淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0507201014330200
中文論文名稱 Van der Pol 方程式的奇異擾動
英文論文名稱 Singular Perturbed Van der Pol equation
校院名稱 淡江大學
系所名稱(中) 數學學系碩士班
系所名稱(英) Department of Mathematics
學年度 98
學期 2
出版年 99
研究生中文姓名 陳彥昇
研究生英文姓名 Yen-Sheng Chen
學號 695190248
學位類別 碩士
語文別 中文
口試日期 2010-06-18
論文頁數 40頁
口試委員 指導教授-張慧京
委員-王復國
委員-陳功宇
中文關鍵字 同步化  耦合強度  極限環  週期解 
英文關鍵字 synchronize  coupling strengths  limit cycle  periodic solution 
學科別分類 學科別自然科學數學
中文摘要 我們想要了解兩個振盪系統,同時運作時所產生的現象及其性質,我們考慮在Neumann的邊界情況下,耦合兩個Van-der Pol 方程式,作為我們所要探討的振盪系統。首先我們証明一個Van-der Pol 方程式會有一個唯一且非零的週期解,且此週期解為asymptotically stable,接著我們討論有關如何利用singular perturbation方法來估計出系統的解,並電腦做數值模擬,觀察估計解與實際解之間的誤差。而我們最終的目的是考慮兩個系統的同步化,因此我們再用電腦數值模擬,觀察兩個系統在附加週期性外力及其他的亂數干擾時,兩組週期解的同步化情形,發現週期性外力愈強,則兩組週期解的週期則愈接近週期性外力的週期,而干擾愈強,則兩組解愈無法同步化。耦合係數愈大時,則兩組週期解愈接近同步化。
英文摘要 In this thesis, we will give the detail study of the Van-der Pol equation. The existence of the unique asymptotically stable limit cycle will be carefully carried out. Then the method of singular perturbation is used when small parameter is involved. Some examples were given to show how the method can be applied. Also, the coupling of two nearly identical Van-der Pol equations with Neumann boundary condition was studied. We found that when the noise is large the limit cycles of each system are not synchronized. However, when one increases the coupling strengths the system process synchronized phenomena.
論文目次 目錄
第一章 簡介 1
第二章 Van der Pol equation 4
第三章 Singular Perturbation 15
第四章 兩個系統的耦合 25
參考文獻 40



圖目錄
圖(2.1) 4
圖(2.2) 9
圖(2.3) 10
圖(2.4) 13
圖(2.5) 14
圖(2.6) 14
圖3.1 20
圖3.2 22
圖3.3 24
圖(4.1) 26
圖(4.2) 27
圖(4.3) 28
圖(4.4) 29
圖(4.5) 30
圖(4.6) 31,32
圖(4.7) 33
圖(4.8) 34
圖(4.9) 35,36
圖(4.10) 36,37
圖(4.11) 37,38
圖(4.12) 38,39

參考文獻 [1] Paul Blanchard, Robert L. Devaney and Glen R. Hall, Differential Equations, Brooks/Cole, 2002.

[2] Richard L. Burden and J.Douglas Faires, Numerical Analysis, Boston : PWS-Kent Publishing, 1989.

[3] S. Chow, W. Shen and H. Zhou, Dynamical order in systems of coupled noisy oscillators, Journal of Dynamics and Differential Equations, Vol. 19, No. 4, December 2007 pp.1007-1010

[4] Robert E. O'Malley, Singular perturbation methods for ordinary differential equations, Springer-Verlag, 1991.

[5] Donald Ray Smith, Singular-perturbation theory: an introduction with applications , Cambridge University Press, 1985.

[6] Mei-Ling Wu, Stability Properties of Synchronization in Coupled Systems, Department of Mathematics, Tamkang University, 2001

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信