淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0507200722280700
中文論文名稱 在隨建即連網路下以封包切割方式達到無資料碰撞且控制訊號強度之媒體存取控制協定
英文論文名稱 A Fragmentation-based Data Collision Free MAC Protocol with Power Control for Wireless Ad Hoc Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 張朝傑
研究生英文姓名 Chau-Chieh Chang
學號 694190330
學位類別 碩士
語文別 英文
口試日期 2007-06-14
論文頁數 45頁
口試委員 指導教授-石貴平
委員-陳宗禧
委員-陳裕賢
中文關鍵字 干擾  隨建即連無線網路  實體感測範圍  距離依據 
英文關鍵字 Interference  Wireless ad hoc network  Physical carrier sense  Rang based 
學科別分類 學科別應用科學資訊工程
中文摘要 在這畢業論文中分析出傳輸、感測和干擾三種範圍間之關係,並且針對當採取訊號強度控制下,根據三種範圍關係為基礎,提出一個在隨建即連的網路中之訊號強度控制之媒體存取控制協定(ARPC)。因此依據本論文分析,有四種避免資料碰撞的機制,分別是STRC、RTRC、SCRC與RCRC。此外,更進一步的針對上述四種機制推算出各機制合適使用的情況。結合這四種機制的優點,提出一個依據距離關係推算出適當訊號強度控制之媒體存取控制協定。採取上述的協定能有效地避免資料碰撞且達到減少STAs電量消耗。而在最後模擬時也驗證了,所提出的協定能達到上述之優點。
英文摘要 The thesis analyzes the relationships among the transmission range, carrier sensing range, and interference range in case that power control is adopted and proposes an adaptive range-based power control (ARPC) MAC protocol for wireless ad hoc networks to avoid collisions. Based on the analysis results, four mechanisms, STRC, RTRC, SCRC, and RCRC are proposed to prevent from collisions. The thesis further analyzes the superiority of each mechanism under certain situations and proposes an adaptive range-based power control MAC protocol to make use of the advantages of the four mechanisms to avoid collisions for wireless ad hoc network. The proposed protocol can not only reduce energy consumption of STAs, but also prevent from collisions. Simulation results also verify the advantages of the proposed protocol.
論文目次 Contents I
List of Figures III
List of Tables VII
1 Introduction 1
2 Preliminaries 5
3 Range Cover Mechanisms 9
3.1 Sender's Transmission Range Cover Mechanism (STRC) . . . . . . . 9
3.1.1 Concept of STRC . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Derivation of Transmission Power and Restriction . . . . . . . 10
3.1.3 STRC MAC Protocol . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Receiver's Transmission Range Cover Mechanism (RTRC) . . . . . . 11
3.2.1 Concept of RTRC . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Derivation of Transmission Power and Restriction . . . . . . . 12
3.2.3 RTRC MAC Protocol . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Sender's Carrier Sensing Range Cover Mechanism (SCRC) . . . . . . 13
3.3.1 Concept of SCRC . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1.1 Derivation of Transmission Power and Restriction . . 13
3.3.2 SCRC MAC Protocol . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Receiver's Carrier Sensing Range Cover Mechanism (RCRC) . . . . . 14
3.4.1 Concept of RCRC . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Derivation of Transmission Power and Restriction . . . . . . . 16
3.4.3 RCRC MAC Protocol . . . . . . . . . . . . . . . . . . . . . . 18
3.4.4 Comparisons of the Four MAC Protocols . . . . . . . . . . . . 19
3.5 Adaptive Range-Based Power Control (ARPC) MAC Protocol . . . . 20
4 Performance Evaluations 23
4.1 Linear Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Random Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Conclusions 31
Bibliography 33
Appendix 37

List of Figures
2.1 The POINT problem. (a)DSR · 0:56TR(Pmax). S and R use Pmax to exchange RTS/CTS. The gray area is IR(Pmax), which is smaller than TR(Pmax) since DSR · 0:56TR(Pmax). S0, a source of interference, is outside both TR(Pmax) and IR(Pmax). (b) S and R use the reduced power, PS, to exchange Data/ACK. IR(PS) will be larger than TR(Pmax) due to the reduction of the sender's power strength. As a result, S0 is within IR(PS) and may cause collision. . . . . . . . . . . 7
3.1 The concept of STRC. (a) S and R use Pmax to exchange RTS/CTS. The gray area is IR(Pmax), which, in this case, is covered by RTS since DSR · 0:36TR(Pmax). S0, a source of interference, is outside both TR(Pmax) and IR(Pmax). (b) S and R use PSTRC to exchange DATA/ACK, where PSTRC is set to the power level that satis‾es TR(Pmax) = DSR + IR(PSTRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The concept of RTRC. (a) S and R use Pmax to exchange RTS/CTS. The gray area is IR(Pmax), which, in this case, is covered by CTS since DSR · 0:56TR(Pmax). S0, a source of interference, is outside both TR(Pmax) and IR(Pmax). (b) S and R use PRTRC to exchange DATA/ACK, where PRTRC is set to the power level that satis‾es TR(PRTRC) = IR(PRTRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The concept of SCRC. (a) S and R use Pmax to exchange RTS/CTS. The gray area is IR(Pmax), which, in this case, is covered by CR(Pmax) since DSR · 0:72TR(Pmax). S0, a source of interference, is outside both TR(Pmax) and IR(Pmax). (b) S and R use PSCRC to exchange DATA/ACK, where PSCRC is set to the power level that satisfies CR(PSCRC) = DSR + IR(PSCRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The restriction of RCRC. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 The concept of RCRC. (a) S uses Pmax to send RTS and R adopts PRCRC to reply CTS, where PRCRC is set to the power level that IR(Pmin) = CR(PRCRC). S0 is outside IR(PRCRC). (b) S use Pmin to send DATA and R uses Pmax to reply ACK. S0 is still outside IR(Pmin). 18
3.6 Comparisons of energy consumption among STRC, RTRC, SCRC and RCRC in terms of DSR. . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 A linear topology, where four STAs A, B, C, and D form a line. The distances between A and D as well as C and D are respectively fixed to 800 m and 250 m. The distance between A and B, denoted DAB, is varied from 10 m to 250 m. . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Comparisons of the energy consumption of RTRC, SCRC, RCRC, ARPC, and IEEE 802.11 DCF in terms of DAB varied from 10 m to 250 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Comparisons of the throughput of RTRC, SCRC, RCRC, ARPC, and IEEE 802.11 DCF in terms of DAB varied from 10 m to 250 m. . . . . 26
4.4 Comparisons of the energy efficiency of RTRC, SCRC, RCRC, ARPC, and IEEE 802.11 DCF in terms of DAB varied from 10 m to 250 m. . 27
4.5 The throughput of SCRC, RCRC, ARPC, and IEEE 802.11 DCF are compared to different traffic load since the length of Data packet is (a)50bytes, (b) 500bytes, and (c) 2000 bytes, respectively. . . . . . . . . 29
4.6 The energy consumption of SCRC, RCRC, ARPC, and IEEE 802.11 DCF are compared to different traffic load since the length of Data packet is (a) 50bytes, (b) 500bytes, and (c) 2000 bytes, respectively. . 29
4.7 The power throughput of SCRC, RCRC, ARPC, and IEEE 802.11 DCF are compared to different traffic load since the length of Data packet is (a) 50bytes, (b) 500bytes, and (c) 2000 bytes, respectively. . . . . . 30

List of Tables
3.1 Comparisons among STRC, RTRC, SCRC, and RCRC . . . . . . . . 20
4.1 Simulation Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
參考文獻 [1] The Network Simulator -2. [Online] Available: http://www.isi.edu/nsnam/ns/.
[2] S. Agarwal, R. H. Katz, S. V. Krishnamurthy, and S. K. Dao. Distributed power control in ad-hoc wireless networks. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pages 59-66, 2001.
[3] J. Gomez, A. T. Campbell, M. Naghshineh, and C. Bisdikian. Conserving transmission power in wireless ad hoc networks. In Proceedings of the IEEE International Conference on Network Protocols (ICNP), pages 24-34, 2001.
[4] IEEE. IEEE Std 802., Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, August 1999.
[5] E. S. Jung and N. H. Vaidya. A power control MAC protocol for ad hoc networks. In Proceedings of the ACM International Conference on Mobile Computing and
Networking (MOBICOM), pages 36-47, 2002.
[6] A. Muqattash and M. Krunz. A single-channel solution for transmission power control in wireless ad hoc networks. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), pages 210-221, 2004.
[7] D. Qiao, S. Choi, A. Jain, and K. G. Shin. Miser: An optimal low-energy transmission strategy for IEEE 802.11a/h. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MOBICOM), pages 161-175,
2003.
[8] T. Rappaport. Wireless Communications: Principles and Practice (2nd Edition). Prentice Hall, New Jersey, 2002.
[9] J. Shi, T. Salonidis, and E. W. Knightly. Starvation mitigation through multichannel coordination in CSMA multi-hop wireless networks. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2006.
[10] K.-P. Shih and Y.-D. Chen. CAPC: A collision avoidance power control MAC protocol for wireless ad hoc networks. IEEE Communications Letters, 9(9):859-861, 2005.
[11] S.-L.Wu, Y.-C. Tseng, C.-Y. Lin, and J.-P. Sheu. A multi-channel MAC protocol with power control for multi-hop mobile ad hoc networks. Computer Journal, 45(1):101-110, 2002.
[12] S.-L. Wu, Y.-C. Tseng, and J.-P. Sheu. Intelligent medium access for mobile ad hoc networks with busy tones and power control. IEEE Journal on Selected Areas in Communications, 18(9):1647-1657, 2000.
[13] K. Xu, M. Gerla, and S. Bae. How e®ective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks? In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), volume 1, pages 72-76, 2002.
[14] F. Ye, S. Yi, and B. Sikdar. Improving spatial reuse of IEEE 802.11 based ad hoc networks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), volume 2, pages 1013-1017, 2003.
[15] M. Zawodniok and S. Jagannathan. A distributed power control MAC protocol for wireless ad hoc networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), volume 3, pages 1915-1920, 2004.
[16] J. Zhang, Z. Fang, and B. Brahim. Adaptive power control for single channel ad hoc networks. In Proceedings of the IEEE International Conference on Communications (ICC), pages 3156-3160, 2005.
[17] Y. Zhou and S. M. Nettles. Balancing the hidden and exposed node problems with power control in CSMA/CA-based wireless networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pages
683-688, 2005.
[18] J. Zhu, X. Guo, L. L. Yang, and W. Steven. Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing. In Proceedings of the IEEE International Conference on Communications (ICC), volume 7, pages
4004-4011, 2004.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信