§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0507201714165100
DOI 10.6846/TKU.2017.00151
論文名稱(中文) 以PFC模擬金門花崗岩處置坑道之破裂行為
論文名稱(英文) Study on the fracture behavior of deposition tunnels and holes in Kimmen granite using PFC modelling
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 吳勁頤
研究生(英文) JIN-YIH WU
學號 604380336
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-12
論文頁數 147頁
口試委員 指導教授 - 楊長義
委員 - 李宏輝
委員 - 翁孟嘉
關鍵字(中) 深層地質處置場
花崗岩
單壓強度
AE
PFC
關鍵字(英) deep geological repository
granite
UCS
spalling
PFC
AE
第三語言關鍵字
學科別分類
中文摘要
在花崗質岩地質進行深層處置,是目前國際主流處置高放射性廢棄物之方式,就是將廢棄物埋在深約300~1000m的穩定地質環境中,使輻射強度在到達生物圈之前已衰減至可忽略的程度。而深層地質處置設施的力學穩定安全性是由應力在主控(stress- dominated),其穩定性或破壞與否之關鍵因子是在:(1)現地應力(in-situ stress)之大小與方位;(2)岩石之破壞強度(failure strength)。本研究收集金門現地深層應力及岩體資料,其中使用單軸壓縮試驗來驗證PFC模擬成效,對較其單壓強度(UCS) 、楊氏模數(E)、柏松比(ν)與破壞型態進行比較,由此獲得金門花崗岩之PFC模擬各項參數,在將參數用於模擬深層處置隧道與孔開挖造成之破壞。
本文主要獲致結論如下:(1)使用PFC2D模擬單軸壓縮試驗其關鍵因子分別為:單壓強度(UCS):正向鍵結強度 n、切向/正向鍵結強度比 s/ n、切向/正向平行鍵結勁度比ksp/knp。2.楊氏模數(E):正向勁度kn、切向/正向勁度比ks/kn、正向平行鍵結勁度knp、切向/正向平行鍵結勁度比ksp/knp。柏松比(ν):切向/正向平行鍵結勁度比ksp/knp。排除切向/正向平行鍵結勁度比ksp/knp後,強度與勁度向參數互不影響。(2)使用單一強度鍵結方式無法優良模擬花崗岩材料之音射行為,因花崗岩材料是由多種材料組合而成,故膠節強度有所差異,且PFC程式鍵模時會使顆粒排列緊密,即無微裂隙產生,故使用隨機分佈鍵結強度才可優良模擬花崗岩音射行為。(3)模擬處置隧道使用60m*60m邊界模擬岩體範圍,開挖時施加現地應力(垂直13.5MPa水平10.5MPa),隧道開挖分為兩階段開挖,即上部處置隧道和下部處置孔,當參數折減至0.20倍以下時頂拱才發生剝落破壞現象,而開挖上部處置隧道時,應力集中於隧道頂拱以及隧道壁上,隧道底部弧形區域屬於無應力區,而開挖下部處置孔時,應力集中於頂拱以及處置孔底部,處置孔底到處至隧道底部三角形區域為無應力區,而應力集中去即為隧道破壞開始之位置,破壞型態以張裂破壞為主,但有也部分剪力破壞產生。(4)模擬處置孔開挖採10m*10m邊界模擬岩體範圍,開挖時施加現地應力(垂直17.5MPa水平10.5MPa),當參數折減至0.25倍以下時隧道壁才發生剝落破壞現象。
英文摘要
In the granite rock geological deep disposal, is the current international mainstream disposal of high radioactive waste way, is buried in the depth of about 300 ~ 1000m in a stable geological environment, so that the radiation intensity before reaching the biosphere has been attenuated to The degree of neglect.The rock mechanics stability of geological deposition openings in the deep ground for high level radioactive wastes is a stress-dominated problem. The stability of underground openings is mainly controlled by the applied in-situ stress. The rock strength and in-situ stress are the key parameters to evaluate the safety function of rock openings.used single-axis compression testto verify the PFC simulation results. The PFC simulation parameters of the Kimmen granite were obtained by uniaxial compressive strength(UCS)、Young's modulus(E)、Pineson ratio and the failure type. Simulate the damage caused by deep excavation of tunnels and holes.
The main conclusions of this paper are as follows:(1)use PFC2D to simulationKimmen graniteuniaxial compression testbehavior,It key factors as respectively:1.UCS:Normal strength of parallel bond( n)、Shear / Normal strength of parallel bond( s/ n) and shear/normal stiffness of parallel bond(ksp/knp). 2.E:Normal stiffness of particle (kn)、particle shear/normal stiffness(ks/kn)、normal stiffness of parallel bond(knp)、shear/normal stiffness of parallel bond(ksp/knp). 3. ν: shear/normal stiffness of parallel bond(ksp/knp).Except shear/normal stiffness of parallel bond(ksp/knp) the otherparameterstrength and stiffness do not affect each other.(2)using single bond strength mode can not be goodsimulation of Kimmen granite AE behavior,Becausegranite is cemented by multiplemineral,so cementedstrength is not the same,and PFC will make the particles arranged closely,so do not have micro creak behavior,so using random bond strength mode can simulationgood AE behavior of Kimmen granite.(3) Using 60*60m range to simulation rock mass in excavation tunnel,Before excavation tunnel use wall to exert present stress(σv=13.5MPa, σh=10.5MPa),Tunnel excavation is divided into two-stage excavation, that is, the upper tunnel and the lower hole,when strengthparameter reduced to 0.2 times, Tunnelbegin to spalling at top of the tunnel.(4)Using 10*10m range to simulation rock mass in excavation hole,Exert present stress(σH=17.5MPa, σh=10.5MPa), when strengthparameter reduced to 0.25 times,Hole begin to spalling at wall of the hole.
第三語言摘要
論文目次
目錄
目錄	I
表目錄	IV
圖目錄	V
第一章緒論	1
1.1 研究動機	1
1.2研究目的	3
1.3研究進行邏輯	4
1.4研究進行步驟	5
1.5研究之內容	8
第二章文獻回顧	10
2.1坑道產生之剝落現象	10
2.2發生剝落之應力條件	12
2.3岩石中音射事件發生機制	15
2.4岩石應力應變曲線特性	18
第三章金門花崗岩力學行為統計與分析	20
3.1 離島花崗岩之破壞強度	22
3.2岩心破裂模式與單壓強度UCS之關聯性	28
3.3金門花崗岩應力應變曲線之特性	31
3.4金門花崗岩之長期強度	33
3.5 離島潛在場址的現地主應力特徵	37
3.6 臺灣離島潛在場址母岩的強度特性	40
第四章 PFC顆粒流程式分析介紹	45
4.1. PFC程式概述	45
4.2. PFC建模步驟	58
4.3 PFC程式穩定性分析	60
4.3.1-1 顆粒數	61
4.3.1-2顆粒粒徑比	63
4.3.1-3 等向應力	64
4.3.1-4孔隙比	66
4.3.1-5顆粒排列方式	67
4.3.2-1加壓速率	70
4.3.2-2運算時階	71
第五章單壓試驗模擬及參數探討	74
5.1 PFC參數影響分析	75
5.1.1-1顆粒之楊氏模數(Ec)	75
5.1.1-2顆粒勁度比(Ks/Kn)	76
5.1.1-3摩擦係數(μ)	77
5.1.2-1正向鍵結強度(σn)	79
5.1.2-2正向鍵結強度與切向鍵結強度比(σs/σn)	80
5.1.2-3鍵結之楊氏模數(Ep)	82
5.1.2-4鍵結徑度比(kns/Knp)	83
5.1.2-5鍵結寬度放大係數(λ)	84
5.2模擬離島花崗岩單軸壓縮試驗	87
5.3花崗岩破裂特性模擬分析	92
5.4 張剪參數比對AE影響	101
5.5綜合討論	105
第六章模擬處置坑道之破裂行為	106
6.1 隧道穩定性分析	108
6.2離島隧道開挖模擬	115
6.2-1模擬處置隧道開挖	115
6.2-2 模擬處置孔開挖	125
6.3 離島隧道開挖破壞案例	128
6.3.1處置隧道破壞	128
6.3.2處置孔破壞	132
6.4綜合討論	134
第七章結論與建議	136
7.1結論	136
7.2建議	137
參考文獻	139
附錄A-隨機分佈鍵結模式範圍影響	144
附錄B-碩士學位考試口試委員提問與回覆對照表	146

 
表目錄
表3.1-1金門花崗岩強度試驗資料(慶齡工業研究中心,1990)	24
表3.1-2大地材料強度性質變異係數CoV範圍( Phoon, 1995)	28
表3.5-1臺灣離島潛在場址地區之水力破裂試驗成果(台電 2010)	38
表4.3-1不同顆粒參數對楊氏模數與單壓強度影響	72
表5.1-1影響砂岩單壓強度與變形模數之PFC輸入參數及其關鍵性	74
表5.2-1一組優良模擬輸入參數	90
表5.2-2模擬離島花崗岩單壓均勻鍵結強度PFC建議輸入參數範圍	91
表5.3-1一組優良模擬輸入參數	98
表5.3-2模擬離島花崗岩單壓隨機分佈鍵結強度PFC建議輸入參數範圍	101
表5.3-3均勻鍵結強度下在尖峰強度下之張剪破壞比例	103
表5.3-4隨機鍵結強度下在尖峰強度下之張剪破壞比例	105
 
圖目錄
圖1.1-1瑞典規劃KBS-3深層地質處置坑道之配置觀念	1
圖1.1-2高放深層地質處置(應力主控)與低放儲存(弱面主控)之不同岩盤力學問題(楊長義, 2015)	2
圖1.3-1研究進行邏輯圖	5
圖1.4-1 台大岩力室MTS剛性壓力機試驗單壓應力
參考文獻
參考文獻
1.	Bewick, R.P., F. Amann, P.K. Kaiser and C.D. Martin (2015), Interpretation of UCS test results for engineering design,ISRM Congress 2015 Proceedings - Int’l Symposium on Rock Mechanics.
2.	Bozorgzadeh, N., M. Dolowy-Busch and J.P. Harrison (2015), Obtaining robust estimates of rock strength for rock engineering design, ISRM Congress 2015 Proceedings - Int’l Symposium on Rock Mechanics.
3.	Brown, E.T. (1981), Rock Characterization Testing & Monitoring- ISRM Suggestion methods, Pergamon Press.
4.	Cai, M. and P.K. Kaiser(2014), In-situ rock spalling strength near excavation boundaries, Rock Mechanics Rock Engineering 47:659–675.
5.	Cho, N., C.D. Marti, and D.C. Sego(2007), A clumped particle model for rock, International Journal of Rock Mechanics & Mining Sciences 44: 997-1010
6.	Chen,L, J.Wang, Z.H. Zong, J. Liu, R.Su, Y.H. Guo, Y.X. Jin, W.M. Chen, R.L. Ji, H.G. Zhao, X.Y. Wang, X. Tian, H. Luo and M.Zhang(2015), A new rock mass classification system QHLW for high level radioactive waste disposal, Engineering Geology 190: 33-51.
7.	Diederichs, M.S., P.K. Kaiser and CD Martin (2000), The use of discrete element simulation to illuminate brittle rock failure process, In: Proceedings of the 53rd Canadian Geotechnical Conference, Montreal, Canada, p.447-454.
8.	Diederichs, M.S.(2003), Rock fracture and collapse under low confinement conditions, Rock Mechanics Rock Engineering  36 (5): 339–381.
9.	Diederichs, M.S., Kaiser, P.K. and Eberhardt E. (2004), Damage initiation and propagation in hard rock during tunnelling,International Journal of Rock Mechanics & Mining Sciences 41: 785-812.
10.	Fakhimi,A., F. Carvalho, T. Ishida and J.F. Labuz (2002), Simulation of failure around a Circular Opening in rock, International Journal of Rock Mechanics & Mining Sciences 39: 507–515.
11.	Gill,D.E., R. Corthesy, and M.H. Leite (2005), Determining the minimal number of specimens for laboratory testing of rock properties, Engineering Geology 78: 29–51.
12.	Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons, New York.
13.	Hakala,M., J.A. Hudson, J.P. Harrison and E. Jahansson (2008),Assessment of the Potential for Rock Spalling at the Olkiluoto Site, Working Report 2008-83, Posiva.
14.	Hsieh, Y.M., H.H. Li, T.H. Huang and F.F. Jeng (2008), Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—Revealed by bonded-particle model, Engineering Geology, 99(1-2): 1-10.
15.	Jacobsson, L.,  K. Appelquist and J.E. Lindkvist (2015), Spalling experiments on large hard rock specimens, Rock Mechanics Rock Engineering 48:1485–1503.
16.	Jeng, F.F., T.T. Wang, H.H. Li, and T.H. Huang (2008), Influences of microscopic factors on macroscopic strength and stiffness of inter-layered rocks — Revealed by a bonded particle, Journal of Mechanics 24(04): 379-389.
17.	Kahraman, S.(2001), Evaluation of simple methods for assessing the uniaxial compressive strength of rock, International Journal of Rock Mechanics & Mining Sciences 38: 981–994.
18.	Kaiser, P. K., M.S. Diederichs, C. D. Martin, J. Sharp, and W. Steiner, UNDERGROUND WORKS IN HARD ROCK TUNNELLING AND MINING. (web data)
19.	Lanaro,F., T. Sato and S. Nakama (2009), Depth variability of compressive strength test results of Toki granite from Shobasama and Mizunami construction sites, Japan, Rock Mechanics Rock Engineering 42:611–629.
20.	Langford, J.C. and M.S.Diederichs (2015), Quantifying uncertainty in Hoek–Brown intact strength envelopes, International Journal of Rock Mechanics & Mining Sciences 74: 91–102.
21.	Li, D.Y., C.C. Li and X.B. Li (2011), Influence of sample height-to-width ratios on failure mode for rectangular prism samples of hard rock loaded in uniaxial compression, Rock Mechanics Rock Engineering 44: 253–267.
22.	Li, G., Z.Z. Liang and C.A. Tang(2015), Morphologic interpretation of rock failure mechanisms under uniaxial compression based on 3D multiscale high-resolution numerical modeling, Rock Mechanics Rock Engineering 48:2235 – 2262.
23.	Lisjak, A. and G. Grasselli (2014), A review of discrete modeling techniques for fracturing processes in discontinuous rock masses, Journal of Rock Mechanics and Geotechnical Engineering, 6, 301-314.
24.	Martin, C.D., R. Christiansson and J. Soderhall (2001), Rock stability considerations for siting and constructing a KBS-3 repository. Based on experience from Äspö HRL, AECL’s URL, tunneling and mining. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co(SKB). Technical Report TR-01-38.
25.	Martin C.D. and R.Christiansson (2009), Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock, International Journal of Rock Mechanics and Mining Sciences 46(2):219-228.
26.	Parras, M.A and M.S. Diederichs (2014), A review of the tensile strength of rocks: Concepts and testing, Geotechnical & Geological Engineering 32: 525-546. 
27.	Phoon,K.K. (1995), Reliability-Based design of foundations for transmission line structures, PhD Dissertation, Cornell University.
28.	Potyondy, D. and  J.  Autio (2001), Bonded-particle simulations of the in-situ failure test at Olkiluoto. In: Elsworth D, Tinucci JP, Heasley KA, editors. Rock mechanics in the national interest, vol. 2. Lisse, The Netherlands: Balkema, 1553–60.
29.	Potyondy, D. and P. Cundall (2004), A Bonded-particl Model for Rock, International Journal of Rock Mechanics & Mining Sciences 41, 1329–1364.
30.	Rojat,F., V. Labiouse, P.K. Kaiser and F. Descoeudres (2009), Brittle rock failure in Steg lateral adit of the Lotschberg base tunnel, Rock Mechanics & Rock Engineering 42: 341-359.
31.	Ruffolo, R.M. and Abdul Shakoor (2009), Variability of unconfined compressive strength in relation to number of test samples, Engineering Geology 108 : 16–23
32.	SKB (2001), Aspo hard rock laboratory, Annual Report 2000, TR-01-10.
33.	SKB (2011), Long-term safety for the final repository for spent nuclear fuel at Forsmark- Main report of the SR-site project, SKB TR-11-01.
34.	Szwedzicki,T. (2007), A hypothesis on modes of failure of rock samples tested in uniaxial compression, Rock Mechanics Rock Engineering 40 (1): 97–104.
35.	Turichshev,A. and J. Hadjigeorgiou(2014), Experimental and numerical investigations into the strength of intact veined rock, Rock Mechanics Rock Engineering.
36.	Wang,C. and R. Wang(2015), Stress-to-strength characteristics of brittle failures around underground excavation openings,ISRM Congress 2015 Proceedings - Int’l Symposium on Rock Mechanics.
37.	Wanne, T., Saanio, Oy Riekkola (2002), Rock strength and deformation dependence on schistosity, Posiva 2002-05.
38.	Yoon, J.(2007), Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, International Journal of Rock Mechanics & Mining Sciences 44: 871–889.
39.	Zhao, X.G., J. Wang, X.H. Qin, M.Cai, R.Su, J.H. He, Z.H. Zong, L.K. Ma, M. Zhang, S. Zhang, L. Yun, Q.C. Chen, L.L. Niu and Q.M. An (2015), In-situ stress measurements and regional stress field assessment in the Xinjiang candidate area for China’s HLW disposal, Engineering Geology 197: 42-56.
40.	台灣電力公司(2003),我國用過核燃料長程處置潛在母岩特性調查與評估階段-潛在母岩特性調查計畫(91年計畫):K區(BH1及BH2)岩石力學報告,SNFD-ERL-90-199。
41.	台灣電力公司(2004),我國用過核燃料長程處置潛在母岩特性調查與評估階段-潛在母岩特性調查(91年計畫),期末報告。
42.	台灣電力公司(2006),用過核子燃料最終處置計畫-潛在處置母岩特性調查與評估階段,94年工作成果報告。
43.	台灣電力公司(2010),我國用過核子燃料最終處置初步技術可行性評估報告,SNFD2009。
44.	台灣電力公司(2012),用過核子燃料最終處置計畫-潛在處置母岩特性調查與評估階段,成果報告。
45.	台灣世曦(2011),金門大橋工程設計暨配合工作-大地工程調查室內試驗紀實報告(第一冊),國工局。
46.	李宏輝(2008),砂岩力學行為之微觀機制-以個別元素法探討,博士論文,台灣大學。
47.	林鎮國(2009) 台灣高放射性廢棄物深層地質處置之地質調查技術(用過核燃料長程處置),工業技術研究院簡報。
48.	徐力平(1996),高現地應力下地下開挖之岩爆研究,博士論文,台灣大學。
49.	楊明宗、歐陽湘、柳志錫、吳建宏(2004),水力破裂法現地應力量測及破壞準則探討,地工技術99。
50.	楊長義、翁孟嘉(2014),模擬裂隙損傷區對母岩受熱應力與外力作用之耦合效應研究,102年原子能科技學術合作計畫成果發表會論文集,65-68。
51.	楊長義、李宏輝、楊智凱(2014),地底實驗室之岩石力學實驗規劃,2014岩盤工程研討會,台中。
52.	楊長義 (2015a),先進國家地底實驗室岩力實驗之規劃與成果研析,科技部補助專題研究成果報告(NSC 103-NU-E-032-001-NU)。
53.	楊長義 (2015b),先進國家地底實驗室岩力實驗之規劃與成果研析,103年原子能科技學術合作研究計畫成果發表會。
54.	蔡美貞(2006),木山層砂岩破裂音源之空間特性,碩士論文,台灣大學。
55.	慶齡工業研究中心(1990),安山岩及花崗岩岩石力學分析試驗,試驗報告:編號78-S-34,。
56.	趙振宇(2005)台灣地區花崗岩內之裂隙流特性研究-高岩覆條件之花崗岩節理面導水特性研究(I) NSC94-2623-7-014.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信