§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0508200814475600
DOI 10.6846/TKU.2008.00130
論文名稱(中文) 銀奈米流體於熱管之性能研究
論文名稱(英文) Investigation of Silver Nano-fluid Heat Pipe Thermal Performance
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 魏維瑲
研究生(英文) Wei-Chiang Wei
學號 893340090
學位類別 博士
語言別 英文
第二語言別
口試日期 2008-07-04
論文頁數 111頁
口試委員 指導教授 - 康尚文
委員 - 陳炳輝(phchen@ntu.edu.tw)
委員 - 陳志臣(jcchen@cc.ncu.edu.tw)
委員 - 陳增源(tychen @mail.tku.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
關鍵字(中) 奈米流體
熱管
熱阻
關鍵字(英) Nano-fluid
Heat Pipe
Thermal resistance
第三語言關鍵字
學科別分類
中文摘要
本論文主要為研究銀奈米流體於溝槽式熱管與燒結式熱管之性能影響。實驗中之銀奈米顆粒之粒徑為10奈米與35奈米。在實驗過程以量測奈米流體與純水充填於熱管之溫差,進而計算其熱阻來比較其性能差異。溝槽式熱管於30~60W輸入功率下,當工作流體為銀奈米流體時其熱阻較純水充填熱管之降低範圍在10%~80%。另外,實驗結果顯示溝槽式熱管之熱阻,隨著銀奈米流體濃度與銀奈米顆粒之上升,而有較低之熱阻。在燒結式熱管於輸入功率為30~50W時,銀奈米流體熱管之溫差,相較於純水熱管小了0.56℃~0.65℃。此外,銀奈米流體充填於燒結式熱管中,可達70W之操作功率,相較於工作流體為純水時高了20W之操作功率
第二部份為研究銀奈米流體之濃度與粒徑,於銅板試片表面沾溼性之影響。實驗結果顯示,表面沾溼性隨著銀奈米流體濃度與粒徑而改變。另外,研究中主要發現奈米顆粒成份比重,奈米多孔結構之分佈及奈米流體濃度為主要影響接觸角變化之主要因素。
第三部份將初步探討奈米流體於熱管之提升熱傳機制(有效熱傳導係數,表面沾溼性及對流熱傳)。由於表面沾溼性的改變,導致毛細作用力,臨界熱通量及冷凝效果之提升。因此,奈米流體改變表面沾溼性為熱管性能提昇之主要機制。
英文摘要
The purpose of this thesis is to study the effects of silver nano-fluids on grooved heat pipe and sintered heat pipe thermal performance. The nano-fluid used in this study is an aqueous solution of 10 nm and 35nm diameter silver nanoparticles. The experiment was performed to measure the temperature distribution and compare the heat pipe thermal resistance using nano-fluid and DI-water. The experimental result of grooved heat pipe showed that thermal resistance decreased 10%~80% compared to DI-water at an input power of 30~60W. And the measured results also show that the thermal resistances of the heat pipe decrease as the silver nanoparticle size and concentration increase. The experimental result of sintered heat pipe, the nano-fluids filled heat pipe temperature distribution demonstrated that the temperature difference decreased 0.56~0.65℃ compared to DI-water at an input power of 30~50W. And the nano-fluid as working medium in heat pipe can up to 70W and is higher than pure water about 20W.

In addition, the characteristics of silver nano-fluid concentrations and sizes on copper plate surface wettability were investigated. The experimental results presented that the surface wettability changed with the nano-fluid concentrations and particle sizes. The most significant finding was that the nanoparticle composition percentage, nano-porous layer distribution and particle concentration were influenced mainly by the contact angle.

The fundamental mechanisms (effective thermal conductivity, surface wettability and convective heat transfer) of enhanced heat transfer for heat pipes have taken the first step to investigate. The results showed that surface wettability enhancement can be mainly mechanism in improved the heat pipe thermal performance. Due to a significant increase in wettability, thus leading to the capillary force, critical heat flux and condensation enhancement.
第三語言摘要
論文目次
Table of Content
Acknowledgements   I
Abstract (Chinese) II
Abstract (English) IV
Table of Content   VI
List of Figure     IX
List of Table      XII
Nomenclature       XIII
Chapter 1 Introduction	1
1.1 Motivation and Background	1
1.2 Literature Review	2
1.2.1 Review of Heat Pipes	2
1.2.1.1 Basic Concepts of Heat Pipes	2
1.2.1.2 Literature Review of Heat Pipes	4
1.2.2 Review of Nano-fluids	7
1.2.2.1 Basic Concepts	7
1.2.2.2 Effective Thermal Conductivity	8
1.2.2.3 Convective Heat Transfer	17
1.2.2.4 Critical Heat Flux and Surface Wettability	20
1.3 Nano-fluid Application in Heat Pipes	24
1.3.1 Heat Pipes	24
1.3.2 Thermosyphon	26
1.3.3 Oscillating Heat Pipe	29
Chapter 2 Heat Pipe Thermal Performance	32
2.1 Experimental Setup and Procedure	32
2.1.1 Experimental Setup	32
2.1.2 Test Procedure	35
2.2 Experimental Results	36
2.2.1 Grooved Heat Pipe	36
2.2.1.1 Effect of Nanoparticle Concentration	36
2.2.1.2 Effect of Nanoparticle Size	39
2.2.1.3 Preliminary Summary	42
2.2.2 Sintered Heat Pipe	43
2.2.2.1 Effect of Nanoparticle Concentration	43
2.2.2.2 Effect of Nanoparticle Size	48
2.2.2.3 Preliminary Summary	50
Chapter 3 Surface Wettability	51
3.1 Experimental Setup and Procedure	51
3.2 Experimental Results	52
3.3 Preliminary Summary	58
Chapter 4
Enhanced Mechanisms of Heat Transfer in Nano-fluid Heat Pipe	59
4.1 Effective Thermal Conductivity	59
4.2 Surface Wettability	63
4.2.1 Capillary Phenomena	63
4.2.2 Critical Heat Flux	63
4.2.3 Condensation	67
4.3 Convective Heat Transfer	69
4.4 Preliminary Summary	70
Chapter 5 Summary and Conclusions	72
5.1 Summary	72
5.2 Conclusions	72
Reference	75
Appendix I Experimental data of groved heat pipe	86
Appendix II Experimental data of sintered heat pipe	93
Appendix III Experimental uncertainty analysis	97
Publication List                                      111

                    List of Figure
Fig.1 Heat pipe working principle	2
Fig.2 Equivalent thermal resistance of a heat pipe	4
Fig.3 Comparision of experiemntal data on thermal conductivity of nanofluids	16
Fig.4 Measured values of the thermal resistance of heat pipe with nano-fluids	25
Fig.5 Boiling heat transfer of nano-fluids under 7.4kPa on grooved surfaces	25
Fig.6 Effect of the mass concentration of nanoparticles on the heat resistance	26
Fig.7 Thermal resistance of the thermosyphons at different heat flow rates	27
Fig.8 Total heat resistances of thermosyphon using water and nano-fluid	28
Fig.9 hermal resistance of the thermosyphon with different nanofluids as compared to pure water	28
Fig.10 Effect of nano-fluid on the heat transport capability in OHP	29
Fig.11 Thermal resistance at various heat loads and operating temperatures	30
Fig.12 Thermal performance of silver nano-fluid filled OHP and pure water filled OHP at various heat load……………………….…………..31
Fig.13 TEM micrograph of 10 nm (Left) and 35 nm (Right) Ag nanoparticles	32
Fig.14 (a) Schematic of the experimental setup and (b) Thermocouple distributions on the tested heat pipe	34
Fig.15 Average temperature of heat pipe distribution in different heat load and concentration (10 nm)	38
Fig.16 Average temperature of heat pipe distribution in different heat load and concentration (35 nm)	39
Fig.17 Measured value of thermal resistance of heat pipe with nano-fluid prepared under different conditions	42
Fig.18 Average temperature of heat pipe distribution in different heat load and concentration (10 nm)	45
Fig.19 Average temperature of heat pipe distribution in different heat load and concentration (35 nm)	47
Fig.20 Effect of particle concentration on the temperature difference of heat pipe under various input power	48
Fig.21 Effect of particle size on the temperature difference of heat pipe under different input power	50
Fig.22 Effect of silver nanoparticle concentration on contact angle	53
Fig.23 The OM image of evaporated droplet(Pure Water and 10nm)	55
Fig.24 The OM image of evaporated droplet (35nm)	55
Fig.25 The SEM image of outside (a) and inside(b) on evaporated droplet (35nm)	56
Fig.26 Comparison of thermal resistance between experimental and theatrical	62
Fig.27 Illustrations on high power density apply to the evaporator section of the heat pipe	64
Fig.28 Liquid layer concept of CHF phenomena	65
Fig.29 Illustrations the effect of porous layer on capillarity	66
Fig.30 Illustrations the effect of wettability and liquid film thickness on condensation	68

                    List of Table
Table 1 Measured Effective Thermal Conductivity(keff) of Nanofluids	99
Table 2 Experimental Investigation on Convective Heat transfer Coefficient of Nanofluids (hnf)	104
Table 3 Experimental Investigation on Critical Heat Flux of Nanofluids (CHF)nf and Pool Boiling Performance (PBP) nf	106
Table 4 Experimental Investigations on Nanofluids Filled in Heat Pipes	109
Table 5 Results of the compositions of rim on droplet, analyzed by FE-SEM EDS	57
Table 6 Thermal conductivity of working fluid	60
Table 7 The specification of grooved heat pipe	60
參考文獻
Reference
[1]	A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, Washington DC, 1995.
[2]	G. P. Peterson, An Introduction to Heat Pipes Modeling, Testing, and Applications, Wiley, New York, 1994.
[3]	D. A. Reay and P. A. Kew, Heat Pipes: Theory, Design and Applications, 5th edition, Oxford: Butterworth-Heinemann, 2006.
[4]	A.J. Jiao, R. Riegler, H.B. Ma and G. P. Peterson, “Thin Film Evaporation Effect on Heat Transport Capability in a Grooved Heat Pipe”, Journal of Microfluidics Nano-fluidics 1 (3) (2005) 227-233.
[5]	M. R. Maschmann and H. B. Ma, “An Investigation of Capillary Flow Effect on Condensation Heat Transfer on a Grooved Plate”, Heat Transfer Engineering 27 (3) (2006) 22-31.
[6]	A.J. Jiao, H.B. Ma and J.K. Critser, “Evaporation Heat Transfer Characteristics of a Grooved Heat Pipe with Micro-Trapezoidal Grooves”, International Journal of Heat and Mass Transfer 50 (2007) 2905–2911.
[7]	R. Kempers, D. Ewing, C. Y. Ching, “Effect of Number of Mesh and Fluid Loading on the Performance of Screen Mesh Wicked Heat Pipes”, Applied Thermal Engineering 26 (2006) 589-595.
[8]	C. Li, G. P. Peterson and Y. Wang, “Evaporating/Boiling in Thin Capillary Wicks(I)─Wick Thickness Effects”, Journal of Heat transfer 128 (2006) 1312-1319.
[9]	C. Li and G. P. Peterson, “Evaporating/Boiling in Thin Capillary Wicks (II) ─Effects of Volumetric Porosity and Mesh Size”, Journal of Heat transfer 128 (2006) 1320-1328.
[10]	D. A. Pruzan, L. K. Klingensmith, K. E. Torrance and C. T. Avedisian, “Design of High-Performance Sintered-Wick Heat Pipes”, International Journal of Heat Mass Transfer 34(6) (1991) 1417-1427.
[11]	M. A. Hanlon and H. B. Ma, “Evaporation Heat Transfer in Sintered Porous Media”, Journal of Heat Transfer 125 (2003) 644-652.
[12]	K. C. Leong, C. Y Liu and G. Q. Lu, “Characterization of Sintered Copper Wicks Used in Heat Pipes”, Journal of Porous Materials 4 (1997) 303-308.
[13]	Y. M. Chen, S. C. Wu and C. I. Chu, “Thermal Performance of Sintered miniature Heat Pipes”, Heat and Mass Transfer 37 (2001) 611-616.
[14]	M. G. Mwaba, X. Huang and J. Gu, “Influence of Wick Characteristics on Heat Pipe Performance”, International Journal of Energy Research 30 (2006) 489-499.
[15]	J. C. S. Chang, C. H. Wang and J. K. Liu, “A Study of Composite Wick Heat Pipes for Notebook Cooling”, Proceeding of the 8th International Heat Pipe symposium, Sep. 24-27, 2006, Kumamoto, Janpan, 236-241.
[16]	P. Keblinski, J. A. Eastman and D. G. Cahill, “Nano-fluids for Thermal Transport”, June (2005) 36-44.
[17]	S. K. Das, S. U. S. Choi and H. E. Patel, “Heat Transfer in Nano-fluids─A Review”, Heat Transfer Engineering 27 (2006) 3-19.
[18]	S. Lee, S. U. S. Choi, J. A. Eastman and S. Lee, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Transaction of ASME, 121 (1999) 280-289.
[19]	X. Wang, S. U. S. Choi and W. Xu, “Thermal Conductivity of Nanoparticle-Fluid Mixture”, Journal of Thermophysics and Heat Transfer, 13 (4) (1999) 474-480.
[20]	Y. Xuan, Q. Li, “Heat Transfer Enhancement of Nano-fluids”, International Journal of Heat and Fluid Flow, 21 (2000) 58-34.
[21]	J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nano-fluids Containing Copper Nanoparticles”, Applied Physics Letters 78 (6) (2001) 718-720.
[22]	S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions”, Applied Physics Letters 79 (14) (2001) 2252-2254.
[23]	H. Xie, J. Wang, T. Xi, Y. Liu and F. Ai. “Dependence of the Thermal Conductivity of Nanoparticle-fluid Mixture on the Base Fluid”, Journal of Materials Science Letters 21 (2002) 1469-1471.
[24]	H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles”, Journal of Applied Physics 91(7) (2002) 4568-4572.
[25]	H. Xie, J. Wang, T. Xi and Y. Liu, “Thermal Conductivity of Suspensions Containing Nano-sized SiC Particles”, International Journal of Thermophysics, 23 (2) (2002) 571-580.
[26]	X. Xie, H. Lee, W. Youn and M. Choi, “Nano-fluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities”, Journal of Applied Physics 94 (8) (2003) 4967-4971.
[27]	S. K. Das, N. Putra, P.Thiesen and W. Roetzel, “Temperature Dependence of Thermal Conductivity Enhancement for Nano-fluids”, Journal of Heat Transfer 125 (2003) 567-574..
[28]	H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran, B. George and T. Pradeep, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nano-fluids: Manifestation of Anomalous Enhancement and Chemical Effects”, Applied Physics Letters 83 (14) (2003) 2931-2933.
[29]	C. H. Chon, K. D. Kihm, S. P. Lee, S. U. S. Choi, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nano-fluid (Al2O3)Thermal Conductivity Enhancement ”, Applied Physics Letters 87 (2005) 53107-153107-3.
[30]	S. M. S. Murshed, K.C. Leong, C. Yang, “Enhanced Thermal Conductivity of TiO2—water Based Nano-fluids”, International Journal of Thermal Sciences 44 (2005) 367-373.
[31]	M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang, “Enhancement of Thermal Conductivity with Carbon Nanotube for Nano-fluids”, International Communications in Heat and Mass Transfer 32 (2005) 1202-1210.
[32]	T. Cho, I. Baek, J. Lee and S. Park, “Preparation of Nano-fluids Containing Suspended Silver Particles for Enhancing Fluid Thermal Conductivity Fluids”, Journal of Ind. Eng. Chem., 11 (3) (2005) 400-406.
[33]	T. K. Hong and H. S. Yang, “Nanoparticle-Dispersion-Dependent Thermal Conductivity in Nano-fluids”, Journal of the Korean Physical Society 47 (2005) 321-324.
[34]	C. S. Jwo, T. P. Teng, C. J. Hung and Y. T. Guo, “Research and Development of Measurement Device for Thermal Conductivity of Nano-fluids”, Journal of Physics: Conference Series 13 (2005) 55–58.
[35]	T. K. Hong, H. S. Yang and C. J. Choi, “Study of the Enhanced Thermal Conductivity of Fe Nano-fluids”, Journal of Applied Physics 97 (2005) 064311.
[36]	K. Kwak and C. Kim, “Viscosity and Thermal Conductivity of Copper Oxide Nano-fluid Dispersed in Ethylene Glycol”, Korea-Australia Rheology Journal 17(2) (2005) 35-40.
[37]	X. Zhang, H. Gu and M. Fujii, “Effective Thermal Conductivity and Thermal Diffusivity of Nano-fluids Containing Spherical and Cylindrical Nanoparticles”, Journal of Applied Physics 100 (2006) 044325.
[38]	M. S. Liu, M. C. C. Lin, C. Y. Tsai and C. C. Wang, “Enhancement of Thermal Conductivity with Cu for Nano-fluids using Chemical Reduction Method”, International Journal of Heat and Mass Transfer 49 (2006) 3028–3033.
[39]	M. S. Liu, M. C. C. Lin, I. T. Huang and C. C. Wang, “Enhancement of Thermal Conductivity with CuO for Nano-fluids”, Chemical Engineering Technology 29 (01) (2006) 72-77.
[40]	C. H. Li and G. P. Peterson, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nano-fluids)”, Journal of Applied Physics 99 (2006) 084314.
[41]	X. Zhang, H. Gu and M. Fujii, “Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nano-fluids”, International Journal of Thermophysics 27(2) (2006) 569-580.
[42]	Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park and J.K. Lee, “Investigation on Characteristics of Thermal Conductivity Enhancement of Nano-fluids”, Current Applied Physics 6 (2006) 1068–1071.
[43]	B. Yang and Z. H. Han, “Temperature-Dependent Thermal Conductivity of Nanorod-Based Nano-fluids”, Applied Physics Letters 89 (2006) 038111.
[44]	Y. Hwang, H.S. Park, J.K. Lee and W.H. Jung, “Thermal Conductivity and Lubrication Characteristics of Nano-fluids”, Current Applied Physics 6S1 (2006) e67–e71.
[45]	K. S. Hong, T. K. Hong and H. S. Yang, “Thermal Conductivity of Fe Nano-fluids Depending on the Cluster Size of Nanoparticles”, Applied Physics Letters 88 (2006) 031901.
[46]	M. J. Assael, I. N. Metaxa, K. Kakosimos and D. Constantinou, “Thermal Conductivity of Nano-fluids – Experimental and Theoretical”, International Journal of Thermophysics, 27(4) 2006. 999-1017.
[47]	S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge and R. G. Shimmin, “Thermal Conductivity of Nanoparticle Suspensions”, Applied Physics Letters 99 (2006) 084308.
[48]	X. Zhang, H. Gu and M. Fujii, “Effective Thermal Conductivity and Thermal Diffusivity of Nano-fluids Containing Spherical and Cylindrical Nanoparticles”, Experimental Thermal and Fluid Science 31 (2007) 593–599.
[49]	J. Philip, P. D. Shima and Baldev Raj, “Enhancement of Thermal Conductivity in Magnetite Based Nano-fluid Due to Chainlike Structures”, Applied Physics Letters 91 (2007) 203108.
[50]	H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, “Novel Synthesis and Thermal Conductivity of CuO Nano-fluid”, Journal of Physical Chemistry C. 111 (2007) 1646-1650.
[51]	Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee , B.C. Ku , S.P. Jang, “Stability and Thermal Conductivity Characteristics of Nano-fluids”, Thermochimica Acta 455 (2007) 70–74.
[52]	D. H. Yoo, K.S. Hong, H. S. Yang, “Study of Thermal Conductivity of Nano-fluids for the Application of Heat Transfer Fluids”, Thermochimica Acta 455 (2007) 66–69.
[53]	C. H. Li and G. P. Peterson, “The Effect of Particle Size on the Effective Thermal Conductivity of Al2O3-Water Nano-fluids”, Journal of Applied Physics 101 (2007) 044312.
[54]	N.R. Karthikeyan, John Philip and B. Raj, “Effect of Clustering on the Thermal Conductivity of Nano-fluids”, Materials Chemistry and Physics 109 (2008) 50–55.
[55]	S.M.S. Murshed, K.C. Leong and C. Yang, “Investigations of Thermal Conductivity and Viscosity of Nano-fluids”, International Journal of Thermal Sciences 47 (2008) 560–568.
[56]	X. Q. Wang amd A. S. Mujumdar, “Heat Transfer Characteristics of Nanofluids: A Review”, International Journal of Thermal Sciences 46 (2007) 1-19.
[57]	Y. Xuan and Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nano-fluids”, Journal of Heat Transfer 125 (2003) 151-155.
[58]	D. Wen and Y. Ding, “Experimental Investigation into Convective Heat Transferof Nano-fluids at the Entrance Region under Laminar Flow Conditions”, International Journal of Heat and Mass Transfer 47 (2004) 5181–5188.
[59]	D. Wen and Y. Ding, “Formulation of Nano-fluids for Natural Convective Heat Transfer Applications”, International Journal of Heat and Fluid Flow 26 (2005) 855–864.
[60]	Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson and G. Wu, “ Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nano-fluids) in Laminar Flow”, International Journal of Heat and Mass Transfer 48 (2005) 1107–1116.
[61]	C. H. Li and G. P. Peterson, “Transport Phenomena of Nanoparticle Suspensions (Nano-fluids) Heated under Various Heating Conditions”, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, 2006, p.767-775, San Francisco, California.
[62]	S. Z. Heris, S.G. Etemad and M. N. Esfahany, “Experimental Investigation of Oxide Nano-fluids Laminar Flow Convective Heat Transfer”, International Communications in Heat and Mass Transfer 33 (2006) 529–535.
[63]	Y. Ding, H. Alias, D. Wen and R. A. Williams, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nano-fluids)”, International Journal of Heat and Mass Transfer 49 (2006) 240–250.
[64]	D. Wen and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nano-fluids)”, IEEE Transactions on Nanotechnology 5(3) 2006 220-227.
[65]	S. Z. Heris, M. N. Esfahany and S.G. Etemad, “Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nano-fluid in Circular Tube”, International Journal of Heat and Fluid Flow 28 (2007) 203–210.
[66]	Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, “Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nano-fluids) Flowing Upward Through a Vertical Pipe”, International Journal of Heat and Mass Transfer 50 (2007) 2272–2281.
[67]	C. T. Nguyen, G. Roy, C. Gauthhier and N. Galanis, “Heat Transfer Enhancement using Al2O3-water Nano-fluid for an Electronic Liquid Cooling System”, Applied Thermal Engineering 27 (2007) 1501-1506.
[68]	S. M. You, J. H. Kim and K. H. Kim, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer”, Applied Physics Letters 83(16) (2003) 3374-3376.
[69]	S. K. Das, N. Putra and W. Roetzel, “Pool Boiling Characteristics of Nano-fluids”, International Journal of Heat and Mass Transfer 46 (2003) 851–862.
[70]	M. Shi, Y. Zhao and Z. Liu, “Study on Boiling Heat Transfer in Liquid Saturated Particle Bed and Fluidized Bed”, International Journal of Heat and Mass Transfer 46 (2003) 4695–4702.
[71]	S. K. Das, N. Putra and W. Roetzel, “Pool Boiling of Nano-fluids on Horizontal Narrow Tubes”, International Journal of Multiphase Flow 29 (2003) 1237–124.
[72]	P. Vassallo, R. Kumar and S. D’Amico, “Pool Boiling Heat Transfer Experiments in Silica–water Nano-fluids”, International Journal of Heat and Mass Transfer 47 (2004) 407–411.
[73]	I. C. Bang and S. H. Chang, “Boiling Heat Transfer Performance and Phenomena of Al2O3–water Nano-fluids from a Plain Surface in a Pool”, International Journal of Heat and Mass Transfer 48 (2005) 2407–2419.
[74]	D. Wen and Y. Ding, “Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nano-fluids”, Journal of Nanoparticle Research 7 (2005) 265–274.
[75]	J. Liu, J. Gu, M. Lu, H. Liu and Z. Lian, “Experimental Study of Pool Boiling Heat Transfer of Water-based Magnetic Fluid on a Horizontal Heater”, Heat Transfer-Asian Research 34 (3) (2005) 180-187.
[76]	D. Milanova and R. Kumar, “Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nano-fluids”, Applied Physics Letters 87 (2005) 233107.
[77]	S. J. Kim, I. C. Bang, J. Buongiorno and L. W. Hu, “Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nano-fluids”, Applied Physics Letters 89 (2006) 153107.
[78]	H. Kim, J. Kim and M. H. Kim, “Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-fluids”, International Journal of Heat and Mass Transfer 49 (2006) 5070–5074.
[79]	H. D. Kim and M. H. Kim, “Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nano-fluids”, Applied Physics Letters 91 (2007) 014104.
[80]	H. D. Kim and M. H. Kim, “Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement using Nano-fluids”, Heat Mass Transfer (Special Issue) (2007).
[81]	S. J. Kim, I.C. Bang, J. Buongiorno and L. W. Hu, “Surface Wettability Change during Pool Boiling of Nano-fluids and its Effect on Critical Heat Flux”, International Journal of Heat and Mass Transfer 50 (2007) 4105–4116.
[82]	H. S. Xue, J. R. Fan, R. H. Hong, and Y. C. Hu, “Characteristic Boiling Curve of Carbon Nanotube Nano-fluid as Determined by the Transient Calorimeter Technique”, Applied Physics Letters 90 (2007) 184107.
[83]	H. Kim, J. Kim and M. H. Kim, “Experimental Studies on CHF Characteristics of Nano-fluids at Pool Boiling”, International Journal of Multiphase Flow 33 (2007) 691-706.
[84]	I.C. Bang, J. Buongiorno, L. W. Hu and H. Wang, “Measurement of Key Pool Boiling Parameters in Nano-fluids for Nuclear Applications”, Journal of Power and Energy Systems 2(1) (2008) 340–351.
[85]	C.Y. Tsai, H. T. Chien, B. Chan, P. H. Chen, P. P. Ding and T.Y. Luh, “Effect of Structural Character of Gold Nanoparticles in Nano-fluid on Heat Pipe Thermal Performance”, Materials Letters 58 (2004) 1461-1465.
[86]	Z. H. Liu, J.G. Xiong and R. Bao, “Boiling Heat Transfer Characteristics of Nano-fluids in a Flat Heat Pipe Evaporator with Micro-Grooved Heating Surface”, International Journal of Multiphase Flow, 33 (2007) 1284–1295.
[87]	X. F. Yang, Z. H. Liu and J. Zhao, “Heat Transfer Performance of a Horizontal Micro-Grooved Heat Pipe using CuO Nano-fluid”, Journal of Micromechanics and Microengineering 18 (2008) 035038.
[88]	H. S. Xue, J. R. Fan, Y. C. Hu, R. H. Hong and K. F. Cen, “The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thernosyphon”, Journal of Applied Physics 100 (2006) 104909.
[89]	Z. H. Liu, X. F. Yang and G. L. Guo, “Effect of Nanoparticles in Nano-fluids on Thermal Performance in a Miniature Thermosyphon”, Journal of Applied Physics, 102 (2007) 013526.
[90]	S. Khandekar, Y. M. Joshi and B. Mehta, “Thermal Performance of Closed Two-Phase Thermosyphon using Nano-fluids”, International Journal of Thermal Sciences 47 (2008) 659-667.
[91]	H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi and M. Tirumala, “Effect of Nano-fluid on the Heat Transport Capability in an Oscillating Heat Pipe”, Applied Physics Letters, 88 (2006) 143116.
[92]	H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi and M. Tirumala, “An Experimental Investigation of Heat Transport Capability in a Nano-fluid Oscillating Heat Pipe”, Journal of Heat Transfer, 128 (2006) 1213-1216.
[93]	K. Park and H. B. Ma, “Nano-fluid Effect on Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe”, Journal of Thermophysics and Heat Transfer, 21 (2) (2007) 443-445.
[94]	F.-M. Shang, D.-Y. Liu, H.-Z Xian, Y.-P. Yang and X.-Z. Du, “Heat Transfer Characteristics of Cu-water in Self-exciting Mode Oscillating-flow Heat Pipe”, Dongli Gongcheng/Power Engineering, 27 (2) 2007 233-236.
[95]	F.-M. Shang, D.-Y. Liu, H.-Z Xian, Y.-P. Yang and X.-Z. Du, “Flow and Heat Transfer Characteristics of Different Forms of Nanometer Particles in Oscillating Heat Pipe”, Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 58 (9) 2007 2200-2204.
[96]	Y. H. Lin, S. W. Kang and H. L. Chen, “Effect of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance”, Applied Thermal Engineering 28 (2008) 1312-1317.
[97]	S. Vafaei, T. Borca-Tasciuc, M. Z. Podowski. A. Purkayastha, G. Ramanath and P. M. Ajayan, “Effect of Nanoparticles on Sessile Droplet Contact Angle”, Nanotechnology (2006) 2523-2527.
[98]	H. S. Xue, J. R. Fan, Y. C. Hu, R. H. Hong and K. F. Cen, “The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon”, Journal of Applied Physics, 100 (2006) 104909.
[99]	C. H. Chon, S.Paik, J. B. T. Jr. and K. D. Kihm, “Effect of Nanoparticles 
Sizes, and Number Density on the Evaporation and Dryout Characteristics for Strongly Pinned Nano-fluid Droplets”, Lagmuir, 23 (2007) 2953-2960.
[100] Van P. Carey, Liquid-Vapor Phase-Change Phenomena: Am Introduction
to the Thermophsysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Taylor & Francis, 1992.
[101] A. Faghri and Y. Zhang, Transport Phenomena in Multiphase Systems, 
Academic Press, San Diego, CA, 2006.
[102] D. Wen, “Mechanisms of Thermal Nano-fluids on Enhanced Critical Heat Flux (CHF)”, International Journal of Heat and Mass Transfer (2008) Article in Press.
[103] J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3rd -ed. New York, NY: Oxford University Press, 1996.
[104] D. T. Wasan and A. D. Nikolov, “Spreading of Nano-fluids on Solids”, Nature 423 (2003) 156-159.
[105] J. Buongiorno, “Convective Transport in Nano-fluids”, Journal of Heat Transfer 128 (2006) 240-250.
[106] Y. Zhang and A. Faghri, “Advances and Unsolved Issues in Pulsating Heat Pipes”, Heat Transfer Engineering 29(1) (2008) 20-44.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信