淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-0503202002103900
中文論文名稱 機械化學研磨單晶碳化矽之砂輪開發
英文論文名稱 Development of Grinding Wheel for Mechanical Chemical Grinding of Single Crystal Silicon Carbide
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 108
學期 1
出版年 109
研究生中文姓名 郭柏漢
研究生英文姓名 Po-Han Kuo
電子信箱 quake850605tom@gmail.com
學號 607370128
學位類別 碩士
語文別 中文
口試日期 2020-01-08
論文頁數 85頁
口試委員 指導教授-趙崇禮
委員-謝榮哲
委員-何嘉哲
中文關鍵字 單晶碳化矽  磨削加工  機械化學磨削  表面粗糙度 
英文關鍵字 Single Crystal Silicon Carbide  Grinding  MCG  Surface roughness 
學科別分類 學科別應用科學機械工程
中文摘要 隨著科技的發展,高科技產品日新月異且要求越來越高,半導體朝著高功率、高頻率、低能源損耗的趨勢發展。而與使用傳統的單晶矽相比,單晶碳化矽可以減少大部分損失的能量,在效能上比目前所使用的單晶矽相比表現更佳,有望成為下一代半導體材料。但其為硬脆材料因此加工困難,表面光潔度及損傷層之問題仍需克服。本研究使用作為化學磨料的氧化鈰(CeO2)與機械磨料的鑽石以不同配比製作成之砂輪,以機械化學磨削(MCG)的方式對單晶4H-SiC進行加工。加工參數分為不同進刀量、乾溼式加工進行研究。最終在乾式加工下能得到表面粗糙度2.4nm(Ra)的碳化矽表面。
英文摘要 With the development of science and technology, high-tech products are changing with each passing day and the requirements are getting higher and higher, and semiconductors are developing towards the trend of high power, high frequency, and low energy loss. Compared with the use of traditional single crystal silicon, single crystal silicon carbide can reduce most of the lost energy, and has better performance than the currently used single crystal silicon, which is expected to become the next generation of semiconductor materials. However, it is a hard and brittle material, so it is difficult to process, and the problems of surface finish and damaged layer still need to be overcome. In this study, single crystal 4H-SiC was processed by mechanical chemical grinding (MCG) using grinding wheels made of cerium oxide (CeO2) as a chemical abrasive and diamonds made of mechanical abrasive at different ratios. The processing parameters were studied with different feed amounts, dry and wet processing,. Finally, a silicon carbide surface with a surface roughness of 2.4 nm (Ra) can be obtained under dry processing.
論文目次 目錄
致謝 I
中文摘要 III
英文摘要 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章、緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
第二章、文獻回顧及理論基礎 4
2-1 單晶碳化性質介紹 4
2-2 精密磨削加工 7
2-2-1 砂輪組成 7
2-2-1-1磨料種類 7
2-2-1-2結合劑種類 8
2-2-1 3砂輪磨耗 10
2-2-1-4 砂輪修整與削銳 11
2-2-2 磨削加工機制 12
2-2-3 硬脆材料移除機制 13
2-2-4 磨削加工參數之影響 14
2-3化學機械磨削 15
2-3-1 單晶碳化矽磨削磨料探討 15
2-3-2 機械化學磨削 17
2-3-3 機械化學砂輪製作專利 20
第三章、實驗方法及設備 22
3-1研究流程圖 22
3-2 研究設計 23
3-3 實驗設備 25
3-3-1 製作砂輪設備 25
3-3-2 實驗加工設備 30
3-3-3 量測分析儀器 33
3-4 實驗步驟 38
3-4-1砂輪製作 38
3-4-2磨削實驗 40
第四章、結果與討論 44
4-1 Pin on Disc砂輪磨削單晶碳化矽之結果 44
4-2 棒狀砂輪磨削單晶碳化矽之結果 49
4-2-1 C100 1:1砂輪磨削單晶碳化矽之結果 51
4-2-2 C100 3:1砂輪磨削單晶碳化矽之結果 53
4-2-3 C180 3:1砂輪磨削單晶碳化矽之結果 55
4-2-4 三種砂輪實驗結果之比較 56
4-3 平面磨削單晶碳化矽之結果 58
4-3-1陶瓷結合劑之砂輪磨削單晶碳化矽 59
4-3-2樹酯結合劑之砂輪磨削單晶碳化矽 61
4-3-2-1 C100 1:1砂輪平面磨削結果 62
4-3-2-2 C100 3:1砂輪平面磨削結果 67
4-3-2-3 C180 3:1砂輪平面磨削結果 70
4-3-3 磨削實驗結果之分析 73
4-3-4 奈米鑽石精加工磨削結果 76
第五章、結論 78
參考文獻 80

圖目錄
圖2 1 SiC單晶碳化矽晶體結構【3】 4
圖2 2 SiC晶體排列示意圖(3C 2H 4H 6H)【3】 4
圖2 3 4H-SiC和6H-SiC的晶體結構【5】 5
圖2 4砂輪磨耗型態(a)磨料磨耗(b)磨料破碎(c)結合劑破碎【11】 10
圖2 5砂輪磨粒脫落階段過程【12】 11
圖2 6砂輪削銳過程【12】 12
圖2 7摩擦、犁切與切削三階段【13】 13
圖2 8 CMG與Si晶圓產生之化學反應【29】 19
圖3 1研究流程圖 22
圖3 2單晶碳化矽之方向判別【38】 23
圖3 3氧化鈰磨料(2~5 μm) 25
圖3 4鑽石磨料(3~6nm) 25
圖3 5碳酸鈉 26
圖3 6 939p酚醛樹脂 26
圖3 7 551DU40 27
圖3 8 VC陶瓷結合劑 27
圖3 9 B-1樹酯粉 27
圖3 10 PMMA發泡劑 28
圖3 11 105M濕潤劑 28
圖3 12棒狀砂輪之模具圖 28
圖3 13砂輪齒條模具圖 28
圖3 14練太郎脫泡攪拌機 29
圖3 15氟素離型劑 29
圖3 16真空熱壓成型機 29
圖3 17高溫電爐 30
圖3 18 NACHi ASP-MKE精密加工機【39】 31
圖3 19 EQUIP TOP1224CNC精密加工機【40】 31
圖3 20 EQUIP TOP1224CNC精密加工機 內部 31
圖3 21 4H-SiC單晶碳化矽 33
圖3 22 OLYMPUS-BX51M光學金相顯微鏡 34
圖3 23 OLYPUS 4100共軛焦顯微鏡【41】 35
圖3 24 FlexSEM 1000可變真空掃描式電子顯微鏡【42】 37
圖3 25 Pin on Disc加工示意 41
圖3 26 CCD鏡頭 41
圖3 27棒狀砂輪加工示意圖 42
圖3-28棒狀砂輪加工示意圖 42
圖3 29平面磨削加工示意圖 42
圖3 30平面磨削加工示意圖(a)乾式磨削(b)濕式磨削 43
圖3 31試片及砂輪磨削後示意圖 43
圖4 1 Pin on Disc之圓棒砂條 45
圖4 2 Pin on Disc磨削實驗之架構圖 46
圖4 3 Pin on Disc加工後之單晶碳化矽 46
圖4 4單晶碳化矽試片磨削之截面積 48
圖4 5 Pin on Disc磨削材料移除量之比較 49
圖4 6 Pin on Disc磨削比之比較 49
圖4 7棒狀砂輪燒結後之形貌 50
圖4 8棒狀砂輪加工後之單晶碳化矽 51
圖4 9 C100 1:1砂輪磨削痕跡(光學顯微鏡觀測) 52
圖4 10 C100 1:1砂輪磨削痕跡(雷射共軛焦顯微鏡量測) 52
圖4 11 C100 1:1單晶碳化矽加工溝槽圖(使用Form Talysurf量測) 52
圖4 12 C100 3:1砂輪乾式磨削痕跡(光學顯微鏡觀測) 53
圖4 13 C100 3:1砂輪乾式磨削痕跡(雷射共軛焦顯微鏡量測) 54
圖4 14 C 100 3:1單晶碳化矽加工溝槽圖(使用Form Talysurf量測) 54
圖4 15 C180 3:1砂輪乾式磨削痕跡(光學顯微鏡觀測) 55
圖4 16 C180 3:1砂輪乾式磨削痕跡(雷射共軛焦顯微鏡量測) 55
圖4 17 C180 3:1單晶碳化矽加工溝槽圖(使用Form Talysurf量測) 56
圖4 18棒狀砂輪研磨單晶碳化矽之表面粗糙度 57
圖4 19棒狀砂輪之磨削比 58
圖4 20 1A1砂輪完成圖 58
圖4 21 1A1砂輪平面磨削單晶碳化矽加工後之試片 61
圖4 22 1A1砂輪乾式及溼式磨削痕跡 62
圖4 23砂輪平面磨削示意圖 62
圖4 24 C100 1:1砂輪表面形貌 64
圖4 25磨削前砂條表面之元素分析 65
圖4 26乾式磨削後砂條表面之元素分析 66
圖4 27加工後單晶碳化矽表面之元素分析 67
圖4 28 C100 3:1砂輪表面形貌 69
圖4 29 C180 3:1砂輪表面形貌 72
圖4 30相同集中度不同磨料配比之比較(乾磨) 74
圖4 31相同磨料配比不同集中度之比較(乾磨) 74
圖4 32 C180 3:1有無添加碳酸鈉之比較 75
圖4 33精密平面加工示意圖 76

表目錄
表2 1半導體材料之特性比較表【6】 6
表2 2單晶矽與單晶碳化矽機械性質【7】 6
表2 3磨料之種類及特性【9】 8
表2 4結合劑之種類及特性【10】 9
表3 1 MCG砂輪組成 24
表3 2鑽石粉末規格表 25
表3 3 939p酚醛樹脂性質表 26
表3 4 551DU40性質表 27
表3 5 NACHi ASP-MKE精密加工機規格表【38】 30
表3 6 EQUIP TOP1224CNC精密加工機規格表【40】 32
表3 7單晶碳化矽(4H)材料性質 33
表3 8 OLYPUS 4100規格表【41】 36
表3 9 FlexSEM 1000規格表【42】 38
表4 1 Pin on Disc砂輪之配比 45
表4 2 Pin on Disc加工參數 46
表4 3 Pin on Disc磨削單晶碳化矽後之表面 47
表4 4 Pin on Disc磨削移除量及移除率之比較 48
表4 5棒狀砂輪之成分配比 50
表4 6棒狀砂輪加工參數 50
表4 7 C100 1:1砂輪乾式及濕式加工磨耗 53
表4 8 C100 1:1砂輪乾式及濕式加工單晶碳化矽之表面粗糙度 53
表4 9 C100 3:1砂輪乾式及濕式加工磨耗 54
表4 10 C100 3:1砂輪乾式及濕式加工單晶碳化矽之表面粗糙度 54
表4 11 C180 3:1砂輪乾式及濕式加工磨耗 56
表4 12 C 180 3:1砂輪乾式及濕式加工單晶碳化矽之表面粗糙度 56
表4 13棒狀砂輪乾式加工比較 57
表4 14棒狀砂輪濕式加工比較 57
表4 15 1A1砂輪之配方 59
表4 16陶瓷法實驗加工參數 60
表4 17陶瓷法砂輪磨削單晶碳化矽之結果 60
表4 18樹酯法實驗加工參數 61
表4 19 C100 1:1砂輪磨削單晶碳化矽 63
表4 20 C100 1:1之砂輪磨削結果(表面粗糙度)(nm) 63
表4 21 C100 3:1砂輪磨削單晶碳化矽 68
表4 22 C100 3:1之砂輪磨削結果(表面粗糙度)(nm) 68
表4 23 C180 3:1砂輪磨削單晶碳化矽 71
表4 24 C180 3:1之砂輪磨削結果(表面粗糙度)(nm) 71
表4 25 1A1砂輪平面磨削實驗結果整理 73
表4 26 C180 3:1砂輪(添加碳酸鈉)磨削單晶碳化矽 75
表4 27 精加工磨削結果 77
參考文獻 【1】 F.W. Huo, D.M. Guo, R.K. Kang, G. Feng, “Nanogrinding of SiC wafers with high flatness and low subsurface damage” ,Trans. Nonferrous Met. Soc. China, Vol.22, pp.3027−3033, 2012.
【2】 Ramsdell.L.S, "Studies on Silicon Carbide" ,America. Mineralogist,. Vol.32, p.64-82, 1945
【3】 S.K. Lee, “Processing and Characterization of. Silicon. Carbide(6H- SiC and 4H- SiC) Contacts for High Power and High Temperature Device Applications” ,KTH, Royal Institute of Technology, 2002.
【4】 Morkoç.H, "Large-band-gap SiC,III-V nitride and II-VIZnSe-based semiconductor devicetechnologies" ,Journal of Applied Physics, 1994.
【5】 Hiroshi. Kasuga, Hitohsi. Ohmori, Taketoshi Mishima, Yutaka
Watanabe and W.M. Lin, “Investigation on mirror surface grinding characteristics of SiC materials” ,Journal of Ceramic Processing Research, Vol.10, No.3, pp.351~354, 2009.
【6】 T. Hamagucherohm, “The Next Generation of Power Conversion Systems Enabled by. SiC Power Devices” ,ROHM Semiconductor, 2014.
【7】 Gary L Harris, “Properties of Silicon Carbide” ,INSPEC, The Institution of Electrical Engineers, London, United Kingdom., 1995.
【8】 王德全。砂輪特性與磨削加工。中國標準出版社。2001。第二章。
【9】 台灣砂輪工業股份有限公司。檢自:
http://www.grindingwheel.com.tw/product.php?action=detail&m=2&s=21&id=22
【10】 寶鑽石業有限公司。檢自:
http://www.taisunnetwork.com/?結合劑介紹,66
【11】 M. Alfares, A. Elsharkawy, “Effect of grinding force on the
vibration of grinding machine spindle system” , International
Journal of Machine Tools and Manufacture, Vol. 40, pp. 2003-
2030, 2000.
【12】 S.Y. Luo, Y.C. Liu, “Effect of copper filler of resin-bonded diamond composites on the wear behaviors under a dry condition” , Journal of Materials Processing Technology, Vol. 96,pp. 215-224, 1999.
【13】 W. Lortz, “A Model of the Cutting Mechanism in Grinding”,Wear, Vol. 53, pp. 115-128, 1979.
【14】 王先逵。精密機械加工原理。高立圖書有限公司。2007。p.216~261。
【15】 安永暢男。精密機械加工原理。全華科技圖書有限公司。
2004.CH.3-CH.5。
【16】 F.Z. Fang, L.J. Chen, “Ultra-Precision Cutting for ZKN7 Glass” , Annals of the CIRP, Vol.49, pp.17-20, 2000.
【17】 Z. Zhong, N.P. Hung, “Grinding of alumina/aluminum composites”, Journal of Materials Processing Technology Vol.123, pp. 1317,2002.
【18】 A. Abdullah, A. Pak, M. Farahi, M. Barzegari, “Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide” , Journal of Materials Processing Technology Vol. 183, p. 165-168, 2007.
【19】 J. Ni, B. Li, “Phase transformation in high-speed cylindrical grinding of SiC and its effects on residual stresses” ,Materials Letters, Vol.89, pp.150–152, 2012.
【20】 L. Zhou,. H. Eda, J. Shimizu, S. Kamiya, H. Iwase, S. Kimura, H. Sato, “Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding” ,CIRP Annals, Vol.55, pp.313-316, 2006.
【21】 M. Kikuchi, Y. Takahashi, T. Suga, S. Suzuki and Y. Bando, “Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium(III) Oxide Abrasive” Journal of the American Ceramic Society, Vol.75, pp.189-194, 1992.
【22】 Z. Zhu, V. Muratov, E. Fischer, “Tribochemical Polishing of Silicon Carbide in Oxidant Solution” , Wear, 225-229, pp.848-856,1999.
【23】 D.Sciti,C.Melandri,A.Bellos(2000,August)“Excimerlaser-inducedmicrostructural changes of alumina and silicon carbide” , Journal of Materials Science,Vol.35, Issue15, pp. 3799–3810.
【24】 N. Yasunaga and Y. Yamato, “High Temperature MCP Process Suitable for Extremely Hard High Functional SiC Wafers” ,International Journal of Manufacturing Technology and Management, Vol.9, pp.172-182, 2006.
【25】 Y.C. Lin and C.H. Kao, “A Study on Surface Polishing of SiC with a Tribochemical reaction mechanism” ,International Journal of Advanced Manufacturing Technology, Vol.25, pp.33-40, 2005.
【26】 L. Zhou, Takeshi Shiin, Z.J. Qiu, Jun Shimizu, Takeyuki Yamamoto, Toshiaki Tashiro, “ Research on chemo-mechanical grinding of large size quartz glass substrate” ,Precision Engineering, Vol.33, pp.499–504, 2009.
【27】 S.U. Jianxiu, D.U. Jiaxi, LIU Haina, Liu Xinglong, “Research on Material Removal Rate of CMP 6H-SiC Crystal Substrate (0001) Si Surface Based on Abrasive Alumina(Al2O3)” ,Procedia Engineering, Vol.24, pp.441– 446, 2011.
【28】 H. Huang, B.L. Wang, Y. Wang, J. Zou, L. Zhou, “Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding” ,Materials Science and Engineering:A, Vol.479, pp.373–379, 2008.
【29】 Y.B. Tian,. L. Zhou,. J. Shimizu,. Y. Tashiro, R.K. Kang, “Elimination of surface scratch/texture on the surface of single crystal.Si..substrate..inchemo-mechanical..grinding(CMG)process” , ApplSurfSci, Vol.255, pp.4205-4211, 2009.
【30】 Z.G. Dong, S. Gao, H. Huang, R.K. Kang, Z.G. Wang, “Surface integrity and removal mechanism of chemical mechanical grinding of silicon wafers using a newly developed wheel” , International Journal of Advanced Manufacturing Technology, Vol.83, pp.1231-1239, 2016.
【31】 Moe. Mekata, Toshiyuki. Kotsuji, Minoru. Ota, Kai. Egashira, Keishi. Yamaguchi, Masayoshi Yamada and Masahiro Yamada, “Study on UV-assisted Grinding of SiC” ,Proceedings.of.the.20th International Symposium on Advances in Abrasive Technology 3-6 December, Okinawa, Japan, pp.11-16, 2017.
【32】 Masaya Kagawa, Junji. Murata, “Photocatalyst-Assisted Polishing Method for SiC Wafers Using Phosphorescent Particles as a Luminescent.Agent” ,Proceedings of the 20th International Symposium on Advances in Abrasive Technology 3-6 December, Okinawa, Japan, pp.699~703, 2017.
【33】 Z.Y. Zhang, J.F. Cui, B. Wang, Z.G. Wang, R.K. Kang, D.M. Guo, “A novel approach of mechanical-chemical grinding” ,Journal of Alloys and Compounds, Vol.726, pp.514-524, 2017.
【34】 吉田雄二、江田弘、周立波、劍持匡昭、田代芳章、神谷純生、岩瀨久雄、山下輝樹、小竹登。合成磨石。中華人民共和國專利CN101678533A。2010。
【35】 蘇建修、龐子端、馬力杰、付素芳、姚建國、鄭秋白、劉志响、張竹青。一種SiC單晶圓研磨工序用固結磨料化學機械研磨盤。中華人民共和國專利 CN103381573A。2013。
【36】 貴堂高德、加藤智久。單晶SiC基板的表面加工方法、其製造方法和單晶SiC基板的表面加工用磨削板。中華人民共和國專利CN104984324A。2015。
【37】 竹之內研二。磨削磨輪和磨削裝置以及晶圓的磨削方法。中華人民共和國專利 CN105935912A。2016。
【38】 https://www.slideshare.net/KamalakkannanKkk/basics-of-sic-50593624
【39】 NACHi, retrieved from http://www.nachi.com/
【40】 眾程科技股份有限公司。檢自:http://www.equiptop.com.tw/tw_products_detail.asp?Fkindno=F002357&Skindno=S003931&Pidno=201408260005
【41】 Olympus.ols4100,retrieved from http://www.olympus-ims.com/en/metrology/ols4100/#!cms[tab]=%2Fmetrology%2Fols4100%2Fspecifications
【42】 FlexSEM 1000,retrieved from
https://leftcoastinstruments.com/project/flex-sem/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-03-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-03-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信