§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0507201715054200
DOI 10.6846/TKU.2017.00154
論文名稱(中文) Staphylococcus sp. TKU043 所生產α-葡萄糖苷酶抑制劑之研究
論文名稱(英文) Studies on the Production of α-Glucosidase Inhibitors by Staphylococcus sp. TKU043
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 蘇育正
研究生(英文) Yu-Cheng Su
學號 604180041
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2017-06-21
論文頁數 54頁
口試委員 指導教授 - 王三郎(sabulo@mail.tku.edu.tw)
委員 - 陳佑汲(askachen@mail.vnu.edu.tw)
委員 - 王全祿(wang_chuan_lu@hotmail.com)
關鍵字(中) α-葡萄糖苷酶抑制劑
糖尿病
葡萄球菌
蝦頭殼粉
關鍵字(英) alpha-glucosidase inhibitors
diabetes mellitus
shrimp head powder
Staphylococcus
第三語言關鍵字
學科別分類
中文摘要
α-葡萄糖苷酶抑制劑由於其在治療糖尿病中的重要用途而受到重視。雖然一些合成的 α-葡萄糖苷酶抑制劑已經可以使用很長時間,但是它們經常會引起各種的副作用。因此,本研究旨在找到一種安全,天然的 α-葡萄糖苷酶抑制劑來源。本實驗利用篩選自淡江大學校園之菌株Staphylococcus sp. TKU 043,發酵蝦頭殼粉生產α-葡萄糖苷酶抑制劑。於含1%蝦頭殼粉培養基培養 3 天,可得較佳α-葡萄糖苷酶抑制活性(1457U / mL)。所得發酵上清液經硫酸銨鹽沉澱、DEAE-Sepharose陰離子交換管柱層析、Sepharcryl-S200膠體管柱層析,進行α-葡萄糖苷酶抑制劑之部份純化。此抑制劑於50℃處理30 分鐘後活性僅存20%,在pH 3-7反應皆具100 %之抑制活性。
  依據研究結果顯示,TKU 043所生產之α-葡萄糖苷酶抑制劑為大分子化合物,推測此抑制劑可能為蛋白質類或是胜肽類化合物;利用酵素抑制動力學鑑定出此抑制劑為混合型(非競爭)抑制劑。
英文摘要
Alpha-glucosidase inhibitors have received much attention due to their important use in treating diabetes mellitus. Although some synthetic α-glucosidase inhibitors have been available for a long time, they often cause various unexpected side effects. Thus, the present study was aimed at finding a safe, natural source of α-glucosidase inhibitors. Staphylococcus sp. TKU043, a bacterium strain isolated from the soils of Tamkang University Campus, produced alpha-glucosidase inhibitors (1457 U/mL) in a medium with 1% (w/v) shrimp head powder as the sole carbon/nitrogen source. The culture supernatant obtained by culturing under optimized culture condition was purified by ammonium sulfate precipitation, DEAE-Sepharose column chromatography, and Sephacryl S-200 gel chromatography. The partially purified inhibitors remained 20 % original activity after  treatment at 50℃ for 30 min. Activity of the alpha-glucosidase inhibitors remained 100 % after treatment at pH 3-7.
  According to the results of this study, the α-glucosidase inhibitor produced by TKU043 is a proteinous material. The inhibitor is identified as a mixed type (non-competitive) inhibitor according to the results of enzyme inhibition kinetics.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VII
表目錄	IX
第一章 緒論	1
第二章 文獻回顧	3
2.1 Staphylococcus sp. 之簡介	3
2.2 糖尿病	3
2.2.1 第一型糖尿病	3
2.2.2 第二型糖尿病	4
2.3 α-葡萄糖苷酶(alpha-glucosidase)	4
2.4 α-葡萄糖苷酶抑制劑(alpha-glucosidase inhibitors)	4
2.4.1 α-葡萄糖苷酶抑制劑之機制	7
2.5微生物發酵蝦蟹殼廢棄物	7
第三章 材料與方法	10
3.1 實驗菌株	10
3.2 實驗材料	10
3.3 實驗儀器	11
3.4生產菌株之篩選與鑑定	12
3.4.1菌株篩選	12
3.4.2 菌株鑑定	12
3.5 α-葡萄糖苷酶抑制劑抑制率活性之測定	13
3.6.1 碳/氮源對TKU043生產α-葡萄糖苷酶抑制劑活性之影響	14
3.6.2 蝦頭殼粉濃度對TKU043生產α-葡萄糖苷酶抑制劑活性之影響	14
3.6.3 培養液體積對TKU043生產α-葡萄糖苷酶抑制劑活性之影響	14
3.6.4培養液體溫度對TKU043生產α-葡萄糖苷酶抑制劑活性之影響	15
3.7 蛋白質含量測定	15
3.8 酒精沉澱	15
3.9 酚/氯仿萃取	15
3.10 TKU043生產α-葡萄糖苷酶抑制劑之分離純化	16
3.10.1 粗發酵液之製備	16
3.10.2陰離子交換樹脂	16
3.10.3 膠體過濾層析法	17
3.11 熱安定性測試	17
3.12 酸鹼安定性測試	17
3.12.1 酸鹼安定性測試	17
3.12.2 酸鹼最適反應測試	17
3.13 抑制劑動力學	18
3.13.1 決定最適抑制劑濃度	18
3.13.2 酵素抑制動力學	18
3.13.3 抑制劑種類鑑定	19
3.14 抑制劑特異性測試	19
3.14.1 不同來源α-葡萄糖苷酶抑制效果測試	19
第四章 結果與討論	20
4.1菌種鑑定	20
4.2 TKU043生產α-葡萄糖苷酶抑制劑較適培養條件探討	24
4.2.1 TKU043生產α-葡萄糖苷酶抑制劑碳/氮源之探討	24
4.2.2 TKU043生產α-葡萄糖苷酶抑制劑濃度之探討	26
4.2.3 TKU043生產α-葡萄糖苷酶抑制劑培養體積之探討	28
4.2.4 TKU043生產α-葡萄糖苷酶抑制劑培養溫度之探討	30
4.2.5 TKU043生產α-葡萄糖苷酶抑制劑較適培養條件探討結果	31
4.3 透析結果	32
4.3.1 不同粗發酵液處理方式比較	32
4.3.2酚/氯仿萃取	33
4.4 TKU043生產α-葡萄糖苷酶抑制劑之分離純化	33
4.4.1 粗發酵液之製備	33
4.4.2 陰離子交換樹脂	34
4.4.3 膠體過濾層析	34
4.5 TKU043生產α-葡萄糖苷酶抑制劑之特性分析	38
4.5.1 TKU043生產α-葡萄糖苷酶抑制劑之熱安定性	38
4.5.2 TKU043生產α-葡萄糖苷酶抑制劑最適反應pH及pH安定性	38
4.6抑制劑型態鑑定	42
4.7 不同來源α-葡萄糖苷酶抑制效果測試結果	44
4.8 不同菌株α-葡萄糖苷酶抑制劑比較	44
第五章 結論	45
參考文獻	46
 
圖目錄
圖2. 1 阿卡波糖結構圖	6
圖2. 2米格列醇結構圖	6
圖2. 3井岡黴醇胺結構圖	6
圖2. 4 幾丁質結構圖	8
圖4. 1 TKU043 革蘭氏染色圖	20
圖4. 2 API分析鑑定結果	22
圖4. 3碳/氮源對TKU043生產α-葡萄糖苷酶抑制劑之影響	25
圖4. 4蝦頭殼粉濃度及發酵時間對TKU043生產α-葡萄糖苷酶抑制劑之影響	27
圖4. 5培養體積對TKU043生產α-葡萄糖苷酶抑制劑之影響	29
圖4. 6培養溫度對TKU043生產α-葡萄糖苷酶抑制劑之影響	30
圖4. 7 Staphylococcus sp. TKU043 α-葡萄糖苷酶抑制劑之DEAE-Sepharose CL-6B層析圖譜	35
圖4. 8 Staphylococcus sp. TKU043 α-葡萄糖苷酶抑制劑之Sephacryl S-200層析法圖譜	36
圖4. 9 Staphylococcus sp. TKU043 α-葡萄糖苷酶抑制劑在不同溫度處理後之結果	39
圖4. 10 Staphylococcus sp. TKU043 α-葡萄糖苷酶抑制劑在不同pH處理後之結果圖	40
圖4. 11 Staphylococcus sp. TKU043 α-葡萄糖苷酶抑制劑在不同pH最適反應	41
圖4. 12α-葡萄糖苷酶抑制劑之雙倒數圖	43

 
表目錄
表2. 1幾丁質差異性	8
表2. 2微生物發酵水產廢棄物相關文獻	9
表4. 1 TKU043之16S rDNA 部分基因序列	21
表4. 2 TKU043之16S rDNA NCBI比較	23
表4. 3比較培養條件前後的差別	31
表4. 4上清液透析前後之抑制劑活性分布	32
表4. 5不同粗發酵液	32
表4. 6酚/氯仿萃取	33
表4. 7α-葡萄糖苷酶抑制劑之純化總表	37
表4. 8 α-葡萄糖苷酶抑制劑之抑制型態與Km及Vmax值	43
表4. 9不同來源α-葡萄糖苷酶測試	44
表4. 10不同菌株α-葡萄糖苷酶抑制劑比較	44
參考文獻
Abbamondi G.R., De Rosa S., Iodice C., Tommonaro G. (2014) Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals. Natural Product Communications 9: 229-232.

Abd El-Hady F.K., Abdel-Aziz M.S., Abdou A.M., Shaker K.H., Ibrahim L.S., El-Shahid Z.A. (2014) In vitro anti-diabetic and cytotoxic effect of the coral derived fungus Emericella unguis 8429 on human colon, liver, breast and cervical carcinoma cell lines. International Journal of Pharmaceutical Sciences Review and Research 27: 297-301.

Abd El-Hady F.K., Abdel-Aziz M.S., Shaker K.H., El-Shahid Z.A.,  Ibrahim L.S. (2015) Antioxidant, acetylcholinesterase and α-glucosidase potentials of metabolites from the marine fungus Aspergillus unguis RSPG 204 associated with the sponge Agelas sp. International Journal of Pharmaceutical Sciences Review and Research 30: 272-278.

Aghajanyan A.E., Hambardzumyan A.A., Hovsepyan A.S., Asaturian  R.A., Vardanyan  A.A., Saghiyan  A.A. (2005) Isolation, purification and physicochemical characterization of water-soluble Bacillus thuringiensis melanin. Pigment Cell & Melanoma Research 18: 130-135. 

Andrade R.J., Rodriguez-Mendizabal M. (1996) Hepatic injury caused by acarbose. Annals of Internal Medicine 124: 931.

Awale M.M., Dudhatra G.B., Kumar A., Chauhan B.N., Kamani D.R., Modi C.M., Patel H.B., Mody S.K. (2012) Bovine mastitis: a threat to economy. Open Access Scientific Reports 1: 295.

Barłowska J., Litwińczuk Z., Brodziak A., Chabuz W. (2012) Effect of the production season on nutritional value and technological suitability of milk obtained from intensive (TMR) and traditional feeding system of cows. Journal of Microbiology, Biotechnology and Food Sciences 1: 1205-1220.

Bortolami A., Fiore E., Gianesella M., Corro M., Catania S., Morgante M. (2015) Evaluation of the udder health status in subclinical mastitis affected dairy cows through bacteriological culture, somatic cell count and thermographic imaging. Polish Journal of Veterinary Sciences 18: 799-805.
Bruni C.B., Sica V., Auricchio F., Covelli I. (1970) Further kinetic and structural characterization of the lysosomal α-D-glucoside glucohydrolase from cattle liver. Biochimica et Biophysica Acta 212:470-477. 
Carrascosa M.P.F., Aresti S. (1997) Acarbose-induced acute severe hepatotoxicity. The Lancet 349: 698-699. 

Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A. (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. The Lancet 359: 2072-2077.

Christian P., Stewart C.P. (2010) Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. The Journal of Nutrition 140: 437-445.

Cooke D.W., Plotnick L. (2008) Type 1 diabetes mellitus in pediatrics. Pediatrics in Review 29: 374-384.

Flanagan P.R., Forstner G.G. (1978) Purification of rat intestinal maltase/glucoamylase and its anomalous dissociation either by heat or by low pH. Biochemical Journal 173: 553-563. 

Garg V. (2011) Noninsulin pharmacological management of type 1 diabetes mellitus. Indian Journal of Endocrinology and Metabolism 15: 5-11.

Gentile S. (2001) Effect of treatment with acarbose and insulin in patients with non-insulin-dependent diabetes mellitus associated with non-alcoholic liver cirrhosis. Diabetes 3: 33-40.

Gentile S.T.S., Guarino G., Sasso F.C., Torella R. (1999) Aminotransferase activity and acarbose treatment in patients with type 2 diabetes. Diabetes Care 22:1217-1218.
Hamilton J., Cummings E., Zdravkovic V. (2003) Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance. Diabetes Care 26:138-143.

Heilbronn L., Smith S.R., Ravussin E. (2004) Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. International Journal of Obesity and Related Metabolic Disorders 28: 12-21.

He K., Shi J.C., Mao X.M. (2014) Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Therapeutics and Clinical Risk Management 10: 505-511.

Hermans M., Marian K., Jos V.B., Ben O., Arnold R. (1991) Human lysosomal α-glucosidase characterization of the catalytic site The Journal of Biological Chemistry 266: 13507-13512.

Hirsch A.T., Haskal Z.J., Hertzer N.R., Bakal C.W., Creager M.A., Halperin J.L., Hiratzka L.F., Murphy W.R.C., Olin J.W., Puschett J.B., Kenneth A., David S., James C.S., Taylor L.M., White C.J., White J., White R.A. (2005) ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease. ACC/AHA Practice Guidelines 113: 463-654.

Hoefsloot L., Reuser A.J., Oostra B.A. (1990) Characterization of the human lysosomal alpha-glucosidase gene. Biochemical Journal 272: 493-497. 

Hoffmann J., Spengler M. (1997) Efficacy of 24-week monotherapy with acarbose, metformin, or placebo in dietary-treated NIDDM patients: the Essen-II study. The American Journal of Medicine 103:483-490. 

Hsieh T.J., Tsai Y.H., Liao M.C., Du Y.C., Lien P.J., Sun C.C., Chang F.R., Wu Y.C. (2012) Anti-diabetic properties of non-polar Toona sinensis roem extract prepared by supercritical-co2 fluid. Food and Chemical Toxicology 50: 779-789.


Hsu C.H., Nguyen V.B., Nguyen A.D., Wang S.L. (2017) Conversion of shrimp heads to α-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. Research on Chemical Intermediates, accepted.

Hwu C.M. (2003) Acarbose improves glycemic control in insulin-treated Asian type 2 diabetic patients: results from a multinational, placebo-controlled study. Diabetes Research and Clinical Practice 60:111-118. 

Jacobsen I., Henriksen J., Beck-Nielsen H. (2009) The effect of metformin in overweight patients with type 1 diabetes and poor metabolic control. Basic & Clinical Pharmacology & Toxicology 105:145-149. 

Johnston P.S., Coniff R.F., Hoogwerf B.J., Santiago J.V., Pi-Sunyer F.X., Krol A. (1994) Effects of the carbohydrase inhibitor miglitol in sulfonylurea-treated NIDDM patients. Diabetes Care 17:20-29. 

Kim J.S., Kwon C.S., Son K.H. (2000) Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry 64: 2458-2461. 

Kitabchi A.E., Umpierrez G.E., Miles J.M., Fisher J.N. (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32:  1335-1343.

Kirby K.S. (1957) A new method for the isolation of deoxyribonucleic acids: evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochemical Journal 66:495-504.
Lund S., Tarnow L., Astrup A. (2008) Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLoS One 3: 3363. 
Mahmoud A.M., Geslevich J., Kint J., Depuydt C., Huysse L., Zalata A., Comhaire F.H. (1998) Seminal plasma alpha-glucosidase activity and male infertility. Human Reproduction 13: 591-595. 


Matsuura H., Asakawa C., Kurimoto M., Mizutani J. (2002) α-Glucosidase inhibitor from the seeds of balsam pear and the fruit bodies of Grifola frondosa. Bioscience Biotechnology and Biochemistry 66: 1576-1578.

Meyer L., Bohme P., Delbachian I. (2002) The benefits of metformin therapy during continuous subcutaneous insulin infusion treatment of type 1 diabetic patients. Diabetes Care 25: 2153-2158. 

Miao M., Jiang B., Cui S. W., Zhang T., Jin, Z. (2015) Slowly digestible starch—a review. Critical Reviews in Food Science and Nutrition 55: 1642-1657.

Moon R.J., Bascombe L.A., Holt R.I. (2007) The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient wellbeing. Diabetes, Obesity and Metabolism 9: 143-145. 

Nguyen V.B., Nguyen A.D., Kuo Y.H., Wang S.L. (2017) Biosynthesis of α– glucosidase inhibitors by a newly isolated bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose in mouse model. International Journal of Molecular Sciences 18: 700.

Pang T.T., Narendran P. (2008) Addressing insulin resistance in type 1 diabetes. Diabetic Medicine 25: 1015-1024. 

Ripsin C.M., Kang H., Urban R.J. (2009) Management of blood glucose in type 2 diabetes mellitus. American Family Physician 79: 29-36.

Rosen E.D., Spiegelman B.M. (2000) Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16: 145-171.

Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M., Mortensen R.M. (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell 4: 611-617.

Rosenstock J., Brown A., Fischer J., Jain A., Littlejohn T., Nadeau D., Sussman A., Taylor T., Krol A., Magner J. (1998) Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. Diabetes Care 21: 2050-2055.

Risérus U., Willett W.C., Hu F.B. (2009) Dietary fats and prevention of type 2 diabetes. Progress in Lipid Research 48: 44-51.

Sales P.M., Souza P.M., Simeoni L.A., Silveira D. (2012) Alpha-amylase inhibitors: A review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences 15: 141-183.

Sarnblad S., Kroon M., Aman J. (2003) Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. European Journal of Endocrinology 149: 323-329. 

Scorpiglione N., Belfiglio M., Carinci F., Cavaliere D., De Curtis A., Franciosi M., Mari E., Sacco M., Tognoni G., Nicolucci A. (1999) The effectiveness, safety and epidemiology of the use of acarbose in the treatment of patients with type II diabetes mellitus. A model of medicine-based evidence. European Journal of Clinical Pharmacology 55: 239-249.

Singh R., Rand J.S., Coradini M., Morton J.M. (2015) Effect of acarbose on postprandial blood glucose concentrations in healthy cats fed low and high carbohydrate diets. Journal of Feline Medicine and Surgery 17: 848-857.
Sivikami S., Radhakrishnan A.N. (1973) Purification of rabbit intestinal glucoamylase by affinity chromatography on Sephadex G-200. Indian Journal of Biochemistry & Biophysics 10: 283-284. 
Srensen S.H., Norén O., Sjöström H., Danielsen E.M. (1982) Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. European Journal of Biochemistry 126: 559-568. 
Tamil I.G., Dineshkumar B., Nandhakumar M., Senthilkumar M., Mitra A. (2010) In vitro study on α-amylase inhibitory activity of an indian medicinal plant, Phyllanthus amarus. Indian Journal of Pharmacology 42: 280-282.

Touma C., Pannain S. (2011) Does lack of sleep cause diabetes? Cleveland Clinic Journal of Medicine 78: 549-558.

Van de L.F.A., Lucassen P.L, Akkermans R.P., Van de Lisdonk E.H., Rutten G.E., Van Weel C. (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a cochrane systematic review and meta-analysis. Diabetes Care 28:154-163. 

Villeneuve L.M., Natarajan R. (2010) The role of epigenetics in the pathology of diabetic complications. American Journal of Physiology Renal Physiology 299: 14-25.

Wang C.L., Huang T.H., Liang T.W., Fang C.Y., Wang S.L. (2011) Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology 28: 559-565.

Wang G.C., Peng Z., Wang J., Li J., Li X. (2016) Synthesis, biological evaluation and molecular docking study of N-arylbenzo[d]oxazol-2-amines as potential α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry 24: 5374-5379.

Wang G.C., Peng Z., Wang J., Li X., Li J. (2017) Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. European Journal of Medicinal Chemistry 125: 423-429.

Wang S.L., Shih I.L., Liang T.W., Wang C.H. (2002) Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry 50: 2241-2248.

Wang S.L., Chen Y.H., Wang C.L., Yen Y.H., Chern M.K. (2005) Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme and Microbial Technology 36: 660-665.
Wang S.L., Li J.Y., Liang T.W., Hsieh J.L., Tseng W.N. (2010) Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology 20: 117-126.

Wang S.L., Lin B.S., Liang T.W., Wang C.L., Wu P.C., Liu J.R. (2010) purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology 20: 1001-1005.

Wang S.L., Lin Z.Y., Yen U.H., Liao H.F., Chen Y.J. (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research 341: 2507-2515.

Wang S.L., Shih I.L., Wang C.H., Tseng K.C., Chang W.T., Twu Y.K., Ro J.J., Wang C.L. (2002) Production of antifungal compounds from chitin by Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme and Microbial Technology 31: 321-328.

Wang S.L., Kao T.Y., Wang C.L., Yen Y.H., Chern M.K., Chen Y.H. (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology 39: 724-731.

Wang S.L., Yang C.W., Liang T.W., Peng J.H., Wang C.L. (2009) Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydrate Polymers 78: 205-212.

Wang S.L., Yeh P.Y. (2006) Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry 41: 1545-1552.

Wang S.L., Yieh T.C., Shih I.L. (1999) Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology 25: 142-148.

Wu X.Q., Xu H., Yue H., Liu K.Q., Wang X.Y. (2009) Inhibition kinetics and the aggregation of alpha-glucosidase by different denaturants. The Protein Journal 28: 448-56. 

Yu Z., Yin Y., Zhao W., Yu Y., Liu B., Liu J., Chen F. (2011) Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chemistry 129: 1376-1382.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信