§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0503201817364200
DOI 10.6846/TKU.2018.00151
論文名稱(中文) 利用蒸氣-非溶劑誘導相分離法製備對稱型 聚偏二氟乙烯薄膜
論文名稱(英文) Preparation of symmetric PVDF membranes by vapor and nonsolvent induced phase separation process
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 李秉鴻
研究生(英文) Ping-Hong Li
學號 604400613
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-19
論文頁數 92頁
口試委員 指導教授 - 鄭廖平
委員 - 張旭賢
委員 - 張朝欽
關鍵字(中) 聚偏二氟乙烯
蒸氣誘導相分離
對稱型薄膜
關鍵字(英) Poly(vinylidene fluoride)
Vapor-induced phase separation
Symmetric membrane
第三語言關鍵字
學科別分類
中文摘要
本研究結合蒸汽-非溶劑誘導相分離(combine vapor and nonsolvent induced phase separation, CVNIPS)方法製備對稱型聚偏氟乙烯薄膜(PVDF)並應用在薄膜蒸餾(MD)上,本實將高分子溶在磷三酸乙酯(TEP)/水(water)溶液中,於溫度20oC、濕度70%水氣的環境下進行曝氣再浸入水中成膜,藉由曝氣讓PVDF薄膜中與非溶劑水氣緩慢進入膜中誘發相分離,隨著曝氣時間0、2、5、8分鐘的增加讓薄膜表面的皮層膜孔洞增加,實驗中得知當曝氣至8分鐘時膜孔洞開至最完全,孔洞大小從無孔洞(0分鐘)增加至0.3微米(8分鐘),薄膜厚度也隨曝氣增加而增加由90微米增加至140微米,接觸角由60o增至120o,孔隙度由70% (0分鐘)增加至84% (8分鐘),水通量由8 (LMH/bar)增加至8111 (LMH/bar),將前述薄膜曝氣8分鐘進行薄膜蒸餾實驗發現。在膜鹽水濃度為3.5%,兩側溫差為20 oC、30 oC、45 oC時通量共分別可達:6.56、16.6、29 (LMH),阻隔率皆大於99%。本研究接著選用聚偏二氟乙烯/磷酸三乙酯/甘油三成份系統,以CVNIPS法於曝氣90秒內製備薄膜,並探討曝氣溫度、曝氣時間與基材溫度對薄膜之影響,發現在溫度40oC、濕度70%水氣的環境下,隨著曝氣時間增加,薄膜孔徑越大,但曝氣溫度低於40 oC或基材板溫相近於曝氣溫度時,則薄膜表面為皮層結構,將無皮層薄膜過濾用於PMMA (0.16 um),發現過濾後通量為400 LMH,阻隔率皆大於99%。
英文摘要
This work reports the preparation of symmetric poly(vinylidene fluoride) (PVDF) membrane by vapor-nonslovent induced phase separation process and application of the membranes to membrane distillation processes. The polymer was dissolved in triethyl phosphate/water solutions to form casting dopes. These dopes were exposed to humid air (70% Rh) at 20 oC for the periods of 0, 2, 5, and 8 min. And then immersed in water bath to fully precipitate the polymer. The formed membranes were found to exhibit bi-continuous structure in their cross section and bottom surface, regardless of whether exposure has been applied. The top surface of the membrane, however, depended on the exposure period, and evolved from dense to totally-open structure when the exposure period was raised from 0 to 8 min. Increasing the exposure time also leaded to increase of the membrane thickness, total porosity, and pure water flux from 90 to 140 m, 70 to 84%, and 8 to 8100 LMH, respectively. The most porous membrane was tested in membrane distillation processes to see the desalination capability of the membrane in separating 3.5 wt% NaCl(aq). When the temperature difference across the membrane was set of 20, 30, and 45o, the permeation fluxes of 6.6, 16.6, and 29 LMH can be attained with rejection coefficients all larger than 99%. We then chose the poly (vinylidene fluoride)/triethyl phosphate/ glycerol ternary system and used a method that combine vapor induced phase separation and non-solvent induced phase separation to prepare symmetric PVDF membranes within 90 seconds. And we investigated that the effects of exposure time, atmosphere temperature and substrate temperature on membrane morphologies. Increasing the exposure time leaded to increase of the membrane pore size at 40 oC and humid air 70% Rh. Membrance morphology became to skin structure when the atmosphere temperature blew 40 oC or the structure temperature was closed to exposure temperature. The most porous was tested in PMMA(0.16 um) filtration process. It was found that the permeation flux was 400 LMH and the rejection was all lager than 99%.
第三語言摘要
論文目次
目錄
致謝..................................................................................................................Ⅰ
中文摘要...........................................................................................................Ⅱ
Abstract...........................................................................................................Ⅲ
目錄..................................................................................................................Ⅴ
圖目錄..............................................................................................................Ⅵ
表目錄..........................................................................................................Ⅶ
第一章 序論	1
1.1前言和研究目的	1
第二章 製備雙連續孔隙結構之顆粒型聚偏二氟乙烯薄膜製備及其在薄膜蒸餾之應用	3
2.1前言	3
2.2實驗	7
2.2.1實驗材料	7
2.2.2實驗儀器	7
2.2.3薄膜製備	9
2.2.4孔隙度測試	10
2.2.5薄膜結構和孔隙影像分析	10
2.2.6接觸角測試	10
2.2.7水通量之測試	11
2.2.8紅外線光譜儀分析	12
2.2.9 UV/Vis 穿透度	12
2.2.10拉力測試	12
2.2.11 薄膜之孔洞尺寸	12
2.2.12氯化鈉水溶液之檢量線量製	13
2.2.13薄膜蒸餾	14
2.3結果與討論	17
2.3.1薄膜結構	17
2.3.2孔隙度、孔隙影像分析與接觸角	25
2.3.3水通量	29
2.3.4 FTIR光譜與UV/Vis 穿透度	31
2.3.5薄膜蒸餾	37
2.3.5.1溫度差對薄膜蒸餾之影響	37
2.3.5.2鹽水濃度對薄膜蒸餾之影響	39
2.3.5.3長時間操作薄膜蒸餾系統之穩定性	40
2.4結論	43
2.5參考文獻	44
第三章 以快速VIPS法製備PVDF對稱型薄膜	51
3.1 前言	51
3.2實驗	54
3.2.1實驗材料	54
3.2.2實驗儀器	54
3.2.3薄膜製備	56
3.2.4孔隙度測試	57
3.2.5薄膜結構	57
3.2.6接觸角測試	58
3.2.7水通量之測試	58
3.2.8紅外線光譜分析	59
3.2.9拉力測試	59
3.2.10 毛細管流量氣孔計(Capillary flow porometer)	59
3.2.11微分掃描式熱分析(DSC)	60
3.2.12 PMMA之檢量線量製	60
3.3.13 PMMA之微過濾程序	61
3.3 結果與討論	62
3.3.1 薄膜結構	62
3.3.2 薄膜物性討論與孔洞影像分析	70
3.3.3 水通量	74
3.3.4 DSC	76
3.3.5 薄膜之FTIR分析	77
3.3.6 PMMA之微過濾	78
3.4結論	80
3.5參考文獻	81
附錄A	84
附錄B	85

 
圖目錄
圖2.1 接觸角儀器	11
圖2.2 鹽水溶液檢量線	14
圖2.3 薄膜蒸餾裝置 摘自[33]	15
圖2.4 MD薄膜裝置	16
圖2.5 薄膜之截面 x500影像:	19
圖2.6 薄膜之截面x10k影像:	20
圖2.7薄膜上表面x2k與x30k SEM:	21
圖2.8薄膜上表面x10k與x30k SEM:	22
圖2.9 薄膜下表面x2k SEM:	23
圖2.10 薄膜下表面x10k SEM:	24
圖2.12 薄膜上表面 SEM之Image J影像分析	27
圖2.13 (a) M0、M8、MW2、MW5; (b) MW8 PMI量測之孔徑大小	28
圖2.14 各薄膜之水通量	30
圖2.15製膜液曝氣的不同時間之UV/Vis 穿透度	33
圖2.16未摻水製膜液曝氣的不同時間之UV/Vis 穿透度	34
圖2.17薄膜與製膜液之FTIR.光譜	35
圖2.18 製膜液之成膜機制	36
圖2.19 薄膜蒸餾蒸氣壓差與流量之關係	39
圖2.20 MW8於55小時之薄膜蒸餾	42
圖3.1 接觸角儀器	58
圖3.2 PMI 壓差與孔徑之關係	60
圖3.3 PMMA與濁度檢量線	61
圖3.4製膜液中添加與未添加甘油所製備之SEM影像	64
圖3.5 改變曝氣時間所製得薄膜之截面SEM影像	65
圖3.6改變曝氣時間所製得薄膜之上、下表面SEM影像x10k	66
圖3.7改變曝氣溫度所製得薄膜之SEM影像	67
圖3.8不同板溫所製得薄膜之截面SEM影像x500 (左);x10k (右):	68
圖3.9不同板溫所製得薄膜之上、下截面SEM影像	69
圖3.10未摻入加甘油與摻入甘油之製膜液,於55oC下之黏度及穿透度隨靜置時間的變化	72
圖3.11 薄膜上表面 SEM之Image J影像分析	73
圖3.12 薄膜G1~G4之水通量	74
圖3.13 薄膜G3及G5~G7之水通量	75
圖3.14 薄膜之FTIR光譜	77
圖A1製膜液中添加與未添加甘油所製備之截面SEM影像30k	84
圖A2 PMMA之粒徑分佈圖 (a) 原始濾液; (b) 過濾後濾液	84
圖 B1 截面SEM 影像	87
圖 B2 截面SEM 影像	88
圖 B3 上表面SEM 影像	89
圖 B4 上表面SEM 影像	90
圖 B5 下表面SEM 影像	91
圖 B6 下表面SEM 影像	92

 
表目錄
表1.1 薄膜之應用[2]	2
表2.1 PVDF薄膜成膜條件	9
表2.2 MD操作條件.	15
表2.3 PVDF薄膜之物性.	26
表2.4 薄膜之純水通量	30
表2.5 水通量與文獻之數據探討	30
表2.9 MW8薄膜蒸餾於不同溫差下之通量	38
表2.10 純水與3.5 wt% NaCl(aq) 之蒸氣壓	38
表2.11 MW8於不同鹽水濃度之薄膜蒸餾數據	40
表2.12 MW8與文獻長時間薄膜蒸餾比較	42
表3.1 PVDF薄膜成膜條件	57
表3.2 PVDF之薄膜物性	71
表3.3 PVDF薄膜之孔徑大小	72
表3.4 PVDF薄膜結晶度與熔點	76
表3.5 PVDF過濾於PMMA之通量與阻隔率	78
表B1  PVDF薄膜成膜條件	86
參考文獻
1.	M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht/Boston/London (1996).
2.	H. Strathmann, Introduction to Membrane Science and Technology, Wiley (2011).
3.	G. Kang, Y. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci. 463 (2014) 145-165.
4.	X. Yang, A. G. Fane, R. Wang, Membrane distillation: now and future, Desalination: Water from Water, (2014) 373-424.
5.	S. Bonyadi, T. S. Chuung, Highly porous and macrovoid free PVDF hollow fiber membrane for membrane distillation by a solvent-dope solution co-extrusion approach, J. Membr. Sci. 331 (2009) 66-74.
6.	P. Wang, M.M. Teoh, T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalibation performance, Water Res. 45 (17) (2011) 5489-5500.
7.	M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membrane by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties, Eur. Polym. J. 43 (2007) 1557-1572.
8.	M. L. Yeow, Y. T. Liu, K. Li, Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782-1789.
9.	S. S. Madaeni, M. K. Yeganeh, Microfiltration of emulsified oil wastewater, J.Porous. Mater. 10 (2003) 131-138.
10.	M. R. M. Abed, S.C. Kumbarkar, A. M. Groth, K. Li, Ultrafiltration PVDF hollow fibre membrane with interconnected bicontinuous structures produced via a single-step phase inversion technique, J. Membr. Sci 407 (2012) 145-543.
11.	J. T. Jung, J. F., H. H. Wang, E. di Nicolo, E. Drioli, Y. M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Membr. Sci. 514 (2016) 250-263.
12.	Q. Li, Z. L. Xu, M. Liu, Preparation and characterization of PVDF microporous membrane with highly hydrophobic surface, Polym. Adv. Technol. 22 (2011) 520–531.
13.	S.W. Meng, J.Mansouri, Y. Ye, V. Chen, Effect of templating agents on the properties andmembrane distillation performance of TiO2-coated PVDF membranes, J.Membr. Sci. 450 (2014) 48–59.
14.	T. Rinku, G. B. Elena, A. A. Hassan, Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD), J. Membr. Sci. 452 (2014) 470–480.
15.	D. R. Lloyd, K. E. Kinzer, H. S. Tseng, Microporous membrane formation  via thermally induced phase separation. I. Solid–liquid phase separation, J. Membr. Sci. 52 (1990) 239–261.
16.	J. T. Jung, J. F. Kim, H. Wang, E. Nicolo, E. Drioli, Y. MooLee, Understanding the non-solvent induced phases eparation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation(TIPS), J. Membr. Sci. 514 (2016) 250–263
17.	M. Gu, J. Zhang, X. Wang, H. Tao, L. Ge, Formation of poly(vinylidene fluoride PVDF membranes via thermally induced phase separation, Desalination, 192 (2006) 160–167.
18.	J. F. Kim, J. H. Kim, Y. M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review, AIChE J. 62 (2015) 461–490.
19.	J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, Y. M. Lee, Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching method,. J. Membr. Sci. 509 (2016) 94-104.
20.	R. Zsigmondy, W. Zsigmondy, Uber neue Filter. Z Anorg U Allgem Chem,  103 (1918) 119–28.
21.	C. Li, D. Wang, A. Deratani, D. Deratani, D. Bouyer, J. Lai, Insight into the preparation of poly(vinylidene fluoride) membranes by vapor induced phase separation, J. Membr. Sci. 361 (2010) 154-166.
22.	A.Venault, Y. Chang, D. Wang, J. Lai, Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing, J. Membr. Sci. 423-424 (2012) 53-64.
23.	Q. Ye, L. Cheng, L. Zhang, Li. Xing, H. Chen, Preparation of Symmetric Network PVDF Membranes for Protein Adsorption via Vapor Induced Phase Separation, J. Macromol. Sci. Polym. 50 (2011) 2004-2022.
24.	H. Sun, S. Sun, B. Ge, L. Xing, H. Chen, Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase, J. Membr. Sci. 295 ( 2007) 2–10.
25.	H. C. Park, Y. P. Kim, H. Y. Kim, Y S. Kang, Membrane formation by water vapor induced phase inversion, J. Membr. Sci. 156 (1999) 169–78.
26.	H. Caquineau, P. Menut, A. Deratani, C. Dupuy. Influence of the relative humidity on film formation by vapor induced phase separation, Polym. Eng. Sci. 43 (2003) 798–808.
27.	Z. Chen, M. Deng, Y. Chen, G. He, M. He, J. Wang, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications, J. Membr. Sci. 235 (2004) 73–86.
28.	C. Kuo, H. Lin, H. Tsai, D. Wang, J. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233 (2008) 40-47.
29.	A.Venault, Y. Chang, D. Wang, J. Lai, Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion, J. Membr. Sci. 470 (2014) 18-29.
30.	A. Venault, M. R. B. Ballad, Y. Huang, Y. Liu, C. Liu, Y Chang, Antifouling PVDF membrane prepared by VIPS for microalgae harvesting, Chem. Eng. J. 142 (2016) 97-111.
31.	M. L. Yeow, Y. T. Liu, K. Li, Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782-1789.
32.	J. Chang J. Zuo, L. Zhang, G. S. O'Brien, T. Chung, Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. J. Memre. Sci. 539 (2017) 295-304.
33.	楊承道,製備顆粒型聚偏二氟乙烯薄膜及薄膜蒸餾之應用.
34.	B. Wunderlich, "Macromolecular Physics Vol.2 Crystal nucleation, growth, annealing," Academic Press, New York (1973).
35.	M. M. Tao, F. Liu, B. R. Ma, L. X. Xue, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination 316 (2013) 137-145.
36.	G. N. Baro˜na, B. J. Cha, B. Jung, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination 316 (2013) 137–145
37.	D. J. Lin, H. H. Chang, T. C. Chen, Y. C. Lee, L. P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur. Polym. J. 42 (2006) 1581–1594.
38.	H. H. Chang, L. C. Yao, D. J. Lin, L. P. Cheng, Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method. Sep. Purif. Technol. 72 (2010) 156–166.
39.	Rinaldo Gregorio, Jr. Determination of the , , and Crystalline Phases of Poly(vinylidene fluoride) Films Prepared at Different Conditions. Appl. Polym. Sci. 100 (2006) 3272-3279.
40.	P. Martins, A. C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications. Prog. Polym. Sci. 39 (2014) 683–706.
41.	J. Liu, X. Lu, C. Wu, Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes, Membranes 3 (2013) 389-405.
42.	H. G. Leopold, J. Johnston, The vapor pressure of the saturated aqueous solutions of certain salts J. Am. Chem. Soc. 49 (1927) 1974–1988.
43.	C. Kuo, H. Lin, H. Tsai, D. Wang, J. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233 (2008) 40–47
44.	R. W. Field, H. Y. Wu, J. J. Wu, Multiscale Modeling of Membrane Distillation: Some Theoretical Considerations, Ind. Eng. Chem. Res. 52 (2013) 8822–8828..
45.	M. I. Ali, E. K. Summers, H. A. Arafat, J. H. Lienhard. V, Effects of membrane properties on water production cost in small scale membrane distillation systems, Desalination. 306 (2012) 60–71. 
46.	S. Adnan, M. Hoang, H. Wang, Z. Xie, Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination. 284 (2012) 297–308.
47.	J. Zhang, N. Dow, M. Duke, E. Ostarcevic, J. D. Li, S. Gray, Identification of material and physical features of membrane distillation membranes for high performance desalination, J. Memb. Sci. 349 (2010) 295– 303. 
48.	G. Rao, S. R. Hiibel, A. E. Childress, Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter, Desalination. 351 (2014) 151–162.
49.	S. Bonyadi, T. S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber  membranes, J. Memb. Sci. 306 (2007) 134–146.
50.	M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation, J. Memb. Sci.433 (2013) 167–179.
51.	H. Fan, Y. Peng, Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes, Chem. Eng.Sci. 79 (2012) 94–102.
52.	D. Zhao, J. Zuo, K. J. Lu, T. S. Chung, Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation, Desalination. 413 (2017) 119-126.
53.	K. W. Lawson, D. R. Lloyd, Membrane distillation. J. Memb. Sci. 124 (1997) 1-25.
54.	A. L. McGaughey, R. D. Gustafson, A. E. Childress, Effect of long-term operation on membrane surface characteristics and performance in membrane distillation, J. Memb. Sci. 543 (2017) 143-150.
55.	D. Hou, H. Fan, Q. Jiang, J. Wang, X. Zhang, Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane. Sep. Purif. Technol. 135 (2014) 211–222
56.	C. Su, J. Chang, K. Tang, F. Gao, Y. Li, H. Cao, Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation. Sep. Purif. Technol. 178 (2017) 279-287.
57.	J. A. Prince,. D. Rana, G. Singh, T. Matsuura, T. J.Kai,. T. S. Shanmugas-undaram, Effect of hydrophobic surface modifying macromolecules on differently produced PVDF membranes for direct contact membrane distillation. Chem. Eng. J. 242 (2014) 387-396.
1.	M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht/Boston/London (1996).
2.	H. Strathmann, Introduction to Membrane Science and Technology, Wiley (2011).
3.	G. Kang, Y. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci. 463 (2014) 145-165.
4.	X. Yang, A. G. Fane, R. Wang, Membrane distillation: now and future, Desalination: Water from Water, (2014) 373-424.
5.	S. Bonyadi, T. S. Chuung, Highly porous and macrovoid free PVDF hollow fiber membrane for membrane distillation by a solvent-dope solution co-extrusion approach, J. Membr. Sci. 331 (2009) 66-74.
6.	P. Wang, M.M. Teoh, T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalibation performance, Water Res. 45 (17) (2011) 5489-5500.
7.	M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membrane by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties, Eur. Polym. J. 43 (2007) 1557-1572.
8.	M. L. Yeow, Y. T. Liu, K. Li, Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782-1789.
9.	S. S. Madaeni, M. K. Yeganeh, Microfiltration of emulsified oil wastewater, J.Porous. Mater. 10 (2003) 131-138.
10.	M. R. M. Abed, S.C. Kumbarkar, A. M. Groth, K. Li, Ultrafiltration PVDF hollow fibre membrane with interconnected bicontinuous structures produced via a single-step phase inversion technique, J. Membr. Sci 407 (2012) 145-543.
11.	J. T. Jung, J. F., H. H. Wang, E. di Nicolo, E. Drioli, Y. M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), J. Membr. Sci. 514 (2016) 250-263.
12.	Q. Li, Z. L. Xu, M. Liu, Preparation and characterization of PVDF microporous membrane with highly hydrophobic surface, Polym. Adv. Technol. 22 (2011) 520–531.
13.	S.W. Meng, J.Mansouri, Y. Ye, V. Chen, Effect of templating agents on the properties andmembrane distillation performance of TiO2-coated PVDF membranes, J.Membr. Sci. 450 (2014) 48–59.
14.	T. Rinku, G. B. Elena, A. A. Hassan, Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD), J. Membr. Sci. 452 (2014) 470–480.
15.	D. R. Lloyd, K. E. Kinzer, H. S. Tseng, Microporous membrane formation  via thermally induced phase separation. I. Solid–liquid phase separation, J. Membr. Sci. 52 (1990) 239–261.
16.	J. T. Jung, J. F. Kim, H. Wang, E. Nicolo, E. Drioli, Y. MooLee, Understanding the non-solvent induced phases eparation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation(TIPS), J. Membr. Sci. 514 (2016) 250–263
17.	M. Gu, J. Zhang, X. Wang, H. Tao, L. Ge, Formation of poly(vinylidene fluoride PVDF membranes via thermally induced phase separation, Desalination, 192 (2006) 160–167.
18.	J. F. Kim, J. H. Kim, Y. M. Lee, E. Drioli, Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review, AIChE J. 62 (2015) 461–490.
19.	J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti, E. Drioli, Y. M. Lee, Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching method,. J. Membr. Sci. 509 (2016) 94-104.
20.	R. Zsigmondy, W. Zsigmondy, Uber neue Filter. Z Anorg U Allgem Chem,  103 (1918) 119–28.
21.	C. Li, D. Wang, A. Deratani, D. Deratani, D. Bouyer, J. Lai, Insight into the preparation of poly(vinylidene fluoride) membranes by vapor induced phase separation, J. Membr. Sci. 361 (2010) 154-166.
22.	A.Venault, Y. Chang, D. Wang, J. Lai, Surface anti-biofouling control of PEGylated poly(vinylidene fluoride) membranes via vapor-induced phase separation processing, J. Membr. Sci. 423-424 (2012) 53-64.
23.	Q. Ye, L. Cheng, L. Zhang, Li. Xing, H. Chen, Preparation of Symmetric Network PVDF Membranes for Protein Adsorption via Vapor Induced Phase Separation, J. Macromol. Sci. Polym. 50 (2011) 2004-2022.
24.	H. Sun, S. Sun, B. Ge, L. Xing, H. Chen, Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase, J. Membr. Sci. 295 ( 2007) 2–10.
25.	H. C. Park, Y. P. Kim, H. Y. Kim, Y S. Kang, Membrane formation by water vapor induced phase inversion, J. Membr. Sci. 156 (1999) 169–78.
26.	H. Caquineau, P. Menut, A. Deratani, C. Dupuy. Influence of the relative humidity on film formation by vapor induced phase separation, Polym. Eng. Sci. 43 (2003) 798–808.
27.	Z. Chen, M. Deng, Y. Chen, G. He, M. He, J. Wang, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications, J. Membr. Sci. 235 (2004) 73–86.
28.	C. Kuo, H. Lin, H. Tsai, D. Wang, J. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233 (2008) 40-47.
29.	A.Venault, Y. Chang, D. Wang, J. Lai, Fabricating hemocompatible bi-continuous PEGylated PVDF membranes via vapor-induced phase inversion, J. Membr. Sci. 470 (2014) 18-29.
30.	A. Venault, M. R. B. Ballad, Y. Huang, Y. Liu, C. Liu, Y Chang, Antifouling PVDF membrane prepared by VIPS for microalgae harvesting, Chem. Eng. J. 142 (2016) 97-111.
31.	M. L. Yeow, Y. T. Liu, K. Li, Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782-1789.
32.	J. Chang J. Zuo, L. Zhang, G. S. O'Brien, T. Chung, Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. J. Memre. Sci. 539 (2017) 295-304.
33.	楊承道,製備顆粒型聚偏二氟乙烯薄膜及薄膜蒸餾之應用.
34.	B. Wunderlich, "Macromolecular Physics Vol.2 Crystal nucleation, growth, annealing," Academic Press, New York (1973).
35.	M. M. Tao, F. Liu, B. R. Ma, L. X. Xue, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination 316 (2013) 137-145.
36.	G. N. Baro˜na, B. J. Cha, B. Jung, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination 316 (2013) 137–145
37.	D. J. Lin, H. H. Chang, T. C. Chen, Y. C. Lee, L. P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur. Polym. J. 42 (2006) 1581–1594.
38.	H. H. Chang, L. C. Yao, D. J. Lin, L. P. Cheng, Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method. Sep. Purif. Technol. 72 (2010) 156–166.
39.	Rinaldo Gregorio, Jr. Determination of the , , and Crystalline Phases of Poly(vinylidene fluoride) Films Prepared at Different Conditions. Appl. Polym. Sci. 100 (2006) 3272-3279.
40.	P. Martins, A. C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications. Prog. Polym. Sci. 39 (2014) 683–706.
41.	J. Liu, X. Lu, C. Wu, Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes, Membranes 3 (2013) 389-405.
42.	H. G. Leopold, J. Johnston, The vapor pressure of the saturated aqueous solutions of certain salts J. Am. Chem. Soc. 49 (1927) 1974–1988.
43.	C. Kuo, H. Lin, H. Tsai, D. Wang, J. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233 (2008) 40–47
44.	R. W. Field, H. Y. Wu, J. J. Wu, Multiscale Modeling of Membrane Distillation: Some Theoretical Considerations, Ind. Eng. Chem. Res. 52 (2013) 8822–8828..
45.	M. I. Ali, E. K. Summers, H. A. Arafat, J. H. Lienhard. V, Effects of membrane properties on water production cost in small scale membrane distillation systems, Desalination. 306 (2012) 60–71. 
46.	S. Adnan, M. Hoang, H. Wang, Z. Xie, Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material, Desalination. 284 (2012) 297–308.
47.	J. Zhang, N. Dow, M. Duke, E. Ostarcevic, J. D. Li, S. Gray, Identification of material and physical features of membrane distillation membranes for high performance desalination, J. Memb. Sci. 349 (2010) 295– 303. 
48.	G. Rao, S. R. Hiibel, A. E. Childress, Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter, Desalination. 351 (2014) 151–162.
49.	S. Bonyadi, T. S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber  membranes, J. Memb. Sci. 306 (2007) 134–146.
50.	M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation, J. Memb. Sci.433 (2013) 167–179.
51.	H. Fan, Y. Peng, Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes, Chem. Eng.Sci. 79 (2012) 94–102.
52.	D. Zhao, J. Zuo, K. J. Lu, T. S. Chung, Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation, Desalination. 413 (2017) 119-126.
53.	K. W. Lawson, D. R. Lloyd, Membrane distillation. J. Memb. Sci. 124 (1997) 1-25.
54.	A. L. McGaughey, R. D. Gustafson, A. E. Childress, Effect of long-term operation on membrane surface characteristics and performance in membrane distillation, J. Memb. Sci. 543 (2017) 143-150.
55.	D. Hou, H. Fan, Q. Jiang, J. Wang, X. Zhang, Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane. Sep. Purif. Technol. 135 (2014) 211–222
56.	C. Su, J. Chang, K. Tang, F. Gao, Y. Li, H. Cao, Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation. Sep. Purif. Technol. 178 (2017) 279-287.
57.	J. A. Prince,. D. Rana, G. Singh, T. Matsuura, T. J.Kai,. T. S. Shanmugas-undaram, Effect of hydrophobic surface modifying macromolecules on differently produced PVDF membranes for direct contact membrane distillation. Chem. Eng. J. 242 (2014) 387-396.
.  S. P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow bre membranes, J. Membr. Sci. 150 (1998) 75-85.
2.  J. F. Kim, J. T. Jung, H. H. Wang, S. Y. Lee, T. Moore, A. Sanguineti , E. Drioli, Y. M. Lee, Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods, J. Memb. Sci. 509 (2016) 94–104.
3.  Y. Peng, H. Fan, Y. Dong, Y. Song, H. Han, College of Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl. Surf. Sci. 258 (2012) 7872-7881.
4.  A. L. Ahmad, W.K.W. Ramli, Hydrophobic PVDF membrane via two-stage soft coagulation bath system for Membrane Gas Absorption of CO2,Sep. Purif. Technol. 103 (2013) 230-240. 
5.  A. Venault, Y. Chang, J. R. Wua, D. M. Wang, Influence of solvent composition and non-solvent activity on the crystalline morphology of PVDF membranes prepared by VIPS process and on their arising mechanical properties,  J. Taiwan Inst. Chem. E. 45 (2014) 1087–1097.
6.  H. Suna, S. Liu, B. Gea, L. Xing, H. Chen, Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase, J. Membr. Sci. 295 (2007) 2-10.
7.  K. Y. Lin, D. M. Wang, J. Y. Lai, Nonsolvent-Induced Gelation and Its Effect on Membrane Morphology, Macromolecules 2002, 35, 6697-6706.
8.  Y. S. Sua, C. Y. Kuo, D. M.Wang, J. Y. Lai, A. Deratanid, C. Pochate, D. Bouyer, Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation, J. Membr. Sci. 338 (2009) 17-28.
9.  V. P. Khare, A. R. Greenberg, W. B. Krantz, Vapor-induced phase separation—effect of the humid air exposure step onmembrane morphology. Part I. Insights from mathematical modeling, J. Membr. Sci. 258 (2005) 140.
10.  J. T. Tsaia, Y. S. Sua, D. M. Wanga, J. L. Kuod, J. Y. Lai , A. Deratanie, Retainment of pore connectivity in membranes prepared with vapor-induced phase separation, J. Membr. Sci. 362 (2010) 360-373.
11.  H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki, Membrane Formation via Phase Separation Induced by Penetration of Nonsolvent from Vapor Phase. II. Membrane Morphology, T. O. C. 74 (1999) 171-178.
12.	D. Sun, M. Q. Liu, J. H. Guo, J. Y. Zhang, B. B. Li, D .Y. Li, Preparation and characterization of PDMS-PVDF hydrophobic microporous membrane for membrane distillation, Desalination 370 (2015) 63-71.
13. Y. Peng, H. Fan, J. Ge, S. Wang, P. Chen, Q. Jiang, The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation, Appl. Surf. Sci. 263 (2012) 737-744.
14.	M. M. Tao, F. Liu, B. R. Ma, L. X. Xue, Effect of solvent power on PVDF membrane polymorphism during phase inversion, Desalination 316 (2013) 137-145.
15.	Rinaldo Gregorio, Jr. Determination of the , , and Crystalline Phases of Poly(vinylidene fluoride) Films Prepared at Different Conditions. Appl. Polym. Sci. 100 (2006) 3272-3279.
16.	P. Martins, A. C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications. Prog. Polym. Sci. 39 (2014) 683–706.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信