§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0507201122083800
DOI 10.6846/TKU.2011.00164
論文名稱(中文) 基模架構對學習系統思考方法之影響
論文名稱(英文) The Effects of Schemas on Learning the Methods of Systems Thinking
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 公共行政學系公共政策碩士在職專班
系所名稱(英文) Department of Public Administration
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 曾奕樵
研究生(英文) I-Chiao Tseng
學號 797640041
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-06-16
論文頁數 93頁
口試委員 指導教授 - 韓 釗
委員 - 羅清俊
委員 - 黃琛瑜
關鍵字(中) 系統動力學
基模架構
存量
流量
反饋
關鍵字(英) System Dynsmics
Schemas
Stocks
Flows
Feedback
第三語言關鍵字
學科別分類
中文摘要
本研究焦點著重於呈現學習者在接受十至十二小時的系統動力學相關課程後,如何應用系統動力學中的基本概念,如:流量、存量及反饋等進行問題分析。由於一般人為了詮釋外在世界,而以過去的生活經驗或知識累積為基礎,逐漸累積發展出各種認知結構,並形成存在於心智中的基模架構,故當其所學習的新觀念與舊基模架構不一致時,往往難以修正既存的認知結構,以致不僅難以理解這些新觀念,甚至會增加產生誤解的可能性。本研究旨在了解既有基模架構如何影響系統思考的學習,並提出以下五點研究發現:

第一,「直接因果關係」相信因果與相近的時間、空間相關,並以一種靜態因果關係分析存量與流量間的關係,以致所推論的存量與流量間缺乏累積關係。第二,「簡化原則」避免了細瑣澈底的分類方式,因此所推論的因素經常是模糊不清且無法量化的。第三,「直接因果關係」及「簡化原則」分別推論出預設立場及特定時段存量之系統界限,而忽略了應存在於系統中的因素。第四,「單向因果架構」是一種簡化的線性因果模式,認為一個原因通常都只會影響一個結果,而「直接因果關係」則聚焦於鄰近因素間的因果關係,導致缺乏覺察應存在於系統中反饋迴路的能力。最後,上面所提到以靜態因果關係分析存量與流量間關係的「直接因果關係」,以及推論出預設立場系統界限之「簡化原則」,使得學習者產生誤認關鍵存量的情形。

基於上述研究發現,本研究建議,未來在進行與本研究議題相關的研究時,研究標的可採用與本研究不同類型問題的報告,以釐清學習者運用系統動力學基本概念之情形與問題類型間的相關性。此外,可觀察學習者在接受與系統思考相關課程的過程,並對學習者進行訪談,以便於取得更貼近學習者本身學習歷程的資料。最後,建議讓學習者在接受課程前先就他們自行選擇的問題進行分析,而在課程結束後針對同一問題再次進行分析,因此可比較學習者在接受課程之前與之後在分析問題情形上的差異性。
英文摘要
This research focused on presenting the difference between the basic concepts of System Dynamics such as stocks, flows and feedback, and the situation that learners analyzed their problems after they took ten to twelve hours System Dynamics course. Generally, in order to interpret the outside world because, we usually developed a variety of cognition structures that were in turn transformed into schemas based on our life experiences or accumulated knowledge.  As a result, when we are learning new concepts inconsistent with our existent schemas, it is often very hard to have our cognition structures modified. Moreover, it is very likely that we tend to misunderstand these new concepts when we apply them. The purpose of this research is to find out how our existent schemas affect our learning of systems thinking. The major findings of this research are stated as follows:

First,“direct causal relationship”tends to perceive that cause and effect are closely related in time and space, and that the relations between stocks and flows are static. As a result, the stocks and flows inferred by the learners often lack accumulation relaitonships. Second,“simplistic rule”tends to avoid detail and thorough classification of information that usually leads to ambiguity and unquantifiablity of factors. Third, “direct causal relationship”and“simplistic rule”that presumes system boundary of a specific period of stocks often excluded a number of factors that ought to exist in the system. Fourth,“one-way causal framework”is a kind of simplistic linear causal pattern which considers that a cause only affects one outcome; “direct causal relationship”focuses on the causal relationships between close factors. Both of them tend to prevent the ability of detecting feedback loops in the system. Finally, “direct causal relationship” that analyzes the relationship between stocks and flows from a static causal perspective and “simplistic rule” that presumes specific system boundaries tend to make the learners mistake the stocks that are in fact crucial.

Based on the research findings stated above, the following suggestions for future research are proposed. First, future research may consider to analyze learners’ reports focusing on different type of problems so as to identify the relationships between the situations that learners apply the basic concepts of System Dynamics and the types of the problems. Second, future researchers may consider to observe the learners in the process of learning systems thinking and make interviews so as to collect first hand data for conducting analyses. Finally, it is suggested that a pretesting and posttesting research design that compares the situations of the learners in analyzing problems before and after they take the systems thinking course may be considered so as to learn the real effects of the course.
第三語言摘要
論文目次
第一章  緒論1
第一節  研究動機與背景1
第二節  研究目的與研究問題3
第三節  研究標的與方法4
第二章  文獻探討7
第一節  一般人對於系統動力學的理解能力7
第二節  思考問題的基模架構19
第三節  研究架構25
第三章  學習者運用系統動力學概念之情形27
第一節  存量及流量之設定27
第二節  反饋迴路情形之覺察39
第三節  分析的存量非解決問題的關鍵存量52
第四章  舊基模架構對於學習系統動力學概念之影響59
第一節  直接因果關係缺乏累積觀念60
第二節  單向因果架構缺乏覺察反饋迴路之能力64
第三節  舊基模架構的簡化原則67
第四節  對於關鍵存量的誤認74
第五章  結論83
第一節  主要研究發現與討論83
第二節  研究限制與未來研究建議89
參考書目91

表次
表3-1  研究標的中出現與系統動力學概念差異點之情形彙整表57
表5-1  舊基模架構對學習者分析問題時與系統動力學概念差異點之影響彙整表88

圖次
圖2-1  存量與流量相關符號定義8
圖2-2  以浴缸圖示呈現存量與流量間之關係10
圖2-3  以系統動力學符號呈現浴缸概念中存量與流量間之關係10
圖2-4  以數學概念呈現存量與流量間之關係10
圖2-5  因果鏈類型16
圖2-6  正反饋17
圖2-7  負反饋17
圖2-8  研究架構26
圖3-1  將「年度預算」及「一年用電總量」設定為存量之報告29
圖3-2  將「預算經費」設定為存量之報告30
圖3-3  以「用電量」名稱代表「每年度用電量」存量之報告31
圖3-4  以「用電量」名稱代表「夏季用電量」存量之報告32
圖3-7  設定「電費支出金額」存量之流出量但未作定義之報告35
圖3-8將「預算經費」及「結餘」設定為存量之報告36
圖3-9  重新修正「節約用電」定義及性質之報告38
圖3-10  設定抽象且無法量化的因素之報告41
圖3-11  因素間產生錯誤因果關係之報告43
圖3-12  忽略原存在於系統中因素之報告46
圖3-13  以一般用電情形推論影響「耗電因素」的因素47
圖3-14  以被忽略「室內溫度」存量進行推論之分析49
圖3-15  忽略原存在於系統中反饋迴路之報告50
圖3-16  與上述因素分析圖不符之反饋迴路分析圖51
圖3-17  將具有存量性質之因素誤以輔助變數形式呈現的情形52
圖3-18  將「室溫」修正為存量後與「照明設備使用時間」之因果關係54
圖3-19  釐清關鍵存量後重新分析各因素間之因果關係56
圖4-1  以「用電量」名稱代表「每年度用電量」存量之報告61
圖4-2  以「用電量」名稱代表「夏季用電量」存量之報告61
圖4-3  以數學概念呈現存量與流量間之關係62
圖4-4  缺乏累積概念之存量流量分析圖64
圖4-5  忽略構成反饋迴路之關鍵因果鏈66
圖4-6  模糊抽象的因素設定70
圖4-7  在預設立場影響下所忽略的因素及因果鏈72
圖4-8  代表問題表象的「一年用電總量」及「年度預算」存量74
圖4-9  代表問題表象的「預算經費」及「電費支出金額」存量75
圖4-10  將關鍵存量設定為輔助變數76
圖4-11  以動態累積觀念重新界定「照明設備使用時間」與「室溫」間關係78
圖4-12  以直接因果關係設定存量及流量79
圖4-13  在預設立場及缺乏累積概念影響下誤認其關鍵存量80
圖4-14  與預設立場無關之因素被視為系統界限外而予以排除81
參考文獻
壹、中文部分
王彥文譯,Briggs, J., Peat, F. D.著(1993),《渾沌魔鏡》,台北:牛頓。
李茂興、余伯泉譯, Aronson, E., Wilson, T. D., Akert, R. M.著(1995),《社會心理學》,台北:揚智文化。
周海濤、李永賢、張蘅譯,Yin, R. K.著(2009),《個案研究-設計與方法》,台北:五南。
洪  蘭譯,Gleitman, H.著(1997),《心理學》,台北:遠流。
郭進隆、齊若蘭譯,Senge, P. M.著(2010),《第五項修練(全新增訂版)》,台北:天下遠見。
齊若蘭譯,Waldrop, M. M. 著(1995),《複雜》,台北:天下文化。
劉錦秀、謝育容譯,大前研一著(2005),《思考的技術》,台北:商周。
韓 釗(2009)《系統動力學-探索動態複雜之鑰(第二版)》,台中:滄海。

貳、英文部分
Bell-Basca, B. S., Grotzer, T. A., Donis, K. & Shaw, S. (2000). Using domino and relational causality to analyze ecosystems: Realizing what goes around comes around.  Presented at the National Association of Research in Science Teaching, Project Zero, Harvard Graduate School of Education, Cambridge, MA.
Cronin, M. A., & Gonzalez, C., & Sterman, J. D. (2009). Why don't well-educated adults understand accumulation? A challenge to researchers, educators, and citizens. Organizational Behavior and Human Decision Processes, 108(1), 116-130. 
Cronin, M. A., & Gonzalez, C. (2007). Understanding the building blocks of dynamic systems. System Dynamics Review, 23(1), 1-17.
Forrester, JW. (1971). Counterintuitive behavior of social systems. Technology Review, 73(3), 52-68.
Green, D. W. (1997). Explaining and envisaging an ecological phenomenon. The British Journal of Psychology, 88, 199-217.
Jensen, E., & Brehmer, B. (2003). Understanding and control of a simple dynamic system. System Dynamics Review, 19(2), 119-137.
Kainz, D., & Ossimitz, G.. (2002). Can students learn stock-flow-thinking? An empirical investigation. Paper presented at the 2002 International System Dynamics Conference, Palermo, Italy.
Moxnes, E. (2000). Not only the tragedy of the commons: Misperceptions of feedback and policies for sustainable development. System Dynamics Review,16(4), 325-348.
Moxnes, E., & Saysel, A. K. (2009). Misperceptions of global climate change: Information policies. Climatic Change, 93(1), 15-37.
Pala, O., & Vennix, J. A. M. (2005). Effect of system dynamics education on systems thinking inventory task performance. System Dynamics Review, 21(2), 147-172. 
Perkins, D. N., & Grotzer, T. A. (2005). Dimensions of causal understanding: The role of complex causal models in students’ understanding of science. Studies in Science Education, 41, 117-166.
Phuah, T. L. K. (2010). Can people learn behaviors of stock and flow using their ability to calculate running total? An experimental study. System Dynamic Group Department of Geography University of Bergen.
Plate, R. (2010). Assessing individuals’ understanding of nonlinear causal structures in complex systems. System Dynamics Review, 26(1), 19-33.
Plotnik, R. (1995). Introduction to psychology(4th ed). Pacific Grove, CA: Brooks/Cole.
Roberts, N. (1978). Teaching dynamic feedback systems thinking: an elementary view.  Management Science, 24(8), 836-43.
Robertson, P. J., & Choi, T. (2010). Ecological governance: Organizing principles for an emerging era  Public Administration Review,70,s89-s99.
Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321-339.
Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA : Irwin/McGraw-Hill.
Sterman, J. D. (2002). All models are wrong: Reflection on becoming a systems scientist. System Dynamics Review, 18(4), 501-531.
Sterman, J. D. (2009). Does formal system dynamics training improve people’s understanding of accumulation? Paper presented at the 2009 International System Dynamics Conference, Albuquerque, New Mexico, USA. 
Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: initial results of a system thinking inventory. System Dynamics Review, 16(4), 249-286.
Sweeney, L. B., & Sterman, J. D. (2002). Cloudy skies: Assessing public understanding of global warming. System Dynamics Review, 18(2), 207-240.
Sweeney, L. B., & Sterman, J. D. (2007). Thinking about systems: Student and teacher conceptions of natural and social systems. System Dynamics Review, 23(2-3), 285-312.
Kothari, V. (2004). Assessment of dynamic maintenance management. Virginia Polytechnic Institute, Blacksburg, VA.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change.  Learning and Instruction, 4, 45-69.
White, P. A. (1992). The anthropomorphic machine: Causal order in nature and the world view of common sense. The British Journal of Psychology, 83, 61-96.
White, P. A. (1997). Naive ecology: Causal judgments about a simple ecosystem.  The British Journal of Psychology, 88, 219-33.
Yin, R. K.(2009). Case study research-design and methods fourth edition. Thousand Oaks, CA: SAGE.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信