淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0507201116563700
中文論文名稱 批次式好氧高壓造粒程序
英文論文名稱 High pressure aerobic granulation sequential batch reactor (SBR) process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 張原維
研究生英文姓名 Yuan-Wei Chang
電子信箱 k30942@gmail.com
學號 698480539
學位類別 碩士
語文別 中文
口試日期 2011-06-17
論文頁數 69頁
口試委員 指導教授-李奇旺
委員-李柏青
委員-陳孝行
中文關鍵字 好氧顆粒  高壓  造粒  絲狀菌 
英文關鍵字 Aerobic granule  High pressure  Graulation  Filamentous Bacteria 
學科別分類 學科別應用科學環境工程
中文摘要 好氧顆粒比起活性污泥的優點在於它的高沉降性、能抵抗較高負荷及變異的進流水濃度。影響好氧顆粒的因子有很多,包含沉澱時間、進流水性質、飢餓期、pH值、溫度、溶氧、絲狀菌等等,但好氧顆粒的常常因為不知名的原因而崩解隨出流水流出,學者認為的其中一項原因是氧氣無法進入顆粒內部而造成崩解。
大部分對於好氧顆粒的高負荷研究都是在15kgCOD/m3-d之內,超過此負荷以上顆粒生長的案例較少,故本研究以高壓反應槽在氧氣充沛的環境之下以廢糖水作為進流水,在5、10、20kgCOD/m3-d三種負荷之下培養並與常壓反應槽做比較,同時觀察是否影響到顆粒的性質及處理水質的效果。
結果顯示在三周的培養過程中,高壓反應槽與常壓反應槽中的顆粒相比,在低、中、高負荷之中都有絲狀菌的存在,但高壓反應槽比起常壓反應槽擁有較少的絲狀菌、較好的沉降性質、較低的總懸浮固體,但在水質處理效果高壓反應槽與常壓反應槽在高負荷之中則是差不多的,而低、中負荷之下高壓反應槽中的顆粒則是比常壓反應槽來的好。EPS的量則是不受氧氣的影響,並不會因為氧氣的充沛而分泌的較多,其分泌量還是取決於飢餓期為主要因素。
英文摘要 Compared with aerobic activated sludge process, aerobic granule process has several advantages, such as good settling ability, high biomass retention, strong microbial structure, resistance of high loadings and variation influent concentration. There are many factors affecting granule growth, including selection pressure, starvation time, pH value, temperature, dissolved oxygen, and filamentous fungi, etc. Aerobic granules might disintegrate and are washed out from the reactor with effluent. It has been attributed to the reason that oxygen cannot penetrate the granule core, causing anaerobic condition in the granule core. In this study, aerobic granules are operated under high pressure environment, i.e., high pressure granulation process, to overcome the aforementioned problem. High pressure granulation process along with ambient pressure process were studied under three organic loading conditions (5, 10, 20 kgCOD/m3-d). The characteristics of aerobic granules were compared.
After a three-week granulation under three loading, the result shows that both reactors have few filamentous.But the filamentous bacteria in high pressure reactor are not only less than those in the ambient pressure reactor but also having better settling ability, resulting in less total suspended solids in the effluent of the high pressure reactor. Under the same organic loading, COD removal efficiencies are much better in the high pressure reactor than in the ambient pressure reactor. Regardless of the high pressure reactor and ambient pressure reactor, COD removal efficiencies under high loading are worse than those under medium and low loading. In addition, the amount of EPS is not affected by oxygen concentration, and is decided by the starvation time.
論文目次 目錄
目錄 I
圖目錄 III
表目錄 V
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1好氧顆粒的形成的機制與條件 3
2.1.1 廢水性質及植種 3
2.1.2 溶氧與曝氣 4
2.1.3 溫度 5
2.1.4 基質 5
2.1.5 pH值 6
2.2影響好氧污泥顆粒化的因子 6
2.2.1 EPS與顆粒的關係 7
2.2.2 好氧顆粒的培養與飢餓期 8
2.2.3 沉澱時間與交換率 9
2.2.4 負荷 14
2.2.5 絲狀菌 14
第三章 實驗材料與方法 17
3.1 實驗儀器與設備 17
3.1.1 SBR高壓反應槽與常壓反應槽系統 17
3.1.2 器材與設備 20
3.2實驗藥品 21
3.3採樣方法與分析 24
3.3.1 EPS分析(extracellular polymeric substances) 24
3.3.2蛋白檢測分析 24
3.3.3醣類檢測分析 25
3.3.4顆粒形成的鑑定 26
3.3.5總有機碳(TOC) 26
3.3.6水中化學需氧量檢測方法 26
3.3.7水中總懸固體檢測方法 27
3.3.8水中MLSS檢測方法 27
3.3.9 顆粒強度 27
3.3.10 SEM電子顯微鏡 27
3.3.11 光學顯微鏡 27
第四章 結果與討論 28
4.1 顆粒的形成 28
4.2 顆粒外觀 30
4.3 SEM與光學顯微鏡之圖像 38
4.4顆粒強度 43
4.5 EPS與蛋白、醣類 47
4.6沉降性質與MLSS 51
4.7 出流水水質 57
第五章 結論與建議 63
5.1結論 63
5.2建議 64
Reference 65

圖目錄
圖1 沉澱速度與所生成的顆粒量分佈圖[15] 11
圖2 常壓反應過程圖 17
圖3 高壓反應過程圖 18
圖4 高壓反應槽設備圖 19
圖5 沉澱時間調整示意圖 19
圖6 常壓反應設備圖 20
圖7 蛋白檢量線圖 25
圖8 醣類檢量線圖 26
圖9 5kgCOD/m3-d高壓反應槽形成之顆粒形成圖 31
圖10 5kgCOD/m3-d常壓反應槽之顆粒形成圖 32
圖11 10kgCOD/m3-d高壓反應槽之顆粒形成圖 33
圖12 10kgCOD/m3-d常壓反應槽之顆粒形成圖 34
圖13 10kgCOD/m3-d 第十九天高壓(左)與常壓(右)顆粒對照圖 35
圖14 20kgCOD/m3-d高壓反應槽之顆粒形成圖 36
圖15 20kgCOD/m3-d常壓反應槽之顆粒形成圖 37
圖16 20kgCOD/m3-d 第十九天高壓與常壓顆粒對照圖 38
圖17第十天5 kg COD/m3-d負荷光學顯微鏡圖像 39
圖18第十九天kg COD/m3-d、kg COD/m3-d SEM圖像[8] 40
圖19 第十天10kg COD/m3 –d光學顯微鏡圖像 41
圖20 第十九天10kg COD/m3 –d SEM圖像 41
圖21 第十天20kg COD/m3 –d光學顯微鏡圖像 42
圖22 第十九天20kg COD/m3 –d SEM圖像 42
圖23 高壓反應槽中EPS含量 48
圖24 常壓反應槽中EPS含量 48
圖25 三負荷之高壓反應槽SVI30對照圖 52
圖26 三負荷之常壓反應槽SVI30對照圖 52
圖27 三負荷之高壓反應槽各MLSS對照圖 54
圖28 三負荷之常壓反應槽各MLSS對照圖 54
圖29 5kg COD/m3 –d負荷之出流水水質 58
圖30 10 kg COD/m3 –d負荷之出流水水質 58
圖31 20 kg COD/m3 –d負荷之出流水水質 59
圖32 5kg COD/m3 –d出流水總懸浮固體 61
圖33 10kg COD/m3 –d出流水總懸浮固體 61
圖34 20kg COD/m3 –d出流水總懸浮固體 62


表目錄
表1 不同曝氣時間的反應槽 9
表2 不同沉澱速度影響 11
表3 文獻中沉澱時間與沉澱速度 13
表4 儀器列表 20
表5 藥品列表 21
表6 進流水濃度負荷表格 23
表7 三種負荷SVI5與SVI30比較表 29
表8 5kgCOD/m3 –d負荷之顆粒強度 44
表9 10kgCOD/m3 –d負荷之顆粒強度 45
表10 20kgCOD/m3 –d負荷之顆粒強度 46
表11 高壓與常壓反應槽蛋白與醣類分泌量表 50

參考文獻 Reference
1. Liu, X.W., G.P. Sheng, and H.Q. Yu, Physicochemical characteristics of microbial granules. Biotechnology Advances, 2009.
2. Adav, S.S., et al., Aerobic granular sludge: Recent advances. Biotechnology Advances, 2008. 26(5): p. 411-423.
3. Lee, D.J., et al., Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnology Advances.
4. Tay, J.H., et al., Specific layers in aerobically grown microbial granules. Letters in Applied Microbiology, 2002. 34(4): p. 254-257.
5. Qin, L., J.H. Tay, and Y. Liu, Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochemistry, 2004. 39(5): p. 579-584.
6. Sturm, B.S.M. and R.L. Irvine, Dissolved oxygen as a key parameter to aerobic granule formation, in Water Science and Technology. 2008. p. 781-787.
7. Yang, X.P., J. Han, and L.X. Zhou, Role of Ca2+ in the formation of glucose-fed aerobic granular sludge in sequencing batch reactor. Huanjing Kexue/Environmental Science, 2010. 31(5): p. 1269-1273.
8. Moy, B.Y.P., et al., High organic loading influences the physical characteristics of aerobic sludge granules. Letters in Applied Microbiology, 2002. 34(6): p. 407-412.
9. Thanh, B.X., C. Visvanathan, and R.B. Aim, Characterization of aerobic granular sludge at various organic loading rates. Process Biochemistry, 2009. 44(2): p. 242-245.
10. 林健三, 環境工程概論. 2010-09-15, 台北: 鼎茂出版社.
11. Song, Z., et al., Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. Journal of Environmental Sciences, 2010. 22(9): p. 1312-1318.
12. Sheng, G.p., et al., Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation. Chemical Engineering Journal, 2010. 160(1): p. 108-114.
13. Ramasamy, P. and X. Zhang, Effects of shear stress on the secretion of extracellular polymeric substances in biofilms. 2005. p. 217-223.
14. Dulekgurgen, E., et al., How does shear affect aggregation in granular sludge sequencing batch reactors? Relations between shear, hydrophobicity, and extracellular polymeric substances. 2008. p. 267-276.
15. Liu, Y., et al., Selection pressure-driven aerobic granulation in a sequencing batch reactor. Applied Microbiology and Biotechnology, 2005. 67(1): p. 26-32.
16. Ji, G., et al., Sludge granulation and performance of a low superficial gas velocity sequencing batch reactor (SBR) in the treatment of prepared sanitary wastewater. Bioresource Technology, 2010. 101(23): p. 9058-9064.
17. Martins, A.M.P., J.J. Heijnen, and M.C.M. Van Loosdrecht, Effect of dissolved oxygen concentration on sludge settleability. Applied Microbiology and Biotechnology, 2003. 62(5-6): p. 586-593.
18. 石濤, 環境微生物, ed. 邱逸清. 1996, Taipei.
19. Song, Z., et al., Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors. Journal of Environmental Sciences, 2009. 21(3): p. 273-278.
20. Li, X.M., et al., Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresource Technology, 2009. 100(1): p. 64-67.
21. Liu, L., et al., Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. Journal of Hazardous Materials, 2010.
22. Yang, S.F., X.Y. Li, and H.Q. Yu, Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 2008. 43(1): p. 8-14.
23. Wang, Z.P., et al., Effects of extracellular polymer substances on aerobic granulation in sequencing batch reactors. Journal of Harbin Institute of Technology (New Series), 2009. 16(1): p. 145-148.
24. Wang, Z., et al., Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 2006. 63(10): p. 1728-1735.
25. Tay, J.H., Q.S. Liu, and Y. Liu, The role of cellular polysaccharides in the formation and stability of aerobic granules. Letters in Applied Microbiology, 2001. 33(3): p. 222-226.
26. Liu, Y.Q., Y. Liu, and J.H. Tay, The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology, 2004. 65(2): p. 143-148.
27. McSwain, B.S., et al., Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Applied and Environmental Microbiology, 2005. 71(2): p. 1051-1057.
28. Su, K.Z. and H.Q. Yu, Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environmental Science and Technology, 2005. 39(8): p. 2818-2827.
29. Liu, Y.Q. and J.H. Tay, Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresource Technology, 2008. 99(5): p. 980-985.
30. McSwain, B.S., R.L. Irvine, and P.A. Wilderer, The effect of intermittent feeding on aerobic granule structure. 2004. p. 19-25.
31. Chiesa, S.C., R.L. Irvine, and J.F. Manning Jr, Feast/famine growth environments and activated sludge population selection. Biotechnology and Bioengineering, 1985. 27(5): p. 562-568.
32. Liu, Y.Q. and J.H. Tay, Characteristics and stability of aerobic granules cultivated with different starvation time. Applied Microbiology and Biotechnology, 2007. 75(1): p. 205-210.
33. Giokas, D.L., et al., Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database. Water Research, 2003. 37(16): p. 3821-3836.
34. Kong, Y., et al., Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme and Microbial Technology, 2009. 45(5): p. 379-383.
35. Liu, Y.Q. and J.H. Tay, Variable aeration in sequencing batch reactor with aerobic granular sludge. Journal of Biotechnology, 2006. 124(2): p. 338-346.
36. Etterer, T. and P.A. Wilderer, Generation and properties of aerobic granular sludge. 2001. p. 19-26.
37. Bao, R., et al., Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature. Journal of Hazardous Materials, 2009. 168(2-3): p. 1334-1340.
38. Beun, J.J., M.C.M. Van Loosdrecht, and J.J. Heijnen, Aerobic granulation in a sequencing batch airlift reactor. Water Research, 2002. 36(3): p. 702-712.
39. Wang, F., et al., Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Journal of Hazardous Materials, 2009. 164(2-3): p. 1223-1227.
40. Morgenroth, E., et al., Aerobic granular sludge in a sequencing batch reactor. Water Research, 1997. 31(12): p. 3191-3194.
41. Liu, Y., et al., The role of cell hydrophobicity in the formation of aerobic granules. Current Microbiology, 2003. 46(4): p. 270-274.
42. McSwain, B.S., R.L. Irvine, and P.A. Wilderer, The influence of settling time on the formation of aerobic granules. 2004. p. 195-202.
43. Tay, J.H., Q.S. Liu, and Y. Liu, The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, 2001. 57(1-2): p. 227-233.
44. Liu, Y.Q., et al., Starvation is not a prerequisite for the formation of aerobic granules. Applied Microbiology and Biotechnology, 2007. 76(1): p. 211-216.
45. Gao, D., et al., Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors. Journal of Hazardous Materials, 2010.
46. Liu, Y. and Q.S. Liu, Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2006. 24(1): p. 115-127.
47. Li, Z., et al., Granulation of filamentous microorganisms in a sequencing batch reactor with saline wastewater. Journal of Environmental Sciences, 2010. 22(1): p. 62-67.
48. Li, A.j., T. Zhang, and X.y. Li, Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere, 2010. 78(5): p. 500-509.
49. Tzeng, T.-W., Intermittent high pressure sequential bioreactor (IHPSB) with integration of sand filtration system for synthetic wastewater treatment, in Department of Water Resources and Environmental Engineering. 2008, TamKang University: Taipei.
50. Raunkjaer, K., T. Hvitved-Jacobsen, and P.H. Nielsen, Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research, 1994. 28(2): p. 251-262.
51. Dubois, M., et al., Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956. 28(3): p. 350-356.
52. Chen, Y., et al., Aerobic granulation under the combined hydraulic and loading selection pressures. Bioresource Technology, 2008. 99(16): p. 7444-7449.
53. Ghangrekar, M.M., et al., Experience with UASB reactor start-up under different operating conditions 1996, Pergamon Press Inc: Singapore, Singapore. p. 421-428.
54. Xuan, W., et al., The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresource Technology, 2010. 101(21): p. 8046-8050.
55. Tay, J.H., et al., The effect of organic loading rate on the aerobic granulation: The development of shear force theory. 2003. p. 235-240.
56. Liu, Y., S.F. Yang, and J.H. Tay, Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. Journal of Biotechnology, 2004. 108(2): p. 161-169.
57. Zhang, L., et al., Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology, 2007. 41(5): p. 551-557.
58. Wilen, B.M. and P. Balmer, The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Research, 1999. 33(2): p. 391-400.
59. Adav, S.S., D.J. Lee, and J.Y. Lai, Functional consortium from aerobic granules under high organic loading rates. Bioresource Technology, 2009. 100(14): p. 3465-3470.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信