§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0508201013080100
DOI 10.6846/TKU.2010.00150
論文名稱(中文) (A,Li)2Ti2O7 (A = Y、Gd) 固態電解質的製備與離子導電性研究
論文名稱(英文) Preparation and ionic conductivity of (A,Li)2Ti2O7 (A = Y, Gd) solid electrolyte
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 謝欣諭
研究生(英文) Shin-Yu Shieh
學號 697160603
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-20
論文頁數 93頁
口試委員 指導教授 - 高惠春
委員 - 黃炳照
委員 - 許火順
關鍵字(中) 固態電解質
焦綠石結構
離子導體
關鍵字(英) solid state electrolyte
pyrochlore structure
ionic conductivity
lithium ion
solid oxide fuel cell
crystal structure
第三語言關鍵字
學科別分類
中文摘要
(A2-xLix)Ti2O7-x (A1LT, x = 0.04 – 0.11) (A = Y、Gd),兩系列樣品分別在1150和1250 oC下燒結10 h。比較A1LT和 A2-xTi2O7 (AT)系列樣品的晶胞參數,發現在相同取代量x的情況下,A1LT系列的晶胞參數會大於AT系列的晶胞參數,這表示Li+成功的取代至A1LT樣品A site的位子。利用添加兩倍的Li2O至A1LT系列樣品,即為(A2-xLi3x)Ti2O7 (A3LT)系列,A3LT與A1LT在相同取代量x的條件下,會有相同的晶胞參數。因此,添加額外的Li2O可當作助熔劑的功用,藉由固態共熔點的產生而降低A3LT樣品的熔點,使A3LT材料獲得改善,且有較大的晶粒。添加Li2O當助熔劑至A1LT系列樣品和燒結時的溫度控制,可使(A2-xLix)Ti2O7-x (A1LT, x = 0.04 – 0.11) (A = Y 、Gd)系列在相同的燒結溫度(分別為1150和1250 oC 10 h),樣品的相對緻密度均在90 % 以上。Y3LY系列中取代量為x = 0.06樣品在700 ℃時的導電度時為4.07 × 10-4S.cm-1;而根據報導指出,相較於Y2Ti2O7樣品在700度C的導電度為2.03X10-4S.cm-1,卻要以1600度C燒結。
英文摘要
Two series of (A2-xLix)Ti2O7-x (A1LT, x = 0.04 – 0.11) with A = Y and Gd were sintered at 1150 and 1250 oC respectively for 10 h in the static air atmosphere. Unit cell a-axis of the A1LT is longer than that of the A2-xTi2O7 (AT) with the same amount of x and the same A site cation, indicating a successful substitution of the Li+ ion into the A site of A1LT. Addition of extra Li2O (2x) into A1LT, the nominal composition becomes (A2-xLi3x)Ti2O7 (A3LT), which has the same unit cell a-axis as A1LT with the same amount of x. Therefore, the extra Li2O added in the A3LT is probably acting as a self flux to lower the melting point of the mixture. As a result, materials become more compact and grains grow bigger. Adding Li2O as a flux and the heating history is carefully controlled, compact samples of (A2-xLix)Ti2O7-x (A1LT, x = 0.04 – 0.11) with A = Y and Gd with relative density higher than 90% can be obtained at a temperature as low as 1150C and 1250C respectively. One compound of Y3LT with x=0.06 prepared at 1150C had an AC conductivity of 4.07 x10-4S/cm at 700C, the ionic conductivity is comparable to a Y2Ti2O7 prepared at 1600C that is 2.03x10-4 S/cm reported.
第三語言摘要
論文目次
目 錄
目錄І
圖索引Ⅲ
表索引Ⅸ
第一章 緒論1
1-1 固體氧化物燃料電池(Solid Oxide Fuel Cell)1
1-2 固態電解質4
1-3 氧離子導體10
1-4 常用的固態氧化物電解質材料11
1-5 研究動機及目的12
第二章 實驗13
2-1 藥品13
2-2 實驗流程14
2-3 樣品的物性分析14
2-3-1 X-光粉末繞射圖譜鑑定15
2-3-2 Rietveld精算法17
2-3-3 掃描式電子顯微鏡19
2-3-5 X-光吸收近邊緣光譜21
第三章 結果與討論.............................
22
3-1 樣品單相鑑定.....................................
26
3-2 結構分析.........................................
42
3-3掃描式電子顯微鏡(SEM).............................
54
3-4樣品緻密度........................................
57
3-5交流阻抗分析(Ac Impedance) .........................
84
3-6 X-光吸收近邊緣光譜.................................
87
第四章 結論與未來計畫88
4-1 結論89
4-2 未來計畫89
參考文獻91
圖 索 引
圖1-1
SOFC簡單示意圖............................
2
圖1-2
1/8焦綠石的單位晶胞結構....................
4
圖1-3
氯化鈉結構示意圖...........................
4
圖1-4
螢石單位晶胞................................
6
圖1-5
ABO3 的結構................................
8
圖1-6
焦綠石的單位晶胞結構........................
9
圖1-7
Ln2Zr2O7 (Ln = La、Nd、Sm、Eu、Gd、Y、Yb)焦綠石結構導電度..............................
10
圖2-1
AUTOLAB PGSTAT30交流阻抗分析量測示意圖..
19
圖3-1
Y2-xLi3xTi2O7 (Y3LT), (x = 0.04 – 0.11) X-光繞射圖譜
23
圖3-2
Y2-xLixTi2O7-x (Y1LT), (x = 0.04 – 0.11) X-光繞射圖譜.........................................
23
圖3-3
Y2-xTi2O7-3x/2(YT), (x = 0.04 – 0.11) X-光繞射圖譜..
24
圖3-4
Y2-xLi3xTi2O7(Y3LT), (x = 0.11)X-光繞射圖譜....
24
圖3-5
Gd2-xLi3xTi2O7 (G3LT), (x = 0.04 – 0.11) X-光繞射圖譜.........................................
25
圖3-6
Gd2-xLixTi2O7-x (G1LT), (x = 0.04 – 0.11) X-光繞射圖譜.........................................
25
IV
圖3-7
Gd2-xTi2O7-3x/2(GT), (x = 0.04 – 0.11) X-光繞射圖譜.
26
圖3-8
Y2-xLi3xTi2O7 (Y3LT), (x = 0.04)樣品的精算結果....
28
圖3-9
Y2-xLi3xTi2O7 (Y3LT), (x = 0.08)樣品的精算結果....
28
圖3-10
Y2-xLi3xTi2O7 (Y3LT), (x = 0.11)樣品的精算結果....
29
圖3-11
Y2-xLixTi2O7-x (Y1LT), (x = 0.04)樣品的精算結果...
29
圖3-12
Y2-xLixTi2O7-x (Y1LT), (x = 0.08)樣品的精算結果...
30
圖3-13
Y2-xLixTi2O7-x (Y1LT), (x = 0.11)樣品的精算結果...
30
圖3-14
Y2-xTi2O7-3x/2(YT), (x = 0.04)樣品的精算結果......
31
圖3-15
Y2-xTi2O7-3x/2(YT), (x = 0.08)樣品的精算結果......
31
圖3-16
Y2-xTi2O7-3x/2(YT), (x = 0.11)樣品的精算結果......
32
圖3-17
Gd2-xLi3xTi2O7 (G3LT), (x = 0.04)樣品的精算結果...
32
圖3-18
Gd2-xLi3xTi2O7 (G3LT), (x = 0.08)樣品的精算結果...
33
圖3-19
Gd2-xLi3xTi2O7 (G3LT), (x = 0.11)樣品的精算結果...
33
圖3-20
(Gd2-xLix)Ti2O7-x (G1LT), (x = 0.04)樣品的精算結果.
34
圖3-21
(Gd2-xLix)Ti2O7-x (G1LT), (x = 0.08)樣品的精算結果.
34
圖3-22
(Gd2-xLix)Ti2O7-x (G1LT), (x = 0.11)樣品的精算結果.
35
圖3-23
Gd2-xTi2O7-3x/2(GT), (x = 0.04)樣品的精算結果.....
35
圖3-24
Gd2-xTi2O7-3x/2(GT), (x = 0.08)樣品的精算結果.....
36
圖3-25
Gd2-xTi2O7-3x/2(GT), (x = 0.11)樣品的精算結果.....
36
圖3-26
(a) Y3LT、Y1LT、YT系列,取代量對晶格參數作圖(b) Y1LT、YT系列原子體積對晶格體積作圖..
42
圖3-27
(a) G3LT、G1LT、GT系列,取代量對晶格參數作圖(b) G1LT、GT系列原子體積對晶格體積作圖..
42
圖3-28
Y2-xTi2O7-3x/2 (YT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.08, (c) x = 0.11................
45
圖3-29
Gd2-xTi2O7-3x/2 (GT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.08, (c) x = 0.11..............
46
圖3-30
Y2-xLixTi2O7-x (Y1LT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.05, (c) x = 0.06, (d) x = 0.07.
47
圖3-31
Y2-xLixTi2O7-x (Y1LT)樣品放大倍率5000倍的SEM圖(a) x = 0.08, (b) x = 0.09, (c) x = 0.10, (d) x = 0.11.
48
圖3-32
Gd2-xLixTi2O7-x (G1LT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.05, (c) x = 0.06, (d) x = 0.07.
49
圖3-33
Gd2-xLixTi2O7-x (G1LT)樣品放大倍率5000倍的SEM圖(a) x = 0.08, (b) x = 0.09, (c) x = 0.10, (d) x = 0.11.
50
圖3-34
Y2-xLi3xTi2O7 (Y3LT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.05, (c) x = 0.06, (d) x = 0.07...
51
圖3-35
Y2-xLi3xTi2O7 (Y3LT)樣品放大倍率5000倍的SEM圖(a) x = 0.08, (b) x = 0.09, (c) x = 0.10, (d) x = 0.11...
52
圖3-36
Gd2-xLi3xTi2O7 (G3LT)樣品放大倍率5000倍的SEM圖(a) x = 0.04, (b) x = 0.05, (c) x = 0.06, (d) x = 0.07.
53
圖3-37
Gd2-xLi3xTi2O7 (G3LT)樣品放大倍率5000倍的SEM圖(a) x = 0.08, (b) x = 0.09, (c) x = 0.10, (d) x = 0.11.
54
圖3-38
Y3LT、YLT取代量對相對緻密度作圖...........
56
圖3-39
G3LT、GLT取代量對相對緻密度作圖...........
57
圖3-40
Y3LT (x =0.04)在450 oC~550 oC時的交流阻抗圖...
60
圖3-41
Y3LT (x =0.04)在300 oC-700 oC時的交流阻抗圖...
60
圖3-42
Y3LT (x =0.05)在450 oC~550 oC時的交流阻抗圖...
61
圖3-43
Y3LT (x =0.05)在300 oC-700 oC時的交流阻抗圖...
61
圖3-44
Y3LT (x =0.06)在450 oC~550 oC時的交流阻抗圖...
62
圖3-45
Y3LT (x =0.06)在300 oC-700 oC時的交流阻抗圖...
62
圖3-46
Y3LT (x =0.07)在450 oC~550 oC時的交流阻抗圖...
63
圖3-47
Y3LT (x =0.07)在300 oC-700 oC時的交流阻抗圖...
63
圖3-48
Y3LT (x =0.08)在450 oC~550 oC時的交流阻抗圖...
64
圖3-49
Y3LT (x =0.08)在300 oC-700 oC時的交流阻抗圖...
64
圖3-50
Y3LT (x =0.09)在450 oC~550 oC時的交流阻抗圖...
65
圖3-51
Y3LT (x =0.09)在300 oC-700 oC時的交流阻抗圖...
65
圖3-52
Y3LT (x =0.10)在450 oC~550 oC時的交流阻抗圖...
66
圖3-53
Y3LT (x =0.10)在300 oC-700 oC時的交流阻抗圖...
66
圖3-54
Y3LT (x =0.11)在450 oC~550 oC時的交流阻抗圖...
67
圖3-55
Y3LT (x =0.11)在300 oC-700 oC時的交流阻抗圖...
67
圖3-56
Y3LT (x =0.04)在300 oC時交流阻抗圖譜的等效電路圖........................................
68
圖3-57
Y3LT (x =0.04)在500 oC時交流阻抗圖譜的等效電路圖........................................
69
圖3-58
Y3LT (x =0.04)在300 oC–700 oC 時的相位角......
70
圖3-59
Y3LT (x =0.05)在300 oC–700 oC 時的相位角......
70
圖3-60
Y3LT (x =0.06)在300 oC–700 oC 時的相位角......
71
圖3-61
Y3LT (x =0.07)在300 oC–700 oC 時的相位角......
71
圖3-62
Y3LT (x =0.08)在300 oC–700 oC 時的相位角......
72
圖3-63
Y3LT (x =0.09)在300 oC–700 oC 時的相位角......
72
圖3-64
Y3LT (x =0.10)在300 oC–700 oC 時的相位角......
73
圖3-65
Y3LT (x =0.11)在300 oC–700 oC 時的相位角......
73
圖3-66
Y3LT (x = 0.04-0.11)系列在700 oC測量下晶粒、晶界和整體導電度取對數作圖...................
77
圖3-67
Y3LT系列相對緻密度與在700oC時測得的整體導電度作圖 電度作圖..................................
77
圖3-68
Y3LT(x=0.04-0.11)系列300oC-700 oC 晶粒導電度Arrhenius圖.................................
78
圖3-69
Y3LT(x=0.04-0.11)系列300oC-700 oC 晶界導電度Arrhenius圖.................................
79
圖3-70
Y3LT(x=0.04-0.11)系列300oC-700 oC 整體導電度Arrhenius圖.................................
80
圖3-71
log σgT對1000/T作圖晶粒的活化能與取代量關係.
82
圖3-72
log σgb.T對1000/T作圖晶界的活化能與取代量關係
82
圖3-73
log σtT對1000/T作圖整體的活化能與取代量關係.
82
圖3-74
log σg對1000/T作圖晶粒的活化能與取代量關係..
84
圖3-75
log σgb.對1000/T作圖晶界的活化能與取代量關係..
84
圖3-76
log σt對1000/T作圖晶粒的活化能與取代量關係...
84
圖3-77
Y3LT和G3LT系列樣品Ti K-edge XANES光譜圖
86
圖3-78
Y3LT和G3LT系列樣品與Ti2O3和TiO2 rutile做標準物比較Ti氧化態改變的情形.................
87


表 索 引
表1-1
Bi2O3各結晶相在不同溫度下的導電度.........
7
表2-1
固態球磨法所用到的藥品....................
13
表3-1
Y3LT和Y1LT系列的空間結構與原子位置.....
37
表3-2
YT系列的空間結構與原子位置...............
37
表3-3
G3LT和G1LT系列的空間結構與原子位置.....
38
表3-4
GT系列的空間結構與原子位置...............
38
表3-5
Y3LT系列Rietveld精算的晶格參數與座標整理.
39
表3-6
Y1LT系列Rietveld精算的晶格參數與座標整理.
39
表3-7
YT系列Rietveld精算的晶格參數與座標整理...
40
表3-8
G3LT系列Rietveld精算的晶格參數與座標整理.
40
表3-9
G1LT系列Rietveld精算的晶格參數與座標整理.
41
表3-10
GT系列Rietveld精算的晶格參數與座標整理...
41
表3-11
Y3LT(x = 0.04–0.11)系列樣品添加額外Li2O的重量百分比. ...............................
57
表3-12
G3LT(x = 0.04–0.11)系列樣品添加額外Li2O的重量百分比. .................................
57
表3-13
Y3LT系列300 oC-700 oC所使用的等效電路{1:R1Q1R2Q2 ;2:R1(R2Q2)} .................
74
表3-14
Y3LT (x = 0.04) 300oC-700oC導電度測量結果(L = 0.114 cm, A = 0.798 cm3) ...................
74
表3-15
Y3LT (x = 0.05) 300oC-700oC導電度測量結果(L = 0.075 cm, A = 0.846 cm3) ...................
74
表3-16
Y3LT (x = 0.06) 300oC-700oC導電度測量結果(L = 0.070 cm, A = 0.795cm3) ...................
75
表3-17
Y3LT (x = 0.07) 300oC-700oC導電度測量結果(L = 0.112 cm, A = 0.789 cm3) ...................
75
表3-18
Y3LT (x = 0.08)300oC-700oC導電度測量結果(L = 0.084 cm, A = 0.793cm3) .....................
76
表3-19
Y3LT (x = 0.09)300oC-700oC導電度測量結果(L = 0.093 cm, A = 0.789cm3) .....................
76
表3-20
Y3LT (x = 0.10)300oC-700oC導電度測量結果(L = 0.075 cm, A = 0.846cm3) .....................
76
表3-21
Y3LT (x = 0.11)300oC-700oC導電度測量結果(L = 0.153 cm, A = 0.874cm3) .....................
81
表3-22
Y3LT (x=0.04-0.11)系列log σgT對1000/T作圖晶粒的活化能................................
81
表3-23
Y3LT (x=0.04-0.11)系列log σgb.T對1000/T作圖晶界的活化能................................
81
表3-24
Y3LT (x=0.04-0.11)系列log σtT對1000/T作圖整體的活化能................................
83
表3-25
Y3LT (x=0.04-0.11)系列log σg對1000/T作圖的活化能......................................
83
表3-26
Y3LT (x=0.04-0.11)系列log σgb.對1000/T作圖晶界的活化能...............................
83
表3-27
Y3LT (x=0.04-0.11)系列log σt對1000/T作圖整體的活化能.................................83
參考文獻
參考文獻
1. J. W. Fergus, J. Power Sources 162 (2006) 30.
2. H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1.
3. J. Molenda, K. Swierczek, W. Zajac, J. Power Sources 173 (2007) 657.
4. Z. G. Liu, J. H. Ouyang, Y. Zhou, X. L. Xia, J. Power Sources 185 (2008) 876.
5. Q. A. Huang, R. Hui, B. Wang, J. Zhang, Electrochim. Acta 52 (2007) 8144.
6. A. Dutta, A. Kumar, R. N. Basu, Electrochim.Commun. 11 (2009) 699.
7. W. Nernst, Z. Elektrochem. 6 (1899) 41.
8. H. L. Tuller, Solid State Ionics 52 (1992) 135.
9. S. Kramer, M. Spears, H. L. Tuller, Solid State Ionics 72 (1994) 59.
10. C. Heremans, B. J. Wuensch, J. K. Stalic, E. prince, J. Solid State Chem. 117 (1995) 108.
11. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem. 15 (1983) 55.
12. S. A. Kramer, H. L. Tuller, Solid State Ionics 82 (1995) 15.
13. M. Han, X. Tang, H. Yin, S Peng, J. Power Sources 165 (2007) 757.
14. Z. Qu, C. Wan, W. Pan, J. Am. Chem. Soc. 19 (2007) 4913.
15. N. Bonanos, R. K. Slotwinski, B.C. H. Steel, E. P. Butler, J. Mat. Sci. Lett. 3 (1984) 245.
16. N. Bonanos, R. K. Slotwinski, B. C. H. Steel, E. P. Butler, J. Mat. Sci. 19 (1984) 785.
17. N. Q. Ming, J. Am. Ceram. Soc. 76 (1993) 563.
91
18. P. Shuk, H.D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics 89 (1996) 179.
19. H. A. Harwig, A. G. Gerards, Thermochim. Acta. 28 (1979) 121.
20. G. Mairesse, B. Scrosati, “In Fast In Transport In Solid,” Kluver, Amsterdam (1993) 271.
21. R. L. Cook, J. Electrochem. Soc.137 (1990) 3309.
22. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116 (1994) 3801.
23. M. Feng, J. B. Goodenough, Eur. J. Solid State Inorg. Chem. 31 (1994) 663.
24. P. Huang, A. Petric, J. Electrochem. Soc. 143 (1996) 1644.
25. K. Huang, M. Feng, J. B. Goodenough, J. Am. Ceram. Soc. 79 (1996) 1100.
26. J. W. Stevenson, T. R. Armstrong, D. E. McCready, L. R. Pederson, W. J. Weber, J. Electrochem. Soc. 144 (1997).
27. K. Huang, M. Feng, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 3620.
28. T K. Huang, R. S. Tichy, J. B. Goodenough, J. Am. Chem. Soc. 81 (1998) 2565.
29. K. Huang, M. Feng, J. B. Goodenough, M. Schmerling, J. Am. Chem. Soc. 143 (2006) 3630.
30. K. W.Browall, O. Muller, Mat. Res. Bull. 11 (1971) 1475.
31. H. von Gaertner, Neues Jahrb. Mineral. Geol. Palaeontol. Ref. 61 (1930) 1.
32. B. J. Kennedy, T. Vogt, J. Solid State Chem. 126 (1996) 261.
33. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem . 15 (1983) 55.
92
34. L. Minervini, R. W. Grimes, K. E. Sickafus, J. Am. Ceram. Soc. 83 (2000) 1873.
35. A. V. Shlyakhtina, A. V. Knotko, M. V. Boguslavskii, S. Yu. Stefanovich, D. V. Peryshkov, I. V. Kolbanev and L. G. Shcherbakova, Solid State Ionics 176 (2005) 2297.
36. M. P. van Dijk, A. J. Burggraaf, A. N. Cormack, C. R. A. Catlow, Solid State Ionics 17 (1985) 159.
37. B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen, SSI 129 (2000) 111.
38. B. J. Kennedy, B. A. Hunter, C. J. Howard, J. Solid State Chem. 130 (1997) 58.
39. A. Dutta, A. Kumar, R. N. Basu, Electrochem. Communications 11 (2009) 699.
40. W. Bao, W. zhu, G. Zhu, J. Gao, G. Meng, Solid State Ionics 176 (2005) 669.
41. X. Sha, Z. Lu, X. Huang, J. Miao, L. Jia, X. Xin, W. Su, J. Alloys and Compounds 424 (2006) 315.
42. K. Nomura, S. Tanase, Solid State Ionics 98 (1997) 229.
43. P. S. Anderson, G. C. Mather, F. M. B. Marques, D. C. Sinclair, A. R. West, J. Eur. Ceram. Soc. 19 (1999) 1665.
44. P. S. Anderson, F. M. B. Marques, D. C. Sinclair, A. R. West, Solid State Ionics 118 (1999) 229.
45. X. L. Xia, J. H. Ouyang, Z. G. Liu, J. Power Sources 189 (2009) 888.
46. S. A. Kramer, H. L. Tuller, Solid State Ionics 82 (1995) 15.
47. J. S. Lee, K. H. Choi, M. W. Park, Y. G. Choi, J. H. Mun, J. Alloys and Compounds 474 (2009) 219.
93
48. T. S. Zhang, J. Maa, L. B. Kong, S. H. Chan, P. Hing, J.A. Kilner, Solid State Ionics 167 (2004) 203.
49. J. Ayawanna, D. Wattanasiriwech, S. Wattanasiriwech, P. Aungkavattana, Solid State Ionics 180 (2009) 1388.
50. A. J. Burggraaf, T. Dijk, M. J. Verkerk, Solid State Ionics 5 (1981) 519.
51. H. N. Kim, H. J. Park, G. M. Choi, J. Electroceram 17 (2006) 793.
52. S. Yamaguchi, K. Kobayashi, K. Abe, S. Yamazaki, Y. Iguchi, Solid State Ionics 113–115 (1998) 393.
53. M. Moria, G. M. Tompsett, N. M. Sammes, E. Suda, Y. Takeda, Solid State Ionics 158 (2003) 79.
54. W. P. Su, Y. H. Lee, C. T. Hsieh, H. S. Sheu, J. F. Lee, Y. P. Chiangand, H. C. I. Kao, J. Chin. Chem. Soc. 56 (2009) 1112.
55. Larson, A. C.; von Dreele, R. B. General Structure AnalysisSystem; Report La-UR-86-748; Los Alamos National Laboratory: Los Alamos, 2003.
56. Rietveld, H. M. Acta Crystallogr. 151 (1967) 22.
57. Rietveld, H. M. J. Appl. Crystallogr. 65 (1969) 2.
58. 張凌雲,NSRRC BL16A1光束線 X-光吸收能譜操作手冊.
59. R. D. Shannon, C. T. Prewitt, Acta Crystallogr. Sect. 325 (1976) 751.
60. A. V. Shlyakhtina, A. V. Levchenko, J. C. C. Abrantes, V. Yu. Bychkov,V. N. Korchak, V. A. Rassulov, L. L. Larina, O. K. Karyagina, L. G. Shcherbakova, Mater. Res. Bull. 42 (2007) 742.
61. O. Smirnova, N. Kumad, Y. Yonesaki, N. Kinomura, Electrochem. Commun. 10 (2008) 485.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信