淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0507200708205000
中文論文名稱 電液體驅動式微幫浦及其應用
英文論文名稱 The Electrohydrodynamic (EHD) Micropump and Its Application
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 王俊民
研究生英文姓名 Jiun-Min Wang
學號 892340042
學位類別 博士
語文別 中文
口試日期 2007-06-07
論文頁數 130頁
口試委員 指導教授-楊龍杰
委員-李雨
委員-林啟萬
委員-戴慶良
委員-康尚文
委員-楊龍杰
中文關鍵字 微幫浦  電液體  氧化銦錫  聚對二甲苯  明膠  螺旋  微推進器 
英文關鍵字 micropump  electrohydrodynamic(EHD)  ITO  parylene  gelatin  spiral  micro-boat 
學科別分類
中文摘要 電液體幫浦驅動過程中,伴隨著電解水的產生,一直難以規避;其所帶來的影響即是驅動電極的變質,而導致電液體微幫浦無法長時間運作。因此基於防止電極老化之研究動機,本論文率先提出以不同電極材質或構形,來克服此一棘手問題,而使得電液體微幫浦可以長時間運作,並增加流量。
本研究首先利用微機電系統技術製作了四種不同構形的電液體微幫浦,此四種電液體微幫浦分別為:以氧化銦錫做為幫浦之驅動電極、氧化銦錫與黃金複合式驅動電極、以不同高分子材料保護黃金驅動電極、具三維螺旋微電極之電液體微幫浦。四種不同材質或構形的電液體微幫浦,皆使用無水乙醇為工作液體:前三種電液體微幫浦其可連續驅動無水乙醇的時間,從不超過10分鐘,到大約20分鐘左右,最後可達到至少一小時以上。而至於驅動液體之體積流率方面,前三種微幫浦其驅動無水乙醇體積流率大約為80-360 nl/min,另外具三維式螺旋微電極之微幫浦其體積流率則可達到4.5 μl/min。
文中連帶探討Zeta電位能對電液體微幫浦之流速影響,並以聚對二甲苯與明膠保護黃金驅動電極為例,由實際流速反推,估算出玻璃、聚對二甲苯與明膠微流道壁之Zeta電位能分別為 -181 mV、-1.44 V與 -1.67 V。
本文最後則另以新穎可撓性基板之微機電製程,開發浮於液面上運動之電液體推進器微型船原型。當微電液體推進器施加35 V直流電壓時,其在水面上最大移動速率為10 μm/sec。
英文摘要 The issue of electrolysis occurring during electrohydrodynamic (EHD) micropump operation is always inevitable. Unfortunately, it would influence the stability of electrodes and could not result the EHD micropump in long-term operation. How to prevent the aging of electrodes is important topic. This thesis novelly proposes to deal with this troublesome problem by using different materials and configurations for EHD driving electrodes.
This study first uses Microelectromachanical Systems (MEMS) technology to fabricate four different type EHD micropumps. They are Indium Tin Oxide (ITO) as micropump electrodes, utilize gold and ITO as electrodes material of micropump, use different polymer materials to protect the gold electrodes and the EHD micropump with three-dimensional spiral electrodes respectively. These four EHD micropumps all use ethyl alcohol as the working liquid. The operation time of the first three kinds could pump ethyl alcohol up to 10 minutes, 20 minutes, and 1 hour at least. The pumping rate of first three types EHD micropumps is about 80-360 nl/min. Moreover, the pumping rate of EHD micropump with piral electrodes could be up to 4.5 µl/min.
This research also discusses the different polymer materials change the surface properties of microchannel and therefore greatly influence the driving velocity of the EHD flow. There is uses various types of polymers, parylene and gelatin, to protect the electrode and alculates the zeta potential of the EHD pumps. The Zeta potentials of three different surfaces (glass, gelatin and parylene) in the EHD microchannel are -181 mV, -1.67 V and -1.44 V respectively.
Finally, this thesis demostates using newly flexible MEMS process to develop the prototype of micro-boat with EHD propelled. The maximum velocity of EHD micro-boat floatting on the water is about 10 μm/sec when the DC voltage is 35 V.
論文目次 目錄
中文摘要...............................................I
英文摘要...............................................II
目錄.................................................. IV
圖目錄................................................ VI
表目錄................................................ X
符號說明.............................................. XI
第一章 緒論........................................... 1
1-1 研究背景.......................................... 1
1-2 研究動機.......................................... 4
1-3 文獻回顧.......................................... 8
1-4 論文架構.......................................... 12
第二章 電液體微幫浦之理論分析......................... 14
2-1 簡介............................................. 14
2-2 理論公式之推導.................................... 16
2-3理論公式無因次化................................... 20
第三章 以氧化銦錫為電液體微幫浦之平面式電極........... 22
3-1 簡介.............................................. 22
3-2 元件製作.......................................... 26
3-2-1 製作氧化銦錫電極................................ 26
3-2-2 製作矽質微流道.................................. 29
3-2-3 以陽極鍵合作為電液體微幫浦之元件封裝............ 31
3-3 測試結果與討論.....................................34
第四章 以氧化銦錫與黃金為電液體微幫浦之電極材......... 39
4-1 簡介.............................................. 39
4-2 元件製作.......................................... 42
4-2-1 製作氧化銦錫與黃金複合式電極.................... 42
4-2-2 製作矽質微流道.................................. 47
4-2-3 以陽極鍵合作為電液體微幫浦之元件封裝............ 51
4-3 測試結果與討論.....................................56
4-3-1 流速隨驅動電壓變化之關係.........................56
4-3-2流速隨驅動時間變化之關係..........................59
第五章 利用高分子薄膜保護電液體微幫浦之驅動電極........61
5-1 簡介...............................................61
5-2 元件製作...........................................65
5-2-1 製作具有聚對二甲苯保護之黃金電極晶片.............65
5-2-2製作具有明膠保護之黃金電極晶片....................69
5-2-3 製作聚二甲基矽氧烷微流道與元件封裝...............71
5-3測試結果與討論......................................75
第六章 整合螺旋微電極與圓形截面微流道於電液體微幫浦中..80
6-1 簡介...............................................80
6-1-1 旋轉曝光技術.....................................81
6-1-2 螺旋微電極光罩設計...............................83
6-2 元件製作...........................................86
6-2-1 製作螺旋微電極於毛細玻璃管之外表面...............86
6-2-2製作內嵌螺旋微電極之SU-8圓形微流道................92
6-3 測試結果與討論.....................................95
第七章 可撓性之微電液體推進器..........................99
7-1 簡介...............................................99
7-2 元件製作..........................................103
7-3 測試結果與討論....................................107
第八章 結論...........................................112
參考文獻..............................................118
論文作者著述目錄......................................125
附錄 電液體微幫浦之微流道中實際電場強度估算...........129

圖目錄
圖1.1:矽非等向性蝕刻出各種不同之三維結構...............3
圖1.2:犧牲層概念示意圖.................................4
圖1.3:微熱管示意圖.....................................6
圖1.4:微幫浦之分類.....................................7
圖1.5:本論文之研究架構................................13
圖2.1:噴射型電液體微幫浦作動之機制示意圖..............15
圖2.2:流道中建立溫度梯度之感應型電液體微幫浦示意圖....16
圖2.3:簡單的噴射型電液體微幫浦模型....................17
圖3.1:氧化銦錫電極尺寸設計圖..........................24
圖3.2::電液體微幫浦之驅動系統外貌.....................25
圖3.3:氧化銦錫指叉狀電極之製作流程圖..................27
圖3.4:製作完成之氧化銦錫指叉狀電極晶片................29
圖3.5:矽質微流道之製作流程圖..........................30
圖3.6:切割完成之整個矽質微流道晶片....................31
圖3.7:陽極鍵合系統示意圖..............................32
圖3.8:氧化銦錫指叉狀電極跨於100 μm寬之微流道中........33
圖3.9:製作完成製作完成之具有氧化銦錫指叉狀電極之電液體微幫浦.....................................................33
圖3.10:量測電液體微幫浦驅動流速之實驗設備.............34
圖3.11:電液體微幫浦驅動乙醇之連續鏡頭.................36
圖3.12:驅動流率對驅動電壓之實驗結果...................37
圖3.13:在驅動電壓為15 V下,驅動乙醇之流率與時間關係...37
圖3.14:驅動後陰極之氧化銦錫變色情形...................38
圖4.1:具有氧化銦錫與黃金複合式電極之電液體微幫浦......41
圖4.2:矽質微流道詳細之尺寸設計........................41
圖4.3:N型矽晶圓中植入硼形成p-n接面,作為電極與矽之電性隔絕.....................................................42
圖4.4:氧化銦錫與黃金複合式電極之製作流程圖............43
圖4.5:蝕刻完成之氧化銦錫微電極........................44
圖4.6:氧化銦錫電極之厚度 (α-step顯示為1529 Å).........45
圖4.7:氧化銦錫電極之寬度 (α-step顯示為80.15 μm).......45
圖4.8:複合式指叉狀電極完成圖..........................46
圖4.9:電極晶片切割完實體圖............................46
圖4.10:矽質微流道之製作流程圖.........................47
圖4.11:矽晶圓離子擴散.................................49
圖4.12:蝕刻後矽晶流道之剖面與深度 (α-step顯示為30.23μm).....................................................50
圖4.13:微流道晶片切割完實體圖.........................50
圖4.14:陽極鍵合前之對準步驟示意圖.....................51
圖4.15:陽極鍵合前,對準步驟詳細流程...................52
圖4.16:電極精密地對準至矽質微流道晶片中離子摻雜區域...54
圖4.17:陽極鍵合完成後之電液體微幫浦晶片...............54
圖4.18:封裝完成之電液體微幫浦實體圖...................55
圖4.19:具複合式電極之電液體微幫浦驅動無水乙醇連續鏡頭.57
圖4.20:具複合式電極之電液體微幫浦,驅動乙醇之電壓與流率關係圖...................................................58
圖4.21:定電壓下,電液體微幫浦驅動流率與時間關係圖.....59
圖5.1:黃金指叉電極覆蓋高分子薄膜設計圖................63
圖5.2:具有高分子薄膜保護驅動電極之電液體微幫浦系統....64
圖5.3:電極玻璃晶片與聚二甲基矽氧烷微流道接合後之剖面圖64
圖5.4:三種不同聚對二甲苯之結構........................65
圖5.5:聚對二甲苯沉積過程..............................66
圖5.6:具有聚對二甲苯保護的黃金電極晶片之製程流程圖....68
圖5.7:聚對二甲苯保護的黃金電極晶片完成圖..............69
圖5.8:明膠光架橋反應..................................70
圖5.9:明膠保護的黃金電極晶片之製程流程圖..............70
圖5.10:明膠保護的黃金電極晶片完成圖...................71
圖5.11:聚二甲基矽氧烷之化學結構.......................71
圖5.12:聚二甲基矽氧烷微流道製作流程圖.................73
圖5.13:製作完成之聚二甲基矽氧烷微流道.................74
圖5.14:封裝完成的聚對二甲苯保護電極之電液體微幫浦.....75
圖5.15:電液體微幫浦測試錄影中所擷取之鏡頭(以聚對二甲苯高分子薄膜保護電極)........................................76
圖5.16:三種不同保護電極方式之電液體微幫浦的驅動電壓與流速關係圖.................................................76
圖6.1:旋轉曝光示意....................................82
圖6.2:加裝步進馬達旋轉模組後之曝光機實體..............83
圖6.3:旋轉曝光製作螺旋微電極之尺寸設計................85
圖6.4:光罩尺寸計算錯誤或設計不良,造成螺旋光阻圖案錯位之現象 (光罩圖形之螺旋電極傾斜角設計過小)..................85
圖6.5:毛細玻璃管旋轉曝光之步進馬達轉速估算示意圖......87
圖6.6:於毛細玻璃管外表面製作螺旋微電極之流程圖........88
圖6.7:自製鋁質毛細玻璃管夾治具........................90
圖6.8:毛細玻璃管與具有導電金屬之載玻片並聯............91
圖6.9:鎳螺旋微電極實體圖..............................92
圖6.10:以銀膠連接螺旋微電極與金屬線路.................93
圖6.11:螺旋微電極內嵌於SU-8圓形微流道內表面製作流程圖.94
圖6.12:三維構形之電液體微幫浦晶片實體圖...............95
圖6.13:三維構形之電液體微幫浦測試系統.................96
圖6.14:三維構形之電液體微幫浦驅動無水乙醇連續鏡頭.....98
圖7.1:微電液體推進器之驅動原理.......................101
圖7.2:微電液體推進器之尺寸設計.......................103
圖7.3:於聚對二甲苯上蒸鍍黃金之情形...................104
圖7.4:微電液體推進器之製作流程圖.....................106
圖7.5:微電液體推進器實體圖...........................107
圖7.6:微電液體推進器之量測系統.......................108
圖7.7:微電液體推進器致動之連續鏡頭...................110
圖7.8:微電液體推進器移動速率與施加電壓之關係.........111
圖8.1:文獻[39]與本文製作元件測試結果之無因次化後電壓與流速關係..................................................115
圖8.2:本文製作元件測試結果之無因次化後電壓與流速關係.116
圖8.3:文獻[42,45]測試結果無因次化後之電壓與流速關係..116
附圖1:環形電極與實際之電場強度隨微流道高度變化之關係圖130


表目錄
表1.1:噴射型電液體微幫浦文獻之關鍵特徵與性能...........11
表3.1:氧化銦錫蝕刻參數及性質...........................28
表4.1:具複合式電極之電液體微幫浦驅動無水乙醇流率 (A=2477μm2).....................................................58
表5.1: 以接觸角儀 (KLA-125) 量測不同高分子材量之表面接觸角 (液珠為純水)............................................77
表5.2: 不同微流道表面材質之Zeta電位能...................78
表6.1:鎳電鍍液配方.....................................91
表8.1:不同材料之電液體微幫浦平面式驅動電極,驅動無水乙醇之最大體積流率與電極壽命.................................113
表8.2:不同電液體微幫浦之效率分析......................117

參考文獻 [1] R. P. Feynman, “There’s Plenty of Room at the Bo
ttom,” Journal of Microelectromechanical Systems,Vol. 1, No. 1, pp. 60-66, March 1992.
[2] J. S. Kilby, “Miniaturized electronic Circuits,” U.
S. Patent 3,138,743, June 23, 1964 (field February 6, 1959).
[3] R. N. Noyce, “Semiconductor Device-and-Lead Structure,” U. S. Patent 2,918,877, April 25, 1961 (field July 30, 1959).
[4] R. P. Feynman, “Infinitesimal Machinery,” Journal of Microelectromechanic-
al Systems, Vol. 2, No. 1, pp. 4-14, March 1993.
[5] S. Fatikow and U. Rembold, “Microsystem Technology and Microrobotics,” Springer, 1996.
[6] L. J. Yang. “Recognize the Micro-electro-mechanical Systems (MEMS),” Tsang-Hai, Taichung, Taiwan, pp. 95, 2001. (Chinese version)
[7] Council for Economic Planning and Development, “Challenge 2008 ─ Council for Economic Planning and Development,” http://www.cepd.gov.tw/business/businesssec2.jsp?parentLinkID=7&linked=146, 2003.
[8] G.. T. A. Kovacs, “Micromachined Transducers Source Book,” McGraw-Hill, Washington D.C., pp.839, 2000.
[9] Y. N. Huang, “Fabrication and Test of Silicon Micro Heat Pipe,” Master thesis,Tamkang University, Taiwan, 1999. (Chinese version)
[10] S. W. Kang and D. L. Huang, “Fabrication of Star Grooves and Rhombus Grooves Micro Heat Pipe,” Journal of Micromechanics and Microengineering, Vol. 12, No. 5, pp 525-531, 2002.
[11] S. W. Kang, S. H Tsai and H. C. Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes,” Applied Thermal Engineering, Vol. 22, pp. 1559-1568, 2002.
[12] C. C. Hsu, S. W. Kang and D. F. Hou, “Performance Testing of Micro Loop Heat Pipes,” Tamkang Journal of Science and Engineering, 8, pp. 123-132, 2005.
[13] C. C. Hsu, “Application of Nanafluids in Fabrication of Micro Loop Heat Pipe,” Master thesis, Tamkang University, Taiwan, 2004. (Chinese version)
[14] G. P. Peterson, “An Introduction to Heat Pipes,” John Wiley & Sons, 1994.
[15] http://www.npowertek.com/what.html
[16] J. E. Bryan and J. Seyed-Yagoobi, “Heat Transport Enhancement of Monogroove Heat Pipe with Electrohydrodynamic Pumping,” American Society of Mechanical Engineers, Heat Transfer Division, HTD 327 , pp. 131-138, 1996, or Journal of Thermophysics and Heat Transfer, 11, pp. 454-460, 1997.
[17] J. Darabi, M. M. Ohadi and D. DeVoe, “An Electrohydrodynamic Polarization Micropump for Electronic Cooling,” Journal of Microelectromechanical System, Vol. 10, No. 1, pp. 98-106, 2001.
[18] S. V. Garimella, V. Singhal and D. Liu, “On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps,” Proceedings of The IEEE, Vol. 94, No. 8, pp. 1534-1548, 2006.
[19] V. Singhal and S. V. Garimella, “Induction Electrohydrodynamics Micropump for High Heat Flux Cooling,” Sensors and Actuators A: Physical, 134, pp. 650-659, 2007.
[20] D. J. Laser and J. G. Santiago, “A Review of Micropumps,” Journal of Micromechanics and Microengineering, 14, pp. R35-R64, 2004.
[21] P. Woias, “Micropumps-Past, Progress and Future Prospects,” Sensors and Actuators B: Chemical, 105, pp. 28-38, 2005.
[22] W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An Electronically Controlled Pizeoelectric Insulin Pump And Valves,” IEEE Transactions on Sonics and Ultrasonics, 25, pp. 153-156, 1978.
[23] J. G. Smits, “Pizeoelectric Micropump with Three Valves Working Peristaltically,” Sensors and Actuators A: Physical, 21-23, pp. 203-206, 1990.
[24] S. C. Jacoboson, R. Hergenroder, L. B. Koutny and J. M. Ramsey, “Open-Channel Electrochromatograph on A Microchip,” Analytical Chemistry, 66, pp. 2369-2373, 1994.
[25] R. S. Ramsey and J. M. Ramsey, “Generating Electrospray from Microchip Devices Using Electroosmotic Pumping,” Analytical Chemistry, 69, pp. 1174-1178, 1997.
[26] S. L. Zeng, C. H. Chen, J. C. Mikkelsen and J. G. Santiago, “Fabrication And Characterization of Electroosmotic Micropumps,” Sensors and Actuators B: Chemical, 79, pp. 107-114, 2001.
[27] C. H. Chen and J. G. Santiago, “A planar Electroosmotic Micropump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp.672-683, 2002.
[28] J. Jang and S. S. Lee, “Theoretical and Experimental Study of MHD (Magnetohydrodynamic) Micropump,” Sensors and Actuators A: Physical, 80, pp.84-89, 2000.
[29] J. Zhong, M. Yi and H. H. Bau, “Magneto Hydrodynamic (MHD) Pump Fabricated with Ceramic Tapes,” Sensors and Actuators A: Physical, 96, pp. 59-66, 2002.
[30] A. V. Lemoff and A. P. Lee, “AC Magnetohydrodynamic Micropump,” Sensors and Actuators B: Chemical, 63, pp. 178-185, 2000.
[31] S. F. Bart, L. S. Tavrow, M. Mehregany and J. H. Lang, “Microfabricated Electrohydrodynamic Pumps,” Sensors and Actuators A: Physical, 21-23, pp. 193-197, 1990.
[32] G. Fuhr, T. Schnelle and B. Wangner, “Travelling Wave-Driven Microfabricated Electrohydrodynamic Pumps for Liquids,” Journal of Micromechanics and Microengineering, 4, pp. 217-226, 1994.
[33] O. M. Stuetzer, “Ion Drag Pressure Generation,” Journal of Applied Physics, Vol. 30, No. 7, pp.984-994, 1959.
[34] O. M. Stuetzer, “Ion Drag Pumps,” Journal of Applied Physics, Vol. 31, No. 1, pp.136-146, 1960.
[35] W. F. Pickard, “Ion Drag Pumping. Ⅰ. Theory,” Journal of Applied Physics, Vol. 34, No. 2, pp. 246-250, 1963.
[36] W. F. Pickard, “Ion Drag Pumping. Ⅱ. Experiment,” Journal of Applied Physics, Vol. 34, No. 2, pp. 251-258, 1963.
[37] A. Richter, A. Plettner, K. A. Hofmann and S. Sandmaier, “A Micromachined Electrohydrodynamic (EHD) Pump,” Sensors and Actuators A: Physical, 29, pp. 159-168, 1991.
[38] A. Furuya, F. Shimokawa, T. Matsuura and R. Sawada, “Fabrication of Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive Ion Etching (MC-RIE) and Their Application to an Ion Drag Integrated Micropump,” Journal of Micromechanics and Microengineering, 6, pp. 310-319, 1996.
[39] S. H. Ahn and Y. K. Kim, “Fabrication and Experiment of a Planar Micro Ion Drag Pimp,” Sensors and Actuators A: Physical, 70, pp. 1-5, 1998.
[40] L. J. Yang, “The Report of Study Microelectromachanical (MEMS) Technology in California Institute of Technology (Caltech), USA,” Project No. NSC89-2217-E-032-001, 2001. (Chinese version)
[41] J. Darabi, M. Rada, M. Ohadi and J. Lawler, “Design, Fabrication, and Testing of an Electrohydrodynamic Ion-Drag Micropump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 684-690, 2002.
[42] J. Darabi and H. Wang, “Development of an Electrohydrodynamic Injection Micropump and Its Potential Application in Pumping Fluids in Cryogenic Cooling System,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, pp. 747-755, 2006.
[43] I. Kano and I. Takahashi, “Improvement for Pressure Performance of Micro-EHD Pump with an Arrangement of Thin Cylindrical Electrodes,” JSME International Journal, Series B: Fluids and Thermal Engineering, Vol. 49, No. 3, pp. 748-754, 2006.
[44] J. M. Crowley, G. S. Wright and J. C. Chato, “Selecting a Working Fluid to Increase the Efficiency and Flow Rate of an EHD pump,” IEEE Transactions on Industry Applications, Vol. 26, No. 1, pp. 42-49, 1990.
[45] J. Darabi and C. Rhodes, “CFD Modeling of an Ion-Drag Micropump,” Sensors and Actuators A: Physical, 127, pp. 94-103, 2006.
[46] P. A.Vézquez, G. E.Georghiou and A.Castellanos, “Characterization of Injection Instabilities in Electrohydrodynamics by Numerical Modelling: Comparison of Particle in Cell and Flux Corrected Transport Methods for Electroconvection between Two Plates,” Journal of Physics D: Applied Physics, 39, pp. 2754-2763, 2006.
[47] Gem Teah Optoelectronics Corporation, http://www.gem-tech.com.tw.
[48] Y. L. Huang, “The Fabrication of Electrohydrodynamic Micro Pump,” Master thesis, Tamkang University, Taiwan, 2002. (Chinese version)
[49] R. A. Alberty and F. Daniels, “Physical Chemistry,” John Wiley & Sons, New York,1978.
[50] M. Madou, “Fundamentals of Microfabrication,” CRC, Washington DC, 1997.
[51] M. Watanabe, J. Zheng, A. Hara, H. Shirai and T. Hirai, “A Pumping Technique Using Electrohydrodynamic Flow inside a Gel,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 1, pp. 181-185, 2003.
[52] C. Xu, W. Lemon and C. Lui, “Design and Fabrication of A High-Density Metal Microelectrode Array for Neural Recording,” Sensors and Actuators A: Physical, 96, pp. 78-85, 2002.
[53] T. J. Yao, X. Yang and Y. C. Tai, “BrF3 Dry Release Technology for Large Freestanding Parylene Microstructures and Electrostatic Actuators,” Sensors and Actuators A: Physical, 97-98, pp. 771-775, 2002.
[54] L. J. Yang, W. Z. Lin, T. J. Yao and Y. C. Tai, “Photo-Patternable Gelatin as Protection Layers in Surface Micromachinings,” Sensors and Actuators A: Physical, 103, pp. 284-290, 2003.
[55] http://www.scsalpha.com/
[56] http://www.paryleneengineering.com/
[57] J. Noordegraaf and H. Hull, “C-Shield Parylene Allows Major Weight Saving for EM Shielding of Microelectronics,” Proceeding of The First IEEE International Symposium on Polymeric Packaging, pp. 190-196, 1997.
[58] H. H. Lin, “The Thermo-Buckled Type Actuators Fabricated by Parylene MEMS Technology,” Master thesis, Tamkang University, Taiwan, 2005. (Chinese version)
[59] http://www.gelatin.com/
[60] J. E. Jolley, “Microstructure of Photographic Gelatin Binders,” Photographic Science and Emgineering, Vol. 14, pp. 169-177, 1970.
[61] L. C. Cha, “Preparation of Dicheomated Gelatin Film for Hologram,” Master thesis, Yuan Ze University, Taiwan, 1995. (Chinese version)
[62] P. C. Yang, “A New Packaging Method for Pressure Sensors by PDMS MEMS Technology,” Master thesis, Tamkang University, Taiwan, 2005. (Chinese version)
[63] G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck andG. M. Whitesides, “Monolayers on Disordered Substrates: Self- Assembly of Alkyltrichlorosilanes on Surface-Modified Polyethylene and Poly(dimethylsiloxane),” Macromolecules, 26, pp. 5870-5875, 1993.
[64] P. C. Hidber, P. F. Nealey, W. Helbig and “New Strategy for Controlling the Size and Shape of Metallic Features Formed by Electroless Deposition of Copper: Microcontact Printing of Catalysts on Oriented Polymers, Followed by Thermal Shrinkage,” Langmuir, 12, pp. 5209-5215, 1996.
[65] N. Bowden, A. Terfort, J. Carbeck and G. M. Whitesides, “Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays,” Science, Vol. 276, pp. 233-235, 1997.
[66] D. C. Duffy, J. C. McDonald, O. J. A. Schueller and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Analytical Chemistry, 70, pp. 4974-4984, 1998.
[67] D. C Duffy, O. J. A. Schueller, S. T. Brittain and G. M. Whitesides, “Rapid Prototyping of Microfluidic Switches in Poly(dimethylsiloxane) and Their Actuation by Electro-Osmotic Flow,” Journal of Micromechanics and Microengineering, 9, pp. 211-217, 1999.
[68] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller and G. M. Whitesides, “Fabrication of Microfluidic Systems in Poly(dimethylsiloxane),” Electrophoresis, 21, pp. 27-40, 2000.
[69] A. Sze, D. Erickson, L. Ren and D. Li, “Zeta-Potential Measurement Using The Smoluchowski Equation and The Slop of The Current-Time Relationship in Electroosmosis Flow,” Journal of Colloid and Interface Science, Vol. 261, pp. 402-410, 2003.
[70] J. P. Cheng, X. Zhang, J. Tu, X. Tao, Y. Ye and F. Liu, “Catalytic Chemical Vapor Deposition Synthesis of Helical Carbon Nanotubes and Triple Helices Carbon Nanostructure,” Materials Chemistry and Physics, 95, 12-15, 2006.
[71] X. Y. Kong and Z. L. Wang, “Spontaneous Polarization Induced Growth of ZnO Nanostructures,” Proceeding of International Conferenc on Solid-State and Integrated Circuits Technology Proceedings, ICSICT 2, pp. 894-897, 2004.
[72] S. Matsui, “Three-Dimensional Nanostructure Fabrication by Focus-Ion-Beam Chemical Vapor Deposition,” Proceeding of International Conference on Solid-State Sensors, Actuators and Microsystems (Traansducers’03), 1, pp. 179-181, 2003.
[73] D. J. Bell, Y. Sun, L. Zhang, L. X. Dong, B. J. Nelson and D. Grützmacher, “Three-Dimensional Nanosprings for Electromechanical Sensors,” Proceeding of International Conference on Solid-State Sensors, Actuators and Microsystems (Traansducers’05), 1, pp. 15-18, 2005.
[74] L. Xia, W. Wu, J. Xu, Y. Hao and Y. Wang, “3D Nanohelix Fabrication and 3D Nanometer Assembly by Focused Ion Beam Stress-Introducing Technique,” Proceeding of Fourteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS’06), pp. 118-121, 2006.
[75] T. Mineta, M. Abe, H. Kubo, E. Makino and T. Shibata, “Fabrication of 3D Micro Structures from Evaporated Thin Film Tube,” Proceeding of ICEE/APCOT’04, pp 322-325, 2004.
[76] L.-J. Yang, Y.-T. Chen, S.-W. Kang and Y.-C. Wang, “Fabrication of SU-8 Embedded Microchannels with Circular Cross-section,” International Journal of Machine Tools and Manufacture, 44, 1109-1114, 2004.
[77] K. C. Ko, “Fabrication and Application of Embedded Spiral Electrodes,” Master thesis, Tamkang University, Taiwan, 2006. (Chinese version)
[78] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi and T. Sakurai, “Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes,” Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12321-12325, 2005.
[79] E. Smela, “Conjugated Polymer Actuators for biomedical Applications,” Advanced Materials, 15, pp. 481-494, 2005.
[80] H. Fujita, “Two Decades of MEMS from Surprise to Enterprise,” Proceeding of Twenty IEEE International Conference on Micro Electro Mechanical Systems (MEMS’07), pp. 1-6, 2007.
[81] C. P. Chen, Y. C. Chao, C.Y. Wu and J.C. Lee, “Development of a Catalytic Hydrogen Micro-Propulsion System,” Combustion Science and Technology, 178, pp. 2039-2060, 2006.
[82] L. F. Velásquez-García, A. I. Akinwande and M. Martínez–Sánchez, “A Planar Array of Micro-Fabricated Electrospray Emitters for Thruster Applications,” Journal of Microelectromechanical Systems, 15, pp. 1272-1280, 2006.
[83] J. H. Lee, K. S. Hwang, K. H. Yoon, T. S. Kim and A. Ahn, “Microstructure and Adhesion of Au Deposited on Parylene-C Substrate with Surface Modification for Potential Immunoassay Application,” IEEE Transactions on Plasma Science, Vol. 32, pp. 505-509, 2004.
[84] http://www.chine.com.tw/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信