淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0507201018230200
中文論文名稱 人形機器人的人機介面設計與運動控制之研究
英文論文名稱 The Design of Human-Machine-Interface for the Motion Control of Humanoid Robots
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 黃俊豪
研究生英文姓名 Chun-Hao Huang
學號 696470219
學位類別 碩士
語文別 中文
口試日期 2010-06-15
論文頁數 53頁
口試委員 指導教授-黃志良
委員-翁慶昌
委員-郭重顯
委員-游文雄
委員-黃志良
中文關鍵字 人型機器人  人機介面  運動控制  跨障礙  夾取物件 
英文關鍵字 Humanoid Robot  Human-Machine-Interface  Motion Control  Stepping Over Obstacle  Object Grasping 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文以小型單板電腦Roboard-100與Microsoft Visual Studio 2008軟體開發具有身高58公分,重量3.5公斤,及全身共22個自由度之人形機器人的人機介面(Human-Machine-Interface, HMI),並利用遠端電腦登入此嵌入微處理器開啟所設計的人機介面,執行所撰寫的相關程式以進行人形機器人之操控。
所謂的人形機器人即是它與人類的體型相似,而且能在很多情形下幫助人類完成相關任務,因此它必須具備與人類相似的運動能力,例如,走路、轉彎、跨越障礙物、上下樓梯等。本論文首先定義人形機器人的基本動作,例如,微步伐、小步伐、中步伐、大步伐之直走、左右之橫移動作、小角度游移腳之旋轉、小至大角度之左右旋轉、及左右手部之運動。就我們所知的人機介面中,乃是根據逆運動學推導相關馬達所需轉動之角度,下命令於相關馬達以獲得所想要的姿態,然而這種方式相當耗費時間,不適合於即時的任務。本論文所設計的介面將採取不同的方式來創建機器人的動作,首先以卸力的功能取消馬達之Holding力矩,再任意地轉動機器人的自由度以獲得想要的姿態,接著恢復馬達的Holding力矩,並經由回授的功能紀錄與儲存此姿態的相關馬達之角度。
最後以兩個例子:一為人形機器人跨越障礙物,另一為人形機器人至目標點抓取物件,以驗證所建議的方法之有效性及可行性。首先調查與紀錄機器人在跨越障礙物時,在不同的步態當中,若要維持身體平衡,需要修正那幾個自由度,並整合到介面中,接著進行跨越障礙物連續動作之實驗,觀察相關實驗是否達到所規劃的目標,若沒達成則進行適當之修正,以獲得更好的結果。同理,人形機器人至目標點抓取物件之任務,直到可獲得滿意的結果。然而本論文所建議之方法屬於前饋式的,對於超出預期以外的不平衡或不精確的導引結果是無法補償的。
英文摘要 Both small-size single board computer Roboard-100 and Microsoft Visual Studio 2008 Software are applied to develop the HMI (Human-Machine-Interface) for small-size humanoid robot. This HMI in the humanoid robot (HR) with height 58 cm, weight 3.5 kg, and 22 degrees of freedom is executed by the remote way from another personal computer. The architecture and function of a humanoid robot is similar with the human; in many circumstances it can help human to finish the assigned tasks. Based on these requirements, the HR must possess the capacity for human normal exercise, e.g., walking, turning, stepping over an obstacle, climbing up and down the stairs. In the beginning, the fundamental motions of the HR, e.g., walking in various step lengths, left and right movements, left and right turning in various degrees, and left and right movements of two hands, are defined and illustrated. In general, the movement commands in the HMI are according to the values derived by the inverse kinematics; it is time consuming and not suitable for the tasks in real time. On the other hand, we have easier and faster way to finish the corresponding tasks. First, the holding torque of the HR is relaxed. After the posture adjustment of the HR by hand, it can be in various postures. In this situation, the holding toques of the HR are turn on, and then the corresponding angles of motor for the specific posture are feedback to Roboard-100 and then recorded. Based on the synthesis of walking gaits for a specific task, the balance is considered in very DDP and SSP. The possible destination is navigated by the proposed HMI with appropriate program. Finally, two experimental cases: one is the stepping over an obstacle, the other is the walking and grasping an object, are arranged to confirm the effectiveness and efficiency of the proposed HMI. Because the proposed methodology is a forward type, the unbalance over the expectance or the inaccurate navigation caused by the uncertainty can not compensate.
論文目次 目錄
中文摘要...........................................I
英文摘要...........................................II
目錄...............................................III
圖目錄............................................ V
表目錄.............................................VII
第一章 緒論........................................1
第二章 系統描述和研究任務..........................4
2.1 系統描述.......................................4
2.2 研究任務.......................................11
第三章 人機介面之設計..............................13
3.1 馬達控制頁面...................................14
3.1.1 動作傳送模組.................................14
3.1.2 馬達卸力與恢復力矩模組.......................15
3.1.3 單顆馬達傳送模組.............................16
3.2 馬達回授頁面...................................17
3.3 組合動作頁面...................................18
3.4 資料處理.......................................20
3.4.1動作列表顯示..................................20
3.4.2開檔與存檔....................................21
3.4.3資料庫........................................21
第四章 人形機器人之運動控制........................23
4.1 人形機器人走路運動.............................23
4.1.1 直線運動.....................................25
4.1.2橫線運動......................................29
4.2人形機器人旋轉運動..............................31
4.2.1 小角度旋轉...................................32
4.2.2大角度旋轉....................................35
4.3人形機器人手部運動..............................37
第五章 實驗結果與討論..............................38
5.1 實驗結果.......................................38
5.1.1 人形機器人跨越障礙物.........................38
5.1.2 人形機器人至目標點抓取物件 ..................44
5.2 討論.......................................... 45
第六章 結論與未來之研究............................49
6.1 結論...........................................50
6.2 未來之研究.....................................51
參考文獻...........................................52

圖目錄
圖2.1、人形機器人實體圖............................5
圖2.2、Roboard-100嵌入系統.........................5
圖2.3、嵌入式視覺系統模組..........................6
圖2.4、系統架構圖 .................................6
圖2.5、機器人機構與馬達ID配置圖....................8
圖2.6、人形機器人四肢及身體自由度示意圖............11
圖3.1、人機介面....................................14
圖3.2、馬達控制介面................................17
圖3.3、馬達回授頁面................................18
圖3.4、組合動作顯示列表............................19
圖3.5、單一動作顯示列表............................19
圖3.6、組合動作傳送介面............................19
圖3.7、(a)開檔圖示(b)存檔圖示......................21
圖3.8、動作文字檔..................................21
圖3.9、暫存按鈕圖示................................22
圖3.10、人機介面系統圖.............................22
圖4.1、步行動作規劃之前及俯視圖....................24
圖4.2、人形機器人單腳支撐動作示意圖................25
圖4.3、人形機器人單腳支撐動作控制示意圖............26
圖4.4、人形機器人動作控制步伐大小示意圖............27
圖4.5、人形機器人微步伐直走(1~3cm)之動作結果圖.....27
圖4.6、人形機器人小步伐直走(3~5cm)之動作結果圖.....28
圖4.7、人形機器人中步伐直走(6~8cm)之動作結果圖.....28
圖4.8、人形機器人大步伐直走(10~12cm)之動作結果圖...29
圖4.9、人形機器人橫移動作控制示意圖................30
圖4.10、人形機器人左橫移之動作結果圖...............30
圖4.11、人形機器人右橫移之動作結果圖...............31
圖4.12、人形機器人小角度游移腳旋轉動作示意圖.......33
圖4.13、人形機器人小角度支撐腳旋轉動作示意圖.......33
圖4.14、人形機器人左轉1度之動作結果圖..............34
圖4.15、人形機器人左轉5度之動作結果圖..............34
圖4.16、人形機器人左轉10度之動作結果圖.............35
圖4.17、人形機器人大角度旋轉動作示意圖.............36
圖4.18、人形機器人左轉30度之動作結果圖.............36
圖4.19、人形機器人手部動作控制示意圖...............37
圖5.1、各種支撐模式實體圖:(a)雙腳平行(b)單腳(c)前後雙腳...39
圖5.2、人形機器人跨越3公分障礙物之動作結果圖.......41
圖5.3、人形機器人跨越8公分障礙物之動作結果圖.......43
圖5.4、機器人旋轉之程式流程圖......................46
圖5.5、機器人直走之程式流程圖......................47
圖5.6、人形機器人至目標點抓取16公分物件之實驗結果圖.......48
圖5.7、人形機器人至目標點抓取3公分物件之實驗結果圖........49

表目錄
表2.1(a)、手部伺服機規格表..........................8
表2.1(b)、腿部伺服機規格表..........................9
表2.1(c)、膝關節伺服機規格表........................9
表2.2、人形機器人各自由度的基本規格.................10
表3.1、單一動作規格.................................21
表3.2、組合動作規格.................................21
參考文獻 參考文獻
[1] K. Loffler, M. Gienger, F. Pfeiffer and H. Ulbrich, “Sensors and control concept of a biped robot,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp.972-980, Oct. 2004.
[2] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robotics, vol. 21, no. 5, pp. 977-984, Oct. 2005.
[3] Y. Guan, E. S. Neo, K. Yokoi and K. Tanie, “Stepping over obstacles with humanoid robots,” IEEE Trans. Robotics, vol. 22, no. 5, pp. 958-973, Oct. 2006.
[4] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi and H. Hirukawa, “Real-time planning of humanoid robot’s gait for force-controlled manipulation,” IEEE/ASME Trans. Mechatron., vol. 12, no. 1, pp. 53-62, Feb., 2007.
[5] M. Wisse, D. G. E. Hobbelen and A. L. Schwab, “Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism,” IEEE Trans. Robotics, vol. 23, no. 1, pp.112-123, Feb. 2007.
[6] E. S. Neo, K. Yokoi, S. Kajita and K. Tanie, “Whole-body motion generation integrating operator’s intention and robot’s autonomy in controlling humanoid robots,” IEEE Trans. Robotics, vol. 23, no. 4, pp.763-775, Aug. 2007.
[7] 楊玉婷,自主人形機器人的避障與視覺為基射門之設計與實現,淡江大學電機工程學系碩士班碩士論文,2007。
[8] D. Xu, Y. F. Li, M. Tan and Y. Shen, “A new active visual for humanoid robots,” IEEE Trans. Syst. Man & Cyber., Part B, vol. 38, no. 2, pp. 320-330, Apr. 2008.
[9] G. Arechavaleta, J. P. Laumond, H. Hicheur and A. Berthoz, “An optimality principle governing human walking,” IEEE Trans. Robotics, vol. 24, no. 1, pp. 5-14, Feb. 2008.
[10] L. Montesano, M. Lopes, A. Bernardino and Jos′e Santos-Victor, “Learning object affordances: from sensory–motor coordination to imitation,” IEEE Trans. Robotics, vol. 24, no. 1, pp. 15-264, Feb. 2008.
[11] T. Nomura, T. Kanda, T. Suzuki and K. Kato, “Prediction of human behavior in human–robot interaction using psychological scales for anxiety and negative postures toward robots,” IEEE Trans. Robotics, vol. 24, no. 2, pp. 442-451, Apr. 2008.
[12] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Ind. Electronics, vol. 55, no. 5, pp. 2111-2120, May 2008.
[13] T. Kanda, T. Miyashita, T. Osada, Y. Haikawa and H. Ishiguro, “Analysis of humanoid appearances in human–robot interaction,” IEEE Trans. Robotics, vol. 24, no. 3, pp. 725-735, Jun. 2008.
[14] E. Yoshida, C. Esteves, I. Belousov, J. P. Laumond, T. Sakaguchi and K. Yokoi, “Planning 3-D collision-free dynamic robotic motion through iterative reshaping,” IEEE Trans. Robotics, vol. 24, no. 3, pp. 1186-1197, Oct. 2008.
[15] C. Chevallereau, J. W. Grizzle and C. L. Shih, “Asymptotically stable walking of a five-link underactuated 3-D bipedal robot”, IEEE Trans. Robotics, vol. 25, no. 1, pp. 37-50, Feb. 2009.
[16] M. Armand, J. P. Huissoon and A. E. Patla, “Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters,” IEEE Trans. Rehabilitation Engineering, vol. 6, no. 1, pp. 43-52, Mar. 1998.
[17] A. R. Jarfi, Q. Huang, L. Zhang, J. Yang, Z. Wang and S. Lv, “Realization and trajectory planning for obstacle stepping over by humanoid robot BHR-2,” Proceedings of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 1384-1389, December 17-20, 2006, Kunming, China.
[18] 陳文冰,跟我學Visual C++ 2008,眳p,2008。
[19] http://msdn.microsoft.com/zh-tw/default.aspx.
[20] M. Vukobratovi and B. Borovac, “Zero-moment point — Thirty five years of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[21] P. Sardain and G. Bessonne, “Acting on a biped robot center of pressure---Zero moment point,” IEEE Trans. Syst. Man & Cybern., Part A, vol. 34, no. 5, pp. 630-637, Sep. 2004.
[22] P. Sardain and G. B. Forces, “Zero moment point --- measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Syst. Man & Cybern.—Part A, vol. 34, no. 5, pp. 638-648, Sep. 2004.
[23] http://www.robotis.com/xe/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信