§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0506200813184900
DOI 10.6846/TKU.2008.00117
論文名稱(中文) 機械心瓣穴蝕成因探討
論文名稱(英文) Causes of cavitation phenomena in mechanical heart valves
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 羅啟文
研究生(英文) Chi-Wen Lo
學號 891330028
學位類別 博士
語言別 英文
第二語言別
口試日期 2008-05-30
論文頁數 124頁
口試委員 指導教授 - 盧博堅(lupc@mail.tku.edu.tw)
委員 - 陸鵬舉(pjlu@mail.ncku.edu.tw)
委員 - 許文翰(twhsheu@ntu.edu.tw)
委員 - 施清吉(006956@mail.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 盧博堅(lupc@mail.tku.edu.tw)
關鍵字(中) 機械心瓣
穴蝕
水錘效應
擠壓流效應
渦流效應
文氏效應
關鍵字(英) mechanical heart valves
cavitation
water hammer effect
squeeze flow effect
vortex effect
Venturi effect
第三語言關鍵字
學科別分類
中文摘要
從過去的研究指出,造成機械心瓣發生穴蝕的機制包括水錘效應(water hammer effect)、擠壓流效應(squeeze flow effect)、渦流效應(vortex effect)與文氏效應(Venturi effect)。由於加速狀態下的穴蝕現象較為明顯,同時過去尚未有學者針對加速狀態下的機械心瓣穴蝕成因做探討,因此本研究首先利用不同設計的機械心瓣在加速狀態下研究穴蝕的成因。然而加速狀態下無法說明真實體內的情況,因此本研究隨後在生理條件下針對包括直接量測造成穴蝕發生時的擠壓流與關閉後渦流效應與穴蝕的關係進行研究。機械心瓣在關閉的瞬間包含所有可能造成穴蝕的效應都可能會發生,因此難以了解這些效應何者為最主要的效應以及這些效應是否單獨能造成穴蝕的發生,因此本研究設計一個能模擬單葉片機械心瓣關閉的裝置,同時能將上述可能造成穴蝕的成因各自分離與合併進行研究。本研究中主要利用strobe lighting technique的方法觀察穴蝕汽泡影像、利用高頻之壓力計針對穴蝕汽泡的高頻壓力進行、利用高感度之CCD雷射位移計量測心瓣葉片的關閉速度、利用雷射都卜勒流速儀與質點影像流速儀來量測流場的速度與渦流現象。
綜合上述各個研究的結果指出單獨水錘效應、擠壓流效應均可造成穴蝕的發生,但是單獨水錘效應需要較大之關閉速度才能造成。而當兩個效應伴隨產生時,此時所需要的關閉速度較低,此說明了擠壓流的效應應為機械心瓣穴蝕發生的主因,而水錘效應則有加成的效果。本研究中所直接量測心瓣關閉瞬間之擠壓流流速遠小於利用數值模擬計算出來之流速,造成此結果可能是因為流體加速度項所造成,然而此加速度項不易進行量測。本研究中量測心瓣關閉後渦流中心的壓降僅約25 mmHg,此不足以單獨造成穴蝕的發生,因此渦流效應應不是主因,但在穴蝕的發生上具有加成的效果。
英文摘要
Prior research shows that the factors which induce cavitation include water hammer, squeeze flow, vortex and Venturi effects. Because the MHV cavitation in accelerated condition is more intense than in physiologic condition, and investigators never studied the mechanisms of cavitation formation in accelerated condition in past years. Therefore, in this study, we utilized the different design of MHVs testing under accelerated condition and studied the mechanisms related to cavitation at first. However, accelerated testing may not accurately reflect in vivo performance. Hence, we tried to measure the squeeze flow velocity directly and calculate the pressure drop during MHV closure related to MHV cavitation in physiologic condition later. During the MHV closure, it may combine several mechanisms to induce MHV cavitation formation. Because it is very difficult to study one of the mechanisms mentioned above alone, we designed a simplified model to simulate the closing behavior of a monoleaflet valve. This model allowed us to modify various parameters and measure flow velocities and pressure changes by separating or combining the various flow effects mentioned above. In this study, the strobe lighting technique (SLT) was used to capture the image of cavitation bubbles, the high-frequency pressure transducer was mounted very close to the leaflet surface to obtain the transient pressure signal, and the laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) were used to measure the flow velocity and vortex phenomenon.
Results showed that both squeeze flow and water hammer individually are sufficient to generate cavitation bubbles, with the latter requiring higher velocities. When both squeeze flow and water hammer effects are compounded, cavitation occurs at lower closing velocity. This indicated that the dominate mechanism which induce MHV cavitation inception is the squeeze flow effect, and the water hammer effect may play a minor role in MHV cavitation. The maximum pressure drop in the vortex center is roughly 25 mmHg. Since cavitation formation requires the local pressure to drop below vapor pressure, our results clearly showed that vortex formation cannot provide significant contribution to MHV cavitation.
第三語言摘要
論文目次
Abbreviations
List of Figures
Chapter 1 - General Introduction  1	
1.1  Human Heart and Cardiac Valves  1
1.2  The Prosthetic Heart Valves (PHV)  2	
1.3  Cavitaion Phenomena  4
1.4  Cavitaion in Mechanical Heart Valves  5
1.4.1  Parameters of MHV Cavitation Intensity  7
1.4.1.1  MHV Cavitation Threshold(Loading Rate)  7
1.4.1.2	Occluder Closing Velocity of MHVs  9
1.4.1.3	High Frequency Pressure Oscillations at MHV Closure  10
1.4.2  Causes of MHV Cavitation  12 
1.4.2.1  Water Hammer Effect  12
1.4.2.2	Squeeze Flow Effect  13
1.4.2.3	Vortex Effect  15
1.4.2.4	Venturi Effect  17
1.5  The Objectives of this Dissertation  17
References  19
Figure Legends  24

Chapter 2 - Cavitation Behavior Observed in Three Monoleaflet MHVs under Accelerated Testing Conditions  27
2.1  Introduction  27
2.2  Materials and methods  30
2.3  Results  33
2.4  Discussions  37
2.5  Conclusions  42
References  44
Figure Legends  47
Table Legends  56

Chapter 3 - Squeeze Flow Measurements in Mechanical Heart Valves  57
3.1  Introduction  58
3.2  Materials and methods  61
3.3  Results  64
3.4  Discussions  65
3.5  Conclusions  69
References  71
Figure Legends  74
Table Legends  78

Chapter 4 - Quantitative Characterization of Vortices in the MHV Regurgitant Flow Field  79
4.1  Introduction  79
4.2  Materials and methods  81
4.3  Results  83
4.4  Discussions  84
4.5  Conclusions  87
References  88
Figure Legends  90

Chapter 5 - A Physical Model Investigation of Cavitation Phenomena in Mechanical Heart Valves  95
5.1  Introduction  96
5.2  Materials and methods  99
5.3  Results and Discussions  101
5.4  Conclusions  108
References  110
Figure Legends  113
Table Legends  121

Chapter 6 - Conclusions  122
6.1  Conclusions  122
6.2  Recommendations for Further Study  124

List of Figures
Figure 1-1 Schematic illustration of human heart. (From: Texas Heart Institute website:
http://www.texasheart.org/HIC/Anatomy/anatomy2.cfm) 24
Figure 1-2 Cardiac cycle. (From Guyton AC, Text book of Medical Physiology, 8th Edition, Philadelphia, W.B. Saunders Company, 1991 24
Figure 1-3 Examples of some Bioprosthetic Heart Valves – porcine valve. 25
Figure 1-4 Examples of some Mechanical Heart Valves. 25
Figure 1-5 Cavitation pitting on leaflet (arrow 1) corresponding to precracked-housing damage at seating lip (arrow 2) and HSV cavitation location (arrow 3), 120 exercise hours in 16 months. (Ovine) (Ref: Ralph Kafesjian et al., JHVD,1994 s2-7) 26
Figure 1-6 Schematic of a suddenly stopped piston in a flow. 26
Figure 1-7 Schematic of the squeeze flow formation during MHV closure. 26

Figure 2-1a. Schematic diagram of the accelerated test system. 47
Figure 2-1b. Pictures of Medtronic Hall Standard (MHS) 29mm, Medtronic Hall D-16 (MHD) 29mm, and OmniCarbon (OC) 29mm, and schematic diagrams of different stop designs. 47
Figure 2-2. Illustration of stroboscopic lighting system used for cavitation visualization. 48
Figure 2-3. Schematic setup for the valve closing velocity measurement. 48
Figure 2-4. Images of cavitation bubbles on the inflow side of Medtronic Hall Standard MHV at different time delays. 49
Figure 2-5. Images of cavitation bubbles on the inflow side of Medtronic Hall D-16 MHV at different time delays. 49
Figure 2-6. Images of cavitation bubbles on the inflow side of Omni Carbon MHV at different time delays. 50
Figure 2-7. Examples of the recorded pressure signals measured on the outflow and inflow sides (top); low-pass signal (75kHz) of outflow/inflow sides and LVP (middle); and band-pass signal (75-200k Hz; bottom) of MHS. (1)5µs (2)45µs (3)145µs (4)225µs (5)265µs (6)345µs. 51
Figure 2-8. Examples of the recorded pressure signals measured on the outflow and inflow sides (top); low-pass signal (75kHz) of outflow/inflow sides and LVP (middle); and band-pass signal (75-200k Hz; bottom) of MHD. (1)5µs (2)105µs (3)205µs (4)325µs. 52
Figure 2-9. Examples of the recorded pressure signals measured on the outflow and inflow sides (top); low-pass signal (75kHz) of outflow/inflow sides and LVP (middle); and band-pass signal (75-200k Hz; bottom) of OC. (1)5µs (2)185µs (3)225µs (4)265µs (5)325µs. 53
Figure 2-10. The positive peak pressure (PPP), negative peak pressure (NPP), and root mean square (RMS) in relation to the valve closing velocity of two different MHVs. 54
Figure 2-11. Typical spectra of the total energy, deterministic energy and non-deterministic energy at 600 bpm of MHS valve. 55
Figure 2-12. Comparison of the RMS value of the high-pass filtered pressure data to the non-deterministic signal energy of MHS, MHD and OC valves at different heart rates.55

Figure 3-1. Images of the modified SJM (left), original MHS (center), and modified OC (right) valves. 74
Figure 3-2. Schematic diagram of the measurement regions of SJM, MHS and OC MHVs. 74
Figure 3-3. Schematic diagram of the pulsatile mock circulatory loop system. 75
Figure 3-4. The physiologic pressure waveforms of SJM, MHS, and OC MHVs at 70 bpm. 75
Figure 3-5. Images of cavitation bubbles on the inflow side of (a) SJM, (b) MHS, and (c) OC MHVs at the instant of closure. 76
Figure 3-6. Samples of instantaneous squeeze flow velocity data; (a) SJM, (b) MHS, and (c) OC. 76
Figure 3-7.  Negative peak pressure signal trace and corresponding squeeze flow velocities of St. Jude Medical (SJM ) at 70bpm (V1-V4: four different cycles). 77

Figure 4-1 Schematic diagram of the pulsatile mock circulatory loop. 90
Figure 4-2 Schematic view of SJM 29mm PIV measurements planes. I and II designate the two viewing windows. 90
Figure 4-3 Example of the (a) PIV data and (b) centerline velocity profile of a vortex. 91
Figure 4-4 A typical PIV instantaneous velocity vector field of (a) SJM(I) and (b) SJM(II); I and II designate the two viewing windows. 91
Figure 4-5 The magnitude of (a) the vortex core radius, R; (b) the maximum tangential velocity, Vt; (c) the velocity circulation, C; and (d) the pressure drop, dP, at the peripheral orifice of SJM. Error bars represent the standard deviation. 92
Figure 4-6 The magnitude of (a) the vortex core radius, R; (b) the maximum tangential velocity, Vt; (c) the velocity circulation, C; and (d) the pressure drop, dP, of the upper vortex at the central B-datum orifice of SJM. Error bars represent the standard deviation. 93
Figure 4-7 The magnitude of (a) the vortex core radius, R; (b) the maximum tangential velocity, Vt; (c) the velocity circulation, C; and (d) the pressure drop, dP, of the lower vortex at the central B-datum orifice of SJM. Error bars represent the standard deviation. 94

Figure 5-1(a) Schematic of experiment setup (a) acrylic water tank, (b) pneumatic actuator, and (c) the setup of various impinging rods consisting of one movable and one stationary rod. 113
Figure 5-1(b) Schematic of the impinging rods system. 113
Figure 5-1(c) Schematic of the impinging piston system. 114
Figure 5-2 Schematic of the experimental setup that allows direct cavitation imaging, velocity measurement of the moving rod, flow field velocity and pressure changes at the instant of rod impact. 114
Figure 5-3 The images of cavitation bubbles in (a) 5mm and (b) 10mm impinging rods system at moving velocity were 1.31±0.03 and 0.89±0.03 m/s, respectively. 115
Figure 5-4 The images of cavitation bubbles in 10mm impinging rods system at moving velocity was 1.32 m/s. 115
Figure 5-5 The images of cavitation bubbles in 10mm impinging rods system at different moving velocities. 116
Figure 5-6 Images of cavitation bubbles on the 10mm rods impinging system at different time delays. 116
Figure 5-7 Visualization of 10mm rods impinging system at moving velocity was 1.1±0.03 m/s. 117
Figure 5-8 The images of cavitation bubbles in (a) 5mm-24mm and (b) 10mm-24mm impinging rods system at moving velocity were 1.30±0.02 and 0.84±0.02 m/s, respectively. 118
Figure 5-9 Images of cavitation bubbles on the 10-24mm rods impinging system at different time delays. 118
Figure 5-10 The image of cavitation bubbles at piston-cylinder system. 119
Figure 5-11 The images of cavitation bubbles in 24mm piston-cylinder system upon impact with the 5mm stationary rod at (a) 0.56±0.01 and (b) 0.89±0.02m/s, respectively. 119
Figure 5-12 The high-frequency pressure fluctuations when the 10mm movable rod impacts the same sized stationary rod at the critical velocity of 1.03±0.02 m/s. 120
參考文獻
1.Little RC: Physiology of the heart and circulation. 3rd Edition, Year Book Medical 
Publishers, Inc., Chicago, 1985.
2.Hwang NHC: Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status, J Heart Valve Dis 7: 140-150, 1998.
3.Schoen FJ, Kujovich JL, Levy RJ: Bioprosthetic Valve Failure Cardiov Clin 18 (2) 289-293, 1988. 
4.Schoen FJ: Approach to Analysis of Cardiac Valve Prostheses as Surgical Pathology or Autopsy Specimens, Cardiov Pathology, 4(4): 241-255, 1995.
5.Morse D, Steiner RM: Cardiac valve identification atlas and guide. In: Morse D, Steiner RM, Fernadez J, eds., Guide to prosthetic cardiac valves. Springer Verlag, New York, p257-236, 1985.
6.Pehrsson SK, Eriksson MJ, Lentell JC, Bowald S: Early results of a new mechanical tri-leaflet heart valve prosthesis - "Tricusp": an animal study, Scand Cardiovasc J, 37(4): 235-9, 2003.
7.Lu, PC, JS Liu, RH Huang, CW Luo, HC Lai, NHC Hwang: The Closing Behavior of Mechanical Aortic Valve Prostheses, ASAIO J, 50(4): 294-300, 2004.
8.Chandran KB: Heart valve prostheses: in vitro flow dynamics, Encyclopedia of Medical Devices and Instrumentation, John G., Webster, ed., Wiley, New York, 3rd ed., pp. 1475-1483, 1988.
9.Wu ZJ: Cavitation in mechanical heart valve prostheses: an in-vitro study, Ph. D. Thesis, University of Miami, 1996.
10.Young FR(ed): Cavitation. London, McGraw-Hill Book Company, 1989.
11.Rayleigh Load: On the pressure developed in a liquid during the collapse of spherical cavity, Phil Mag, 34: 94-98, 1917.
12.Plesset MS, Chapman RB: Collapse of an initially spherical vapor cavity in neighborhood of a solid boundary, J Fluid Mech., 47: 283-290, 1971.
13.Bokros JC, LaGrange LD, Schoen FJ: Control of structure of carbon for use in bioengineering, in Walker PL (ed). Chemistry and Physics of Carbon. New York: Marcel Dekker, pp.103-171, 1972.
14.Walker WF: Cavitation in pulsatile blood pumps. Adv Bioeng; 1:148-150, 1974.
15.Leuer L: In vitro evaluation of drive parameters and valve selection for total artificial heart. Annual Meeting of Canadian Council of Cardiovascular Perfusionists, Ottawa, Ontario, Canada, 1986.
16.Quijano RC: Edwards Duromedics dysfunctional analysis. Proceeding of Cardio stimulation: 6th International Congress, Monte Carlo, Monaco, 1988.
17.Klepetko W, Moritz A: Leaflet fracture in Edwards Duromedics bileaflet valves. J Thorac Cardiovasc Surg, 97: 90-94, 1989.
18.Kafesjian R, Wieting DW, Ely J, et al.: Characterization of cavitation potential of pyrolytic carbon. In Proceeding, International Symposium on Heart Valve Diseases, London, UK, 12-16, 1989.
19.Richard G, Guo H: Structural failure of pyrolytic carbon heart valves. J Heart Valve Dis 5(Suppl I): S79-S85, 1996.
20.Lamson TC, Rosenberg G, Geselowitz DB, Deutsch S, Strinebring Dr, Frangos JA, Tarbell JM: Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J 39: 626-633, 1993.
21.Garrsion LA, Lamson TC, Deutsch S, Geselowitz DB, Gaumond RP, Tarbell JM: An in-vitro investigation of prosthetic heart valve cavitation in blood. J Heart Valve Dis 3(Suppl I): S8-S24, 1994.
22.Richard G, Beavan AI, Strzepa P: Cavitation threshold ranking and erosion characteristics of bileaflet heart valve prostheses. J Heart Valve Dis 3(Suppl I): S94-S101, 1994.
23.Hwang NHC (ed.) Cavitation in mechanical heart valves, J Heart Valve Dis 4: 531, 1994.
24.Graf T, Fisher H, Reul H, Ran G: Cavitation potential of mechanical heart vlaves. Int. J Artif Org 14: 169-174, 1991.
25.Graf T, Reul H, Dietz W, Wilmes R, Ran G: Cavitation of mechanical heart valves under physiological conditions. J Heart Valve Dis. 1: 131-141, 1992.
26.Shu MCS, Leuer LH, Armitage TL, Schneider TE, Christiansen DR: In vitro observations of mechanical heart valve cavitation. J Heart Valve Dis 3: 85-93, 1994.
27.Chandran KB, Lee CS, Chen LD: Pressure Field in the Vicinity of Mechanical Valve Occluders at the Instant of Valve Closure: Correlation with Cavitation Initiation. J Heart Valve Dis. 3: 65-76, 1994.
28.Lee CS: Dynamics associated with the closure of mechanical heart valves: cavitation and clearance flow. Ph.D. dissertation, University of Iowa, 1993.
29.Herman BA, Carey RF: A protocol for the evaluation of the cavitation potential of mechanical heart valves. J Heart Valve Dis 3(suppl. 1): s128-s132, 1994.
30.Chandran KB, Aluri S: Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients and cavitation initiation. Ann Biomed Eng. 25(6): 926-38, 1997.
31.Wu ZJ, Hwang NHC: Ventricular pressure slope and bileaflet mechanical heart valve closure. ASAIO Journal. 41: M763-767, 1995.
32.Draft Replacement Heart Valve Guidance 1994 Food & Drug Administration, USPHS, Version 4.1.
33.Carey RF, Porter M et al. An Interlaboratoy Comparison of the FDA Protocol for the Evaluation of Cavitation Potential of Mechanical Heart Valves. J Heart Valve Dis. 4: 32-541, 1995.
34.Guo GX, Xu CC, Hwang NHC: Laser assessment of leaflet closing motion in prosthetic heart valves. J Biomech Eng. 12: 474-481, 1995.
35.Wu ZJ, Wang Y, Hwang NHC A Key Factor in Mechanical Heart Valve Cavitation, J Heart Valve Dis. 3(suppl I): S25-S34, 1994.
36.Lee H, Taenaka Y, Kitamura S. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J. 51(3): 208-213, 2005.
37.Wu ZJ, Gao BZ, Hwang NHC: Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect. J Heart Valve Dis. 4: 553-567, 1995.
38.Zapanta CM: Correlation of prosthetic heart valve dynamics with cavitation: in vitro and in vivo studies. Ph.D. Thesis, The Pennsylvania State University 1997.
39.Wu CF, Hwang NHC, Lin YKM: Statistical characteristics of mechanical heart valve cavitation in accelerated testing, J Heart Valve Dis. 13: 659-666, 2004.
40.Dexter EU, Aluri S, Radcliffe RR et al.: In vivo demonstration of cavitation potential of a mechanical heart valve. ASAIO J. 45(5): 436-441, 1999. 
41.Andersen TS, Johansen P, Paulsen PK, Nygaard H, Hasenkam JM: Indication of cavitation in mechanical heart valve patients. J Heart Valve Dis.. 12: 790-796, 2003.
42.Johansen P, Lomholt M, Nygaard H: Spectral characteristics of mechanical heart valve closing sounds. J Heart Valve Dis 11: 736-744, 2002.
43.Johansen P, Manning KB, Tarbell JM, Fontaine AA, Deutsch S, Nygaard H: A New Method for Evaluation of Cavitation Near Mechanical Heart Valves, J Biomechanical Eng. 125: 663-670, 2003.
44.Freed D, Walker WF, Dube CM, Tokuno T: Effects of vaporous cavitation neart prosthetic surfaces. ASAIO Trans.: 27:105-109, 1981.
45.Tokuno T: Cavitation inception on decelerating surfaces. Ph.D. Thesis, University of Rice, 1978.
46.Guo GX, Adlparvar P, Howanec M, Roy J, Kafesjian R, Kingsbury C: Effect of structural compliance on cavitation threshold measurement of mechanical heart valves. J Heart Valve Dis. 3(suppl. 1): S77-S84, 1994.
47.Wu ZJ, Shu MCS, Scott DR, Hwang NHC: The closing behavior of Medtronic Hall mechanical heart valves. ASAIO J 40: M702-M706, 1994.
48.Lee CS, Aluri S, Chandran KB Effect of Valve Holder Flexibility on Cavitation Initiation with Mechanical Heart Valve Prostheses: An In Vitro Study. J Heart Valve Dis. 5: 104-113, 1996.
49.Guo XM, Wang SK, Liu CW, Hwang NHD: A new lda system utilizing the optic electro-hybird feedback technique. Meas.Sci. Technol. 1: 265-271, 1990.
50.Lee CS, Chandran KB, Chen LD: Cavitation dynamics of mechanical heart valve prostheses. Artif Organs 18(10): 758-767, 1994.
51.Lee CS, Chandran KB, Chen LD: Cavitation dynamics of Medtronic Hall mechanical heart valve prosthesis: Fluid squeezing effect. J Biomechanical Eng 118: 97-105, 1996.
52.Maymir JC, Deutsch S, Meyer RS, Geselowitz DB, Tarbell JM: Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann Biomed Eng 26: 146-156, 1998.
53.Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM: Integrating particle image velocimetry and laser doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif Organs 25(2): 136-145, 2001.
54.Manning KB, Kini V, Fontaine AA, Deutsch S, Tarbell JM: Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif Organs 27(9): 840-846, 2003.
55.Lee H, Tsukiya T, Homma A, Kamimura T, Takewa Y, Nishinaka T, Tatsumi E, Taenaka Y, Takano H, Kitamura S: Observation of cavitation in a mechanical heart valve in a total artificial heart. ASAIO J 50: 205-210, 2004.
56.Lee H, Taenaka Y, Kitamura S: Mechanism for cavitation in the mechanical heart valve with an artificial heart: nuclei and viscosity dependence. Artif Organs 29(1): 41-46, 2005.
57.Zhang p, Yeo JH, NHC Hwang: Development of squeeze flow in mechanical heart valve: A particle image velocimetry investigation. ASAIO J. 52: 301-397, 2006.
58.Manning KB, Przybysz TM, Fortaine AA, et al. Mechanical heart valve cavitation fluid mechanics. ASAIO J: 50(2) 123, 2004.
59.Herberston HR, Manning KB, Haggerty CM, Fontaine AA, Deutsch S: Quantifying the upstream flow fields of the St. Jude Medical mechanical heart valve. ASAIO J 52(2): 52A, 2006.
60.Lim WL, Chew YT, Low HT, Foo WL: Cavitation phenomena in mechanical heart valves: the role of squeeze flow velocity and contact area on cavitation initiation between two impinging rods. J Biomechanics 36: 1269-1280, 2003.
61.Bluestein D, Einav S, Hwang NHC: A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. J Biomechanics 27(11): 1369-1378, 1994.
62.Makhijani VB, Yang HQ, Singhal AK, Hwang NHC: An experimental-computational analysis of mechanical heart valve:Effects of leakage squeezing and rebound. J Heart Valve Dis 3(suppl. I): S35-S48, 1994.
63.Lai YG, Chandran KB, Lemmon J A: Numerical simulation of mechanical heart valve closure fluid dynamics. J Biomechanics 35: 881-892, 2002.
64.Cheng R, Lai YG, Chandran KB: Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32: 1471-1483, 2004.
65.Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential, Annals of Biomedical Engineering. 28: 431-441, 2000.
66.Bachmann C, Kini V, Deutsch S, Fontaine AA, Tarbell JM Mechanisms of Cavitation and the Formation of Stable Bubbles on the Bjork-Shiley Monostrut Prosthetic Heart Valve, J Heart Valve Dis. 11: 105-113, 2002.
67.Rambod E, Beizaie M, Sahn DJ, Gharib M: Role of vortices in growth of microbubbles at mitral mechanical heart valve closure, Ann Biomed Eng 2007; 35(7): 1131-1145.
68.Rambod E, Beizaie M, Shusser M, Milo S, Gharib M A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves Annals of Biomedical Engineering. 27: 774-792, 1999.
69.Milo S, Gutfinger C, Chu GYC, Gharib M  Bubble Formation on SJ. Jude Mechanical Heart Valves- An In Vitro Study, J Heart Valve Dis. 12: 406-410, 2003.
70.Avrahami I, Rosenfeld M, Einav S, Eichler M, Reul H. Can vortices in the flow across mechanical heart valves contribute to cavitation. Med Biol Eng Comput. 38(1): 93-97, 2000.
71.Gross JM, Guo GX, Hwang NHC: Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Transactions. 37: M357-358, 1991.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信