淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0508201414415100
中文論文名稱 應用等差田口優化法於超寬頻天線的設計
英文論文名稱 Design of UWB Antenna via the Application of Arithmetic Taguchi's Optimization Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 賴品儒
研究生英文姓名 Pin-Ru Lai
學號 601440240
學位類別 碩士
語文別 中文
口試日期 2014-07-10
論文頁數 76頁
口試委員 指導教授-李慶烈
委員-張知難
委員-丘建青
委員-李慶烈
中文關鍵字 平面天線  超寬頻  超寬頻天線  響應表面模型  田口法 
英文關鍵字 Planar Antenna  Ultra-wideband  UWB  UWB antenna  Response Surface Model  Taguchi method 
學科別分類 學科別應用科學電機及電子
中文摘要 超寬頻(UWB)天線是一個無線超寬頻系統的關鍵元件,本論文研究一個平面單極UWB天線的優化設計,且以0.8mm厚的FR4基板(相對介電係數為4.4)來進行模擬與實驗驗證。優化過程乃是以一個長方形單極當作初始結構,並將其細分成多個(例如10個)細長條的金屬strip,且以strip的長度當作待優化變數。
本論文的目的在使用一個系統性的優化設計方法(結合等差田口優化法與響應表面模型技巧)來探究上述平面單極UWB天線的特性,包括只改變單極輻射體的下緣、只改變接地面的上緣,或同時改變上述兩者的的上緣與下緣所產生的效果。 除此之外,我們還探討了將細長條的寬度,以及接地面的寬度也一起加入做為變數所產生的效果。實驗與模擬結果顯示經此方法設計出來的平面單極UWB天線的|S11|max較之前的研究設計結果還要低3dB左右(達-13dB)。
英文摘要 Ultra-wideband (UWB) antenna is a key element for a wireless ultra-wideband system. In this thesis, the optimization of the UWB planar monopole antennas is considered, for which the UWB antenna is assumed to reside on an FR4 board of 0.8mm thick (relative dielectric constant=4.4) and the simulation and experimental verification are carried out. The optimization process starts with a rectangular monopole structure, and the metallic monopole structure is subdivided into many (eg. 10) thin strips such that the lengths of the strips are used as variables to be optimized.

The purpose of this thesis is to employ a systematic optimization method (combination of Taguchi optimization method and response surface modeling techniques) to explore the S11 characteristics of the above planar UWB monopole antenna. The examples tested include those by changing only the lower edge of the monopole radiator, and those by changing only the upper edge of the ground plane, in addition to those by changing both the lower edge and the upper edge, respectively, of the above mentioned edges. Furthermore, we also investigate the performance by adding two more variables , that is, the width of the strips and the width of the ground plane. Simulated and experimental results show that the achieved | S11 | max (about -13dB) for the optimized UWB planar monopole antenna is lower than those of previous studies by ~3dB.
論文目次 中文摘要 I
英文摘要 II
第一章 序論 1
1.1 簡介 1
1.2 研究背景 1
1.3 論文架構 5
第二章 平面寬頻單極天線設計 6
2.1傳統寬頻天線的演化 6
2.2全平面正方形單極天線初始結構的計算 11
2.3天線接地面和金屬貼片的結構參數原理分析 14
2.4連續直交表的使用 20
2.5改良式田口最佳化法 23
第三章 應用改良式田口最佳化法於天線設計 26
3.1 簡介 26
3.2以金屬輻射體下緣與接地面上緣的高度變數進行設計 26
3.2.1針對金屬輻射體下緣結構參數的設計 26
3.2.2針對天線接地面上緣的結構參數之設計 33
3.2.3同時變動天線接地面上緣與金屬輻射體下緣的結構參數之設計 40
3.3納入金屬長條形寬度做為參數的設計 47
3.3.1縮窄金屬長條形寬度之設計 47
3.3.2增加金屬長條形寬度之設計 50
3.4納入金屬長條形寬度與接地面總寬度做為變數的設計 56
第四章結論 72
參考文獻 74



圖目錄
圖2.1(a)λ/4單極天線(b)圓錐形天線(c)火山煙狀天線之二維結構 6
圖2.2水滴狀天線之二維結構圖 7
圖2.3水滴狀天線的演化順序 8
圖2.4水滴狀天線的VSWR 之頻率響應 8
圖2.5水滴狀天線在(a)3GHz(b)6GHz(c)9GHz (d)12GHz 之輻射場型 9
圖2.6平面寬頻天線的演化圖 10
圖2.7圓柱體之立體結構 11
圖2.8矩形單極微帶天線的二維結構圖 13
圖2.9初始正方形單極天線的結構 16
圖2.10接地面(ground)微小變動對S11參數之影響 17
圖2.11金屬貼片微小變動對S11參數之影響 17
圖2.12初始正方形單極天線在間隙處由饋入線往金屬貼片端看入之 阻抗圖 18
圖2.13方形單極天線(g=0.7mm)由饋入線看入之Smith chart變化圖
18
圖2.14方形單極天線(g=0.7mm)之等效電路模型 19

圖3.1天線結構示意圖 28
圖3.2第一次迭代做驗證實驗後的反射損耗圖 28
圖3.3第二次迭代做驗證實驗後的反射損耗圖 29
圖3.4第三次迭代做驗證實驗後的反射損耗圖 29
圖3.5第四次迭代做驗證實驗後的反射損耗圖 30
圖3.6第五次迭代做驗證實驗後的反射損耗圖 30
圖3.7五次迭代實驗之反射損耗變化圖 31
圖3.8最佳化後的天線結構示意圖 31
圖3.9最佳化後的天線結構實體圖 32
圖3.10最佳化後的天線反射損耗圖 32
圖3.11天線結構示意圖 34
圖3.12第一次迭代做驗證實驗後的反射損耗圖 35
圖3.13第二次迭代做驗證實驗後的反射損耗圖 35
圖3.14第三次迭代做驗證實驗後的反射損耗圖 36
圖3.15第四次迭代做驗證實驗後的反射損耗圖 36
圖3.16第五次迭代做驗證實驗後的反射損耗圖 37
圖3.17五次迭代實驗之反射損耗變化圖 37
圖3.18最佳化後的天線結構示意圖 38
圖3.19最佳化後的天線結構實體圖 38
圖3.20最佳化後的天線反射損耗圖 39
圖3.21天線結構示意圖(a)金屬貼片面 (b)接地面 42
圖3.22第一次迭代做驗證實驗後的反射損耗圖 42
圖3.23第二次迭代做驗證實驗後的反射損耗圖 43
圖3.24第三次迭代做驗證實驗後的反射損耗圖 43
圖3.25第四次迭代做驗證實驗後的反射損耗圖 44
圖3.26第五次迭代做驗證實驗後的反射損耗圖 44
圖3.27五次迭代實驗之反射損耗變化圖 45
圖3.28最佳化後的天線結構示意圖 45
圖3.29最佳化後的天線結構實體圖 46
圖3.30最佳化後的天線反射損耗圖 46
圖3.31天線結構示意圖 48
圖3.32五次迭代實驗之反射損耗變化圖 49
圖3.33最佳化後的天線反射損耗圖 49
圖3.34天線示意圖 51
圖3.35第一次迭代做驗證實驗後的反射損耗圖 51
圖3.36第二次迭代做驗證實驗後的反射損耗圖 52
圖3.37第三次迭代做驗證實驗後的反射損耗圖 52
圖3.38第四次迭代做驗證實驗後的反射損耗圖 53
圖3.39第五次迭代做驗證實驗後的反射損耗圖 53
圖3.40五次迭代實驗之反射損耗變化圖 54
圖3.41最佳化後的天線結構示意圖 54
圖3.42最佳化後的天線結構實體圖 55
圖3.43最佳化後的天線反射損耗圖 55
圖3.44天線結構示意圖 58
圖3.45第一次迭代做驗證實驗後的反射損耗圖 58
圖3.46第二次迭代做驗證實驗後的反射損耗圖 59
圖3.47第三次迭代做驗證實驗後的反射損耗圖 59
圖3.48第四次迭代做驗證實驗後的反射損耗圖 60
圖3.49第五次迭代做驗證實驗後的反射損耗圖 60
圖3.50五次迭代實驗之反射損耗變化圖 61
圖3.51最佳化後的天線結構示意圖 62
圖3.52最佳化後的天線結構實體圖 62
圖3.53最佳化後的天線反射損耗圖 63

圖3.54應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@3.1GHz) 63
圖3.55應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@4GHz) 64
圖3.56應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@5Hz) 64
圖3.57應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬與實測結果(@6GHz) 65
圖3.58應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬結果(@7GHz) 65
圖3.59應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬結果(@8GHz) 66
圖3.60應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬結果(@9GHz) 66
圖3.61應用連續直交表最佳化於天線H-plane(X-Z平面)的輻射場型模擬結果(@10.6GHz) 67
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@3.1GHz) 67

圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@4GHz) 68
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@5GHz) 68
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬與實測結果(@6GHz) 69
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬結果(@7GHz) 69
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬結果(@8GHz) 70
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬結果(@9GHz) 70
圖3.62應用連續直交表最佳化於天線E-plane(Y-Z平面)的輻射場型模擬結果(@10.6GHz) 71

表目錄
表2.1直交表OA(18,5,3,2) 22
表3.1直交表直交表OA (27,10,3,2) 41
表3.2各參數結果 62

參考文獻 [1] J. K. Paek and H. J. Eom, “Cylindrical Cavity-Backed Antenna,” IEEE Antenans and Wireless Propagation Letters, Vol. 8, 2009, pp.852-855.
[2] Xiao Yong-ping, Li Ye-qiang. “The Conformal Antenna Applied to Antiradiation Missile,” Shipboard electronic countermeasure. 2008, Vol.31, No.2: 89-92
[3] X. S. Yang, K. T. Ng, S. H. Yeung, and K. F. Man, “Jumping genes multiobjective optimization scheme for planar monopole ultrawideband antenna,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3659–3666, Dec. 2008.
[4] S. Chaimool and K. L. Chung, “CPW-fed mirrored-L monopole antenna with distinct triple bands for WiFi and WiMAX applications,” Electron. Lett., vol. 45, pp. 928–929, 2009.
[5] T.-N. Chang and M.-C. Wu, “Band-notched design for UWB antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 636–640, 2008.
[6] J. Liu, S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, “Compact printed ultra-wideband monopole antenna with dual band-notched characteristics,” Electron. Lett., vol. 44, no. 12, pp. 710–711, Jun. 2008.
[7] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May
[8] M. Ojaroudi, C. Ghobadi, and J. Nourinia, “Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 728–731, 2009.
[9] H.-J. Zhou, B.-H. Sun, Q.-Z. Liu and J.-Y. Deng, “Implementation and investigation of U-shaped aperture UWB antenna with dual bandnotched characteristics,” Electron. Lett., vol. 44, no. 24, pp. 1387–1388, Nov. 2008.
[10] M. Abdollahvand, H. R. Hassani and G. R. Dadashzadeh, “Novel modified monopole antenna with band-notch characteristic for UWB application,” IEICE Electron. Express, vol. 7, no. 16, pp. 1207–1213, Aug. 2010.
[11] M. Ojaroudi, G. Kohneshahri, and J. Noory, “small modified monopole antenna for UWB application,” Microw., Antennas Propag., vol. 3, no. 5, pp. 863–869, Aug. 2009.
[12] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[13] W. S. Lee, D. Z. Kim, K. J. Kim, and J. W. Yu, “Wideband planar monopole antennas with dual band-notched characteristics,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2800–2806, Jun. 2006.
[14] J. Ding, Z. Lin, Z. Ying, and S. He, “A compact ultra-wideband slot antenna with multiple notch frequency bands,” Microw. Opt. Technol. Lett, vol. 49, no. 12, pp. 3056–3060, 2007.
[15] L. Luo, Z. Cui, J.-P. Xiong, X.-M. Zhang, and Y.-C. Jiao, “Compact printed ultra-wideband monopole antenna with dual band-notch characteristic,” Electron. Lett., vol. 44, no. 19, Sep. 2008.
[16] A. Zhao and Rahola J., “Compact printed patch and bent-patch monopole Ultra-Wideband (UWB) antennas for mobile terminals,” In Proc. IEEE Intl. Symp. Antennas and Propaga., pp. 5135-5138, Jun. 2007.
[17] C. Y. Chiu, H. Wong and C.H. Chan, “Study of small wideband folded-patch-feed antennas,” IET Microw. Antennas & Propag., vol. 1, no. 2, pp. 501 – 505 April 2007.
[18] S. Ahn and H. Choo , “A Systematic Design Method of On-Glass Antennas Using Mesh-Grid Structures,” IEEE Transactions on Vehicular Technology, Volume 59 , Issue 7, Pages 3286-3293, 2010.
[19] A. Andujar, J. Anguera and C. Puente , “A systematic method to design broadband matching networks,” 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1-5, 2010.
[20] O. Lopez, L.G. de Vicuna, M. Castilla, M. Lopez and J. Majo, “A systematic method to design sliding mode surfaces by imposing a desired dynamic esponse”, IECON '98. Proceedings of the 24th Annual Conference of the IEEE, vol.1, pp.381-384, 1998.
[21 ]M. Moosazadeh, A.M. Abbosh, and Z. Esmati, “Design of compact planar ultrawideband antenna with dual-notched bands using slotted square patch and pi-shaped conductor-backed plane,” IET on Microwaves, Antennas & Propagation, Volume 6 , Issue 3, pp.290-294, 2012.
[22] W.A. Swart, and J.C. Olivier, “Numerical synthesis of arbitrary discrete arrays,” IEEE Transactions on Antennas and Propagation, Volume 41, Issue 8, pp.1171-1174, 1993.
[23] A. Boag, A. Boag, E. Michielssen and R. Mittra, “Design of electrically loaded wire antennas using genetic algorithms,” IEEE Transactions on Antennas and Propagation, Volume 44, Issue 5, 1996.
[24] Anguera, J.; Puente, C.; Borja, C., “A procedure to design wide-band electromagnetically-coupled stacked microstrip antennas based on a simple network model”,IEEE Antennas and Propagation Society International Symposium, 1999, Volume 2, pp. 944 –947.
[25] N. Jin, and Y. Rahmat-Samii, “Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs,” IEEE Transactions on Antennas and Propagation, Volume 53, Issue 11, pp. 3459-3468, 2005.
[26] D. Staiculescu, N. Bushyager, A. Obatoyinbo, L.J. Martin, and M.M. Tentzeris, “Design and optimization of 3-D compact stripline and microstrip Bluetooth/WLAN balun architectures using the design of experiments technique,” IEEE Transactions on Antennas and Propagation, Volume 53,Issue 5, pp. 1805-1812, 2005.
[27] Wei-Chung Weng; Fan Yang; Elsherbeni, A.Z., “ Linear Antenna Array Synthesis Using Taguchi's Method: A Novel Optimization Technique in Electromagnetics,” IEEE Transactions on Antennas and Propagation, Volume 55, Issue 3, Part 1, pp. 723 – 730, 2007.
[28] Lin-Yu Tseng; Tuan-Yung Han, “An Evolutionary Design Method Using Genetic Local Search Algorithm to Obtain Broad/Dual-Band Characteristics for Circular Polarization Slot Antennas” IEEE Transactions on Antennas and Propagation,Volume 58, Issue 5, pp.1449-1456, 2010.
[29]G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi's Quality Engineering Handbook,
John Wiley & Sons Inc., NJ, 2005.
[30]C. Weng, F. Yang, and A. Z. Elsherbeni, Electromagnetics and Antenna Optimization using Taguchi's Method, Morgan & Claypool Publishers, CA, December 2007.
[31]D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley,1989.
[32]John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third Edition, McGraw-Hill, New York, 2002.
[33]T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna for the FCC-Approved UWB Frequency Band”, Antennas and Propagation Society International Symposium, 2003. IEEE, Volume: 3, June 22-27, 2003, pp.460-463.
[34] 倪家麟,直交表用於π型平面天線之設計,碩士論文,淡江大學電機工程學系,2013年7月
[38] 孫積賢,使用隨機式最佳化法於二維散射體之電磁影像研究,博士論文,淡江大學電機工程學系,2011年6月
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信