與實驗,首先使用美國Fluent套裝軟體,利用SIMPLE(Semi-Implicit Method for Pressure-Linked Equation)法則進行質量平衡與動量平衡等統御方程式之計算,紊流使用雷諾應力模型,並使用PRESTO!(PREssure STerring Option)進行壓力計算之疊代,分析流體之速度分布、壓降分布、動能分布、以及粒子軌跡,再藉以估算粒子的分離效率。模擬結果顯示,在10 m/s的進料速度下,A型結構之無因次溢流管厚度從0.1增加到0.2,約能提升總分離效率10%,B型結構之無因次溢流管厚度從0.1增加到0.2,約能提升總分離14%,最佳溢流管之無因次厚度為0.14。C型結構之總分離效率與初始結構相同,反而增加壓降。而在溢流管外表面增加錐型結構的D與E型可以增加總分離效率17-19%。若以壓降、分離效率等觀點比較測試的分離器,在溢流管外表面增加一半長度的D-II型結構之壓降為47,545 Pa、總分離效率提升17%,分離粒徑為5 μm,是其中的最佳化設計。以A-I原始結構的分離器進行實驗,實驗的粒子分離效率值與模擬結果相近,證明本研究之模擬結果具有其可靠性。
英文摘要 Geometry of the hydrocyclone will affect its internal flow field and separation efficiency, this study use 10-mm diameter hydrocyclone. Investigate the effect of the geometry of the overflow conduit with solid particle separation efficiency and flow field. Type A with wider inlet, B, C, D and E with narrow inlet. Type A and B both with the uniform thickening of overflow conduit, where the initial structure of A-I overflow conduit thickness 1 mm. Type C is reduce the diameter of hydrocyclone, type D and E are made into a conical surface portion of overflow conduit outside. In this study, the average particle size of 10 μm sample of calcium carbonate to simulate the experimental section. First, using the USA Fluent software package by governing equations to calculate the materials and balance and momentum balance in SIMPLE(Semi-Implicit Method for Pressure-Linked Equation) algorithm, the turbulent kinetic energy using the Reynolds stress model and using PRESTO! calculate pressure. Analysis the velocity distribution of fluid, pressure drop distribution, turbulent kinetic energy distribution and particle trajectories and then obtain particle separation efficiency. Simulation results show that VF=10 m/s, type A structure dimensionless overflow conduit thickness from 0.1 to 0.2, can improve the overall separation efficiency about 10%. Type B structure dimensionless overflow conduit thickness from 0.1 to 0.2 can improve the overall separation efficiency from 14%, optimal structure dimensionless of overflow conduit is 0.14. The overall separation efficiency of C structure with the same with initial structure, but increased pressure drop. In the outside surface of the overflow conduit, D and E install the conical structure, can increase the overall separation efficiency 17-19%. In terms of pressure drop and the separation efficiency comparison the separator, the outer surface of conduit increase a half length of D-II which the pressure drop of 47,545 Pa, improve the overall separation efficiency of 17% and a particle size of 5μm, is the best design. To the original structural of A-I experiment, experiment and simulation particle separation efficiency values were similar, the simulation results of this study demonstrate that it has its reliability.
論文目次 目錄
中文摘要I
ABSTRACTII
目錄IV
圖目錄VI
表目錄X

第一章 緒論1
1.1 前言 1
1.2 研究動機與目標 3
第二章 文獻回顧4
2.1 水旋風分離器之發展概況4
2.1.1幾何構造與特性4
2.1.2 水旋風分離器之規格8
2.1.3水旋風分離器之結構改良9
2.1.4 水旋風分離器之程序設計 12
2.2 魚勾現象(Fish-hook effect)15
2.3水旋風分離器之理論17
2.3.1平衡軌道理論(The Equilibrium Orbit Theory)17
2.3.2滯留時間理論(The Residence-Time Theory)18
2.3.3無因次群模型(Dimensionless model)19
2.4水旋風分離器之分離原理21
2.5固體顆粒在水旋風分離器中之受力分析23
2.5.1顆粒沉降受力分析23
2.5.2切應力26
2.5.3 低濃度時顆粒之自由沉降 27
2.5.4高濃度時顆粒的自由沉降 29
2.5.5離心沉降與重力沉降之比較30
2.6 水旋風分離器之性能特性31
2.6.1影響水旋風分離器分離效率之參數31
2.6.1.1 結構參數31
2.6.1.2 物性參數33
2.6.1.3 操作參數33
第三章數值模擬39
3.1基本假設39
3.2數值模擬系統40
3.3 模擬程序42
3.4前處理 45
3.5統御方程式47
3.6邊界條件48
3.7數值模擬之效率統計48
第四章 實驗裝置與方法49
4.1 實驗物料49
4.2 實驗裝置50
4.3 實驗步驟52
第五章 結果與討論54
5.1 溢流管的幾何結構設計54
5.2 FLUENT數值模擬結果62
5.2.1溢流管結構對壓降之影響62
5.2.2 溢流管結構對速度分佈之影響71
5.2.3 溢流管結構對紊態動能之影響82
5.2.4溢流管結構變化對粒子軌跡之影響88
5.2.5溢流管結構變化對分離效率之影響96
5.3 溢流管最佳化設計109
第六章 結論111
符號說明114
英文字母114
參考文獻120
附錄A125


圖目錄
Fig. 1-1 Separation spectrum under different particle sizes 2
(呂和呂 編,1994).2
Fig.2-1 Hydrocyclone with main flow pattern.4
Fig.2-2 (a) Long cone cyclone;(b) Long cylinder steep cone cyclone.(Trawinski, 1977)6
Fig.2-3 Prerejection ahead of a gravity settler.12
(Trawinski, 1977)12
Fig.2-4 Parallel connection of a gravity settler and a hydrocyclone.(Trawinski, 1977)13
Fig.2-5 Multicyone with 8×12” diameter hydrocyclones.13
(Trawinski, 1977)13
Fig.2-6 Multicyclone “spider” assembly with 31×40mm. hydrocyclones .(Trawinski, 1977)14
Fig.2-7 The selectivity curve.(Dyakowski等人, 2002)15
Fig.2-8 Diagrams to explain the equilibrium orbit theory of hydrocyclone mechanism and LZVV.(Kawatra等人, 1996)18
Fig.2-9 Velocity profile of three vortex types.(Puprasert 等人, 2004)27
Fig.2-10 Differential size distributions in feed, overflow and underflow.37
(Trawinski , 1977)37
Fig.2-11 Split of feed particles between overflow and underflow.37
(Trawinski , 1977)37
Fig.3-1 The geometry of the hydrocyclone at x=0-plane.41
Fig.3-2 The geometry of the hydrocyclone at z=0-plane.41
Fig.3-3 The procedural steps of numerical simulation.43
Fig.3-4 Simulation setting process.44
Fig.3-5 Finite volume mesh used for the software Gambit simulation. (a)Side view46
Fig.3-5 Finite volume mesh used for the software Gambit simulation. (b)Top view46
Fig.4-1 Particle size distribution of CaCO349
Fig.4-2 Dimensions of the hydrocyclone geometry.(unit: mm)50
Fig.4-3 Schematic diagram of the experiment apparatus.51
Fig. 5-1 The perspective drawing of hydrocyclone with type A, B and C.60
Fig. 5-2 The perspective drawing of hydrocyclone with type D and E.61
Fig. 5-3 The pressure drop of Type A of hydrocyclones under inlet velocity of 10 m/s64
Fig. 5-5 The pressure drop of Type C of hydrocyclones under inlet velocity of 10 m/s66
Fig. 5-6 The relationship between pressure drop and Wi/Dc of Type A, B and C of hydrocyclones under inlet velocity of 10 m/s67
Fig. 5-7 The pressure drop of Type D of hydrocyclones under inlet velocity of 10 m/s69
Fig. 5-8 The pressure drop of Type E of hydrocyclones under inlet velocity of 10 m/s69
Fig. 5-9 The relationship between pressure drop and the length of modified vortex finder of Type D and E of hydrocyclones under inlet velocity of 10 m/s70
Fig. 5-10 Tangential velocity profiles in hydrocyclones at the cross-section of z=0.078 m under inlet velocity of 10 m/s71
Fig. 5-12 The contours of Tangential velocity profiles in hydrocyclones at the cross-section of z=0.075 m under inlet velocity of 10 m/s73
Fig. 5-13 The contours of Tangential velocity profiles in hydrocyclones at the cross-section of z=0.075 m under inlet velocity of 10 m/s73
Fig. 5-14 The contours of velocity magnitude profiles of Type A, B and at the cross-section of x=0 m under inlet velocity of 10 m/s75
Fig. 5-15 The contours of velocity magnitude profiles of Type A, B and C at the cross-section of x=0 m under inlet velocity of 7 m/s76
Fig. 5-16 The contours of velocity magnitude profiles of Type A, B and C at the cross-section of x=0 m under inlet velocity of 12 m/s76
Fig. 5-17 The contours of Tangential velocity profiles of Type D at the cross-section of z=0.075 m under inlet velocity of 10 m/s77
Fig. 5-18 The contours of Tangential velocity profiles of Type E at the cross-section of z=0.075 m under inlet velocity of 10 m/s78
Fig. 5-19 The contours of Tangential velocity profiles of Type D and E at the cross-section of x=0 m under inlet velocity of 10 m/s80
Fig. 5-20 The contours of Tangential velocity profiles of Type D and E at the cross-section of x=0 m under inlet velocity of 7 m/s81
Fig. 5-21 The contours of Tangential velocity profiles of Type D and E at the cross-section of x=0 m under inlet velocity of 12 m/s81
Fig. 5-22 Kinetic energy profiles in hydrocyclones at the cross-section of z=0.078 m under inlet velocity of 10 m/s83
Fig. 5-23 The contours of Turbulence Kinetic energy profiles of Type B at the cross-section of x=0 m under inlet velocity of 10 m/s83
Fig. 5-24 The contours of Turbulence Kinetic energy profiles of Type B at the cross-section of x=0 under inlet velocity of 7 m/s84
Fig. 5-25 The contours of Turbulence Kinetic energy profiles of Type B at the cross-section of x=0 under inlet velocity of 12 m/s84
Fig. 5-26 The contours of Turbulence Kinetic energy profiles of Type D and E at the cross-section of x=0 under inlet velocity of 10 m/s86
Fig. 5-27 The contours of Turbulence Kinetic energy profiles of Type D and E at the cross-section of x=0 under inlet velocity of 7 m/s87
Fig. 5-28 The contours of Turbulence Kinetic energy profiles of Type D and E at the cross-section of x=0 under inlet velocity of 12 m/s87
Fig. 5-29 The streamline of velocity magnitude profiles of Type A、B and C at the cross-section of x=0 under inlet velocity of 10 m/s88
Fig. 5-30 Typical particle trajectories of underflow in hydrocyclones with difference designs under inlet velocity of 10 m/s90
Fig. 5-31 Typical particle trajectories of underflow in hydrocyclones with difference designs under inlet velocity of 10 m/s90
Fig. 5-32 The streamline of velocity magnitude profiles of Type D and E at the cross-section of x=0 under inlet velocity of 10 m/s91
Fig. 5-33 Typical particle trajectories of overflow in hydrocyclones with difference designs under inlet velocity of 10 m/s93
Fig. 5-34 Typical particle trajectories of overflow in hydrocyclones with difference designs under inlet velocity of 10 m/s93
Fig. 5-35 The streamline of velocity magnitude profiles of Type A、B and C at the cross-section of x=0 under inlet velocity of 7 m/s94
Fig. 5-36 The streamline of velocity magnitude profiles of Type D and E at the cross-section of x=0 under inlet velocity of 7 m/s 94
Fig. 5-37 The streamline of velocity magnitude profiles of Type A、B and C at the cross-section of x=0 under inlet velocity of 12 m/s95
Fig. 5-38 The streamline of velocity magnitude profiles of Type D and E at the cross-section of x=0 under inlet velocity of 12 m/s95
Fig. 5-39 Comparison of particle separation efficiency with hydrocyclone under different inlet velocity among 7, 10 and 12 m/s97
Fig. 5-40 Comparison of particle separation efficiency among hydrocyclone with different designs under an inlet velocity of 10 m/s99
Fig. 5-41 Comparison of particle separation efficiency in modified hydrocyclone with different designs under an inlet velocity of 10 m/s99
Fig. 5-42 Comparison of total sepaeation efficiency of diameter among hydrocyclones with different designs under an inlet velocity of 10 m/s101
Fig. 5-43 Comparison of total separation efficiency of diameter particle in modified hydrocyclone with different designs under an inlet velocity of 10 m/s102
Fig. 5-44 Comparison of total separation efficiency in with Type D and E under different inlet velocity103
Fig. 5-45 Comparison of d90 in modified hydrocyclone with Type A, B and C under an inlet velocity of 10 m/s105
Fig. 5-46 Comparison of d90 particle in modified hydrocyclone with Type D and E under an inlet velocity of 10 m/s105
Fig. 5-47 Comparison of Sd in modified hydrocyclone with Type A, B and C under an inlet velocity of 10 m/s107
Fig. 5-48 Comparison of Sd in modified hydrocyclone with Type D and E under an inlet velocity of 10 m/s107
Fig. 5-49 Comparison of particle separation efficiency among hydrocyclone type D-II with different inlet velocity110
Fig. A-1 Comparison of particle separation efficiency in modified hydrocyclone with different designs under an inlet velocity of 7 m/s125
Fig. A-2 Comparison of particle separation efficiency in modified hydrocyclone with different designs under an inlet velocity of 12 m/s125
Fig. A-3 Uniform and RR distributions126
Fig. A-4 Comparison of particle separation efficiency in hydrocyclone under an inlet velocity of 10 m/s126



表目錄
Table 2-1 Classification of hydrocyclones design.11
Table 5-1 The compare of structure for hydrocyclone type A.55
Table 5-2 The compare of structure for hydrocyclone type B.56
Table 5-3 The compare of structure for hydrocyclone type C.57
Table 5-4 The compare of structure for hydrocyclone type D.58
Table 5-5 The compare of structure for hydrocyclone type E.59
Table 5-6 The pressure drops through five kinds of hydrocyclones strcuture under an inlet velocity of 10 m/s63
Table 5-7 The pressure drops of Type A, B and C strcuture under inlet velocity of 10 m/s67
Table 5-8 The pressure drops of Type D and E strcuture under inlet velocity of 10 m/s70
Table 5-9 The total separation efficiency of Type A, B and C strcuture under inlet velocity of 10 m/s101
Table 5-10 The total separation efficiency of Type D and E strcuture under inlet velocity of 10 m/s102



參考文獻 Boylu, F., K Cinku, F Esenli and M. S. Celik, “The separation efficiency of Na-bentonite by hydrocyclone and characterization of hydrocyclone products”, International Journal of Mineral Processing, 94, 196–202 (2010)
Coelho, M. A. Z. and R. A. Medronho, “A Model for Performance Prediction of Hydrocyclones”, Chemical Engineering Journal, 84,7-14 (2001).
Frachon, M. and J. J. Cilliers, “A Generall Model for Hydrocyclone Partition Curves”, Chemical Engineering Journal, 73, 53-59 (1999).
Gao, S.L., D.Z. Wei, W.G. Liu, L.Q. Ma, T. Lu and R.Y. Zhang “CFD numerical simulation of flow velocity characteristics of hydrocyclone” Transactions of Nonferrous Metals Society of China, 21, 2783-2789 (2011).
Golyk, V., S. Huber , M.G. Farghaly , G. Prolss , E. Endres , T. Neesse , M.A. Hararah “Higher kaolin recovery with a water-injection cyclone Minerals Engineering”, 24, 98–101 (2011).
Hwang, K.J., S.Y. Lyu and Y. Nagase, “Particle separation efficiency in two 10-mm hydrocyclones in series”, Journal of the Taiwan Institute of Chemical Engineers, 40, 313–319 (2009).
Hwang, K.J., Y.W. Hwang , H. Yoshida and K. Shigemori “Improvement of particle separation efficiency by installing conical top-plate in hydrocyclone”, Powder Technology, 232, 41–48 (2012).
Hwang, K.J., Y.W. Hwang and H. Yoshida, “Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics”, Chemical Engineering Science, 85, 62–68 (2013).
Kashiwaya, K., T. Noumachi, N. Hiroyoshi, M. Ito and M. Tsunekawa, “Effect of particle shape on hydrocyclone classification”, Powder Technology, 226, 147–156 (2012).
Kumar, S., T. W. Piorg. and D. Ramkrishna, “A New Method for Estimating Hindered Creaming/Settling velocity of Particles in Polydisperse Systems”, Chemical Engineering Science, 55, 1893-1904 (2000).
Mori, M., S. Bernardo, A.P. Peres and R.P. Dionı’sio, “3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles”, Powder Technology, 162, 190–200 (2006).
Majumder, A.K., O. Yerriswamy and J. P. Barnwal, “The “Fish-Hook”Phenomenon in Centrifugal Separation of Fine Particles”, Mineral s Engineering, 16, 1005-1007 (2003).
Nageswararao, K., “A Critical Analysis of The Fish Hook Effect in Hydrocyclone Classifiers”, Chemical Engineering Journal, 80, 251-265 (2000).
Neesse, T. and J. Dueck, “Air core formation in the hydrocyclone”, Minerals Engineering, 20, 349–354 (2007)
Nenu, R.K. and H. Yoshida, “Comparison of separation performance between single and two inlets hydrocyclones”, Advanced Powder Technology, 20, 195– 202 (2009).
Pasquier, S. and J. J. Cillers, “Sub-Micron Particle Dewatering Using Hydrocyclones”, Chemical Engineering Journal, 80, 283-288 (2000).
Puprasert, C., G. Hebrard, L. Lopez and Y. Aurelle, “Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treatment”, Chemical Engineering and Processing, 43, 67-83 (2004).
Sripriya, R., N. Suresh, S. Chandra and D. Bhattacharjee, “The effect of diameter and height of the inserted rod in a dense medium cyclone to suppress air core”, Minerals Engineering, 42, 1–8 (2013)
Schuetz, S., G. Mayer, M. Bierdel and M. Piesche, “Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics”, Miner Process,73, 229–237, (2004)
Vieira, L.G.M. and M.A.S. Barrozo, “Effect of vortex finder diameter on the performance of a novel hydrocyclone separator”, Minerals Engineering, 57, 50–56, (2014).
Williams, R.A., J.C. Cullivan, T. Dyakowski and C.R. Cross, “New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics”, Minerals Engineering, 17, 651–660, (2004).
Wang, H.L., Q. Yang, W.J. Lv and L. Ma, “CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement”, Separation and Purification Technology, 102, 15–25 (2013).
Yu, A.B. and B. Wang, “Numerical study of particle–fluid flow in hydrocyclones with different body dimensions”, Minerals Engineering, 19, 1022–1033 (2006)
Yu, A.B. and B. Wang, “Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder”, Chemical Engineering Journal, 135, 33–42 (2008).
Yu, A.B., K.W. Chu, B. Wang and A. Vince, “Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of vortex finder outlet pressure”, Minerals Engineering, 31, 46–58, (2012)
Zhao, L., M. Jiang and B. Xu, B. Zhu “Development of a new type high-efficient inner-cone hydrocyclone”, Chemical Engineering Research and Design, 90, 2129–2134 (2012)
呂維明、呂文芳 編,〝過濾技術〞高立圖書有限公司,台北,(1994)。
劉仁桓,<<旋流過濾器分離機理研究>>,中國:中國石油大學,化工工程機械研究所,(2011)。
朱宏武,馮進,薛敦松,”液-液分離旋流器結構選型計算”,石油礦場機械,第32卷,第五期, 30-34(2003)。
孫玉波,”淺談水力旋流器的工作原理和影響參數”,礦業快報,總第403期,1月第1期(2003)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信