§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0502201809472300
DOI 10.6846/TKU.2018.00136
論文名稱(中文) 玻璃管上ZnO光觸媒膜的製備與特性分析
論文名稱(英文) Preparation and characterization of ZnO photocatalytic films on glass tubes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 裴怡靜
研究生(英文) I-Ching Pei
學號 604400068
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-16
論文頁數 70頁
口試委員 指導教授 - 余宣賦(hfyu@mail.tku.edu.tw)
委員 - 尹庚鳴
委員 - 賴偉淇
關鍵字(中) 氧化鋅
光觸媒膜
光催化能力
動力學分析
關鍵字(英) ZnO
photocatalytic films
photocatalysis
kinetic analysis
第三語言關鍵字
學科別分類
中文摘要
本研究以化學浴沉降技術(chemical bath deposition;CBD)將高光催化效能之ZnO膜均勻且穩固的被覆在經過錳酸鉀活化後的玻璃管上。製得之ZnO膜會進行X-光繞射儀、掃描式電子顯微鏡和紫外光-可見光光譜儀等測試來了解其特性。研究中探討活化過程及煆燒程序的必要性,並調整CBD溶液中乙醇胺及氨水體積比,來瞭解其對所製得ZnO膜微結構的影響。結果顯示,玻璃管經過活化後CBD衍生之ZnO膜被覆均勻,500 oC煆燒的過程也有效的增加ZnO膜與玻璃管之間的結合性。CBD溶液中,乙醇胺及氨水體積比會影響所形成ZnO膜的結晶程度、ZnO柱的尺寸及光催化能力。在適當乙醇胺及氨水體積比下可得到均勻且穩固的ZnO膜。ZnO膜的光催化能力以其光降解水中亞甲基藍所對應的特徵時間常數(τ)來表示,其中τ值越小代表光催化效能越好。光催化分析中,以乙醇胺及氨水體積比為12:2所製得的ZnO膜光催化效果最佳,光催化反應2小時可分解99%的亞甲基藍,其τ值為0.61 h。製得之ZnO膜經過連續10次的光催化測試發現ZnO膜仍具有相同的光催化效能,且比較光催化前後ZnO膜表面微結構並無偵測到明顯差異。光觸媒面積(NS;N:管數,S:單一管之ZnO膜面積)及光照強度(I)會影響光催化效能,經實驗分析得知光觸媒面積與光催化效果成正比關係,而光照強度與光催化效果成指數關係。將不同實驗條件下量測所得特徵時間常數值進行實驗數據的曲線擬合分析,得到其關係式為:τ=[(2.88×〖10〗^(-2) N+8.92×〖10〗^(-2))I^0.23 ]^(-1)。此關係式可充分地描述玻璃管上ZnO膜降解不同濃度的亞甲基藍之行為模式。
英文摘要
ZnO films with high photocatalytic activity were uniformly and firmly deposited on the KMnO4(aq) activated glass tubes by chemical bath deposition method (CBD). The obtained ZnO films were characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), and ultraviolet-visible spectrophotometer (UV-Vis). Photoacatalytic activity of the obtained ZnO film was measured by photocatalytically degrading methylene blue (MB) in water, under illumination of 365-nm UV light. Effects of the glass activation process, heating process and volume ratios of ethanolamine to ammonia in CBD solution on ZnO film microstructure were investigated and discussed. By using proper volume ratios of ethanolamine/ammonia, the CBD-derived ZnO films calcined at 500 oC had strong adhesion to the surface of glass tubes. The photocatalytic ability of ZnO films were represented using a characteristic time constant (τ) for the photocatalytic degradation of methylene blue in water. The smaller τ stands for higher photocatalytic ability of the film. The ZnO film, prepared using volume ratio ethanolamine:ammonia = 12:2 had superior photocatalytic ability; after 2 hour, almost 99% degradation of methylene blue were achieved, and its τ value was 0.61 h. After repeating 10 times of the photocatalytic test, the ZnO film still possessed the same photocatalytic activity and the microstructure of the film didn’t showed any significant differences. Kinetic analysis indicated that the value of τ was affected by the photocatalyst areas (NS; N: tube number, S: single tube ZnO film area) and light intensity (I). The equation, τ=[(2.88×〖10〗^(-2) N+8.92×〖10〗^(-2))I^0.23 ]^(-1), can well describe the photocatalytic performance of the prepared ZnO film at different concentrations of methylene blue and operation conditions.
第三語言摘要
論文目次
主目錄
論文提要內容:	I
Abstract:	II
主目錄	IV
圖目錄	VI
表目錄	VIII
第一章	緒論	1
1.1	光觸媒材料之興起	1
1.2	研究目的	3
第二章	文獻回顧	5
2.1	光觸媒與光催化原理	5
2.2	氧化鋅(ZnO)基本性質	7
2.3	ZnO粉體和膜的製備方法	8
2.3.1	水熱法/溶劑熱法(hydrothermal/solvothermal reaction)	8
2.3.2	溶膠-凝膠法(sol-gel method)	10
2.3.3	化學氣相沉積法(chemical vapor deposition;CVD)	13
2.3.4	化學浴沉積法(chemical bath deposition;CBD)	15
2.4	ZnO膜表面微結構	18
第三章	實驗步驟	21
3.1	實驗藥品	21
3.2	玻璃管被覆ZnO光觸媒膜	22
3.2.1	玻璃管表面活化	22
3.2.2	ZnO膜製備	22
3.3	特性分析	25
3.3.1	X-光繞射分析儀(X-ray diffractormeter;XRD)	25
3.3.2	掃描式電子顯微鏡(scanning electron microscope;SEM)	26
3.3.3	紫外光-可見光光譜儀(ultraviolet-visible spectrophotometer;UV-Vis)	28
3.4	光觸媒活性實驗	30
第四章	結果與討論	31
4.1	ZnO膜特性分析	31
4.1.1	玻璃管表面活化的必要性	31
4.1.2	CBD溶液中乙醇胺及氨水比例對ZnO膜特性的影響	36
4.2	ZnO膜光催化能力分析	42
4.2.1	CBD溶液中乙醇胺及氨水體積比的影響	42
4.2.2	光觸媒反應面積的影響	47
4.2.3	光照強度的影響	49
4.2.4	動力學分析	51
4.3	ZnO對不同染料的影響	55
4.4	煆燒程序對光觸媒氧化鋅膜的影響	58
第五章	結論	65
第六章	參考文獻	67

圖目錄
圖 1.1.1不同光觸媒半導體能隙分佈圖	2
圖 1.1.2光觸媒研究十大方向	3
圖 2.1.1光催化示意圖	6
圖 2.2.1氧化鋅纖維鋅礦結構	7
圖 3.2.1玻璃管表面活化程序	23
圖 3.2.2化學浴沉積技術在玻璃管上製備ZnO膜的步驟	24
圖 3.3.1 X光對晶格所產生之繞射	26
圖 3.3.2掃描式電子顯微鏡剖面機構示意圖	27
圖 4.1.1玻璃管表面活化與未活化和後續以CBD製得之氧化鋅膜表面巨觀狀態	33
圖 4.1.2玻璃管表面活化與未活化和後續以CBD製得氧化鋅膜之XRD圖	34
圖 4.1.3玻璃管表面(a)、(b)未活化與(c)、(d)活化後以CBD製得氧化鋅膜表面之SEM圖。	35
圖 4.1.4活化後的玻璃管在不同乙醇胺及氨水體積比下所製得ZnO膜之狀態	37
圖 4.1.5活化過玻璃管表面經CBD製程所製得ZnO膜之XRD圖	38
圖 4.1.6乙醇胺及氨水體積比7:7(E7A7)氧化鋅膜表面之SEM圖	39
圖 4.1.7不同乙醇胺及氨水體積比下(a)、(b) E14A0高倍率(c)、(d)E12A2高倍率(e) 、(f)E10A4高倍率氧化鋅膜表面之SEM圖	39
圖 4.1.8不同乙醇胺及氨水體積比下(a)、(b) E14A0高倍率(c)、(d)E12A2高倍率(e)、(f)E10A4高倍率氧化鋅膜截面之SEM圖	40
圖 4.1.9不同乙醇胺及氨水體積比(a) E10A4 (b) E12A2 (c) E14A0 之能隙計算結果	41
圖 4.2.1不同乙醇胺及氨水體積比下氧化鋅膜降解亞甲基藍濃度隨反應時間變化關係圖	44
圖 4.2.2乙醇胺及氨水體積比12:2 (E12A2)氧化鋅膜分解亞甲基藍濃度隨反應時間變化關係圖	44
圖 4.2.3不同乙醇胺及氨水體積比下所製得氧化鋅膜之τ值	45
圖 4.2.4乙醇胺及氨水體積比12:2(E12A2)氧化鋅膜經過10次光催化反應後對應的降解分率及τ值	45
圖 4.2.5乙醇胺及氨水體積比12:2(E12A2)氧化鋅膜(a)光催化前(b)經過10次光催化後表面狀態	46
圖 4.2.6 E12A2氧化鋅膜光觸媒反應面積在紫外光(128W)下亞甲基藍濃度隨反應時間變化關係圖	48
圖 4.2.7 E12A2光觸媒氧化鋅膜反應面積與τ值之關係圖	48
圖 4.2.8 E12A2氧化鋅膜光觸媒(16根)在不同光照強度下亞甲基藍濃度隨反應時間變化關係圖	50
圖 4.2.9光照強度與τ值之關係圖	50
圖 4.2.10 (a)在紫外光80W照射下10根氧化鋅膜光觸媒,(b)在紫外光96W照射下12根氧化鋅膜光觸媒分解亞甲基藍濃度隨反應時間變化關係圖	53
圖 4.2.11在紫外光128W照射下16根氧化鋅膜光觸媒分解不同初始亞甲基藍濃度之莫耳濃度隨反應時間變化關係圖	54
圖 4.2.12在紫外光128W照射下16根氧化鋅膜光觸媒分解不同初始亞甲基藍濃度之莫耳濃度分率隨反應時間變化關係圖	54
圖 4.3.1 E12A2在紫外光下分解(a)MB、(b)MO吸收光譜圖	56
圖 4.3.2 E12A2氧化鋅膜光觸媒在紫外光(365 nm, 128W)下對MB及MO的光降測試結果	57
圖 4.4.1不同熱處理程序下所製得ZnO膜之XRD圖	59
圖 4.4.2不同熱處理程序下氧化鋅(002)晶面之特性峰(2θ=34.42 o)	60
圖 4.4.3 CBD-衍生氧化鋅膜乾燥後(a)、(b)及(c)和進一步煆燒500 oC後(d)、(e)及(f) 表面之SEM圖	61
圖 4.4.4 CBD-衍生氧化鋅膜乾燥後(a)和(b)和進一步煆燒500 oC後(c)和(d)截面之SEM圖	62
圖 4.4.5 CBD-衍生氧化鋅膜(未煆燒)經超音波震盪五次之表面SEM圖	63
圖 4.4.6不同熱處理程序下氧化鋅膜降解亞甲基藍其濃度隨反應時間變化關係圖	64

表目錄
表 2.2.1 ZnO物理特性	7
表 3.1.1實驗藥品	21
表 4.2.1 E12A2氧化鋅樣品在不同玻璃管數(N)與365-nm紫外燈光源強度(I)下光催化降解水中MB所對應的特徵時間常數(τ)	52
表 4.3.1染料基本性質	55
參考文獻
[1]  Gallego, E., Roca, F. J., Perales, J. F., & Guardino, X. (2013). Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon [2]  Lin, T., Zhang, J., & Chen, W. (2017). Recycling of activated carbon filter backwash water using ultrafiltration: Membrane fouling caused by different dominant interfacial forces. Journal of Membrane Science, 544, 174-185.
[3]  Frank, J., Ruhl, A. S., & Jekel, M. (2015). Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment. Water research, 87, 166-174.
[4]  Zhang, W., Zhao, Z., Shen, L., Zhang, J., & Yi, S. (2016). Surface modification of ion-exchanged float aluminosilicate glass during deposition of amorphous alumina coatings by e-beam evaporation. Journal of Non-Crystalline Solids, 447, 80-84.
[5]  Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in colloid and interface science, 159(2), 189-197.
[6]  Khaydarov, R. A., Khaydarov, R. R., & Gapurova, O. (2013). Nano-photocatalysts for the destruction of chloro-organic compounds and bacteria in water. Journal of colloid and interface science, 406, 105-110.
[7]  Lee, S. Y., & Park, S. J. (2013). TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 19(6), 1761-1769.
[8]  Tang, B., Chen, H., He, Y., Wang, Z., Zhang, J., & Wang, J. (2017). Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Composites Science and Technology, 150, 54-64.
[9]  Chang, C. J., Wei, Y. H., & Huang, K. P. (2017). Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. International Journal of Hydrogen Energy, 42(37), 23578-23586.
[10]  Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
[11]  Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The journal of physical chemistry, 81(15), 1484-1488.
[12]  Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... & Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11.
[13]  Wang, Z. L. (2004). Nanostructures of zinc oxide. Materials today, 7(6), 26-33.
[14]  Wang, M. Q., Yan, J., Cui, H. P., & Du, S. G. (2013). Low temperature preparation and characterization of TiO2 nanoparticles coated glass beads by heterogeneous nucleation method. Materials Characterization, 76, 39-47.
[15]  Shen, C., Wang, Y. J., Xu, J. H., & Luo, G. S. (2012). Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chemical engineering journal, 209, 478-485.
[16]  Erjavec, B., Hudoklin, P., Perc, K., Tišler, T., Dolenc, M. S., & Pintar, A. (2016). Glass fiber-supported TiO2 photocatalyst: Efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs. Applied Catalysis B: Environmental, 183, 149-158.
[17]  Sun, P., Xue, R., Zhang, W., Zada, I., Liu, Q., Gu, J., ... & Zhang, D. (2016). Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites. Catalysis Today, 274, 2-7.
[18]  Wang, H., Dong, S., Chang, Y., Zhou, X., & Hu, X. (2012). Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method. Applied Surface Science, 258(10), 4288-4293.
[19]  Rezabeigy, S., Behboudnia, M., & Nobari, N. (2015). Growth of ZnO Nanorods on Glass Substrate by Chemical Bath Deposition. Procedia Materials Science, 11, 364-369.
[20]  Son, N. T., Noh, J. S., & Park, S. (2016). Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition. Applied Surface Science, 379, 440-445.
[21]  Sui, J., Li, J., Li, Z., & Cai, W. (2012). Synthesis and characterization of one-dimensional magnetic photocatalytic CNTs/Fe3O4–ZnO nanohybrids. Materials Chemistry and Physics, 134(1), 229-234.
[22]  Petkova, P., Francesko, A., Perelshtein, I., Gedanken, A., & Tzanov, T. (2016). Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics sonochemistry, 29, 244-250.
[23]  Bao, Y., Feng, C., Wang, C., Ma, J., & Tian, C. (2017). Hygienic, antibacterial, UV-shielding performance of polyacrylate/ZnO composite coatings on a leather matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 232-240.
[24]  Han, B., Liu, X., Xing, X., Chen, N., Xiao, X., Liu, S., & Wang, Y. (2016). A high response butanol gas sensor based on ZnO hollow spheres. Sensors and Actuators B: Chemical, 237, 423-430.
[25]  Deng, X., Zhang, L., Guo, J., Chen, Q., & Ma, J. (2017). ZnO enhanced NiO-based gas sensors towards ethanol. Materials Research Bulletin, 90, 170-174.
[26]  Nayeri, F. D., Soleimani, E. A., & Salehi, F. (2013). Synthesis and characterization of ZnO nanowires grown on different seed layers: the application for dye-sensitized solar cells. Renewable Energy, 60, 246-255.
[27]  Liu, X., Wang, G., Ng, A., Liu, F., Ng, Y. H., Leung, Y. H., ... & Chan, W. K. (2015). Towards low temperature processed ZnO dye-sensitized solar cells. Applied Surface Science, 357, 2169-2175.
[28]  Wang, D., Zhu, X., Fang, Y., Sun, J., Zhang, C., & Zhang, X. (2017). Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Structures & Nano-Objects, 10, 1-8.
[29]  Schulz, H., & Thiemann, K. H. (1979). Structure parameters and polarity of the wurtzite type compounds SiC-2H and ZnO. Solid State Communications, 32(9), 783-785.
[30]  Hartnagel, H. L., Dawar, A. L., Jain, A. K., & Jagadish, C. (1995). Semiconducting transparent thin films. Bristol and Ph.
[31]  Ismail, A. S., Mamat, M. H., & Mahmood, M. R. (2017). Aluminum-and Iron-Doped Zinc Oxide Nanorod Arrays for Humidity Sensor Applications. In Nanostructured Materials-Fabrication to Applications. InTech.
[32]  Sun, K., Wei, W., Ding, Y., Jing, Y., Wang, Z. L., & Wang, D. (2011). Crystalline ZnO thin film by hydrothermal growth. Chemical Communications, 47(27), 7776-7778.
[33]  Wang, L., Zheng, Y., Li, X., Dong, W., Tang, W., Chen, B., ... & Xu, W. (2011). Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films, 519(16), 5673-5678.
[34]  Moulahi, A., & Sediri, F. (2014). ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties. Ceramics International, 40(1), 943-950.
[35]  Kumaresan, N., Ramamurthi, K., Babu, R. R., Sethuraman, K., & Babu, S. M. (2017). Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Applied Surface Science, 418, 138-146.
[36]  Goutailler, G., Guillard, C., Daniele, S., & Hubert-Pfalzgraf, L. G. (2003). Low temperature and aqueous sol–gel deposit of photocatalytic active nanoparticulate TiO2. Journal of Materials Chemistry, 13(2), 342-346.
[37]  Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013). The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. Journal of Alloys and Compounds, 550, 63-70.
[38]  Pal, B., & Sharon, M. (2002). Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process. Materials chemistry and physics, 76(1), 82-87.
[39]  Delgado, G. T., Romero, C. Z., Hernández, S. M., Pérez, R. C., & Angel, O. Z. (2009). Optical and structural properties of the sol–gel-prepared ZnO thin films and their effect on the photocatalytic activity. Solar Energy Materials and Solar Cells, 93(1), 55-59.
[40]  Kaneva, N., Stambolova, I., Blaskov, V., Dimitriev, Y., Bojinova, A., & Dushkin, C. (2012). A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol–gel method. Surface and Coatings Technology, 207, 5-10.
[41]  Abarna, B., Preethi, T., Karunanithi, A., & Rajarajeswari, G. R. (2016). Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide. Materials Science in Semiconductor Processing, 56, 243-250.
[42]  Mohanta, S. K., Kim, D. C., Cho, H. K., Chua, S. J., & Tripathy, S. (2008). Structural and optical properties of ZnO nanorods grown by metal organic chemical vapor deposition. Journal of Crystal Growth, 310(13), 3208-3213.
[43]  Nolan, M. G., Hamilton, J. A., O’Brien, S., Bruno, G., Pereira, L., Fortunato, E., ... & Pemble, M. E. (2011). The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 219(1), 10-15.
[44]  Kokotov, M., & Hodes, G. (2009). Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO4 substrate activation. Journal of Materials Chemistry, 19(23), 3847-3854.
[45]  Wang, H., Dong, S., Chang, Y., Zhou, X., & Hu, X. (2012). Microstructures and photocatalytic properties of porous ZnO films synthesized by chemical bath deposition method. Applied Surface Science, 258(10), 4288-4293.
[46]  Rezabeigy, S., Behboudnia, M., & Nobari, N. (2015). Growth of ZnO Nanorods on Glass Substrate by Chemical Bath Deposition. Procedia Materials Science, 11, 364-369.
[47]  Beura, R., & Thangadurai, P. (2017). Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. Journal of Physics and Chemistry of Solids, 102, 168-177.
[48]  Chu, D., Masuda, Y., Ohji, T., & Kato, K. (2010). Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir, 26(4), 2811-2815.
[49]  Kaneva, N. V., Dimitrov, D. T., & Dushkin, C. D. (2011). Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Applied Surface Science, 257(18), 8113-8120.
[50]  Duan, J., Liu, X., Han, Q., & Wang, X. (2011). Controlled morphologies and optical properties of ZnO films and their photocatalytic activities. Journal of Alloys and Compounds, 509(37), 9255-9263.
[51]  Chen, C., Xu, H., Zhang, F., & Wu, G. (2014). Nanostructured morphology control and optical properties of ZnO thin film deposited from chemical solution. Materials Research Bulletin, 52, 183-188.
[52]  Zheng, G., Shang, W., Xu, L., Guo, S., & Zhou, Z. (2015). Enhanced photocatalytic activity of ZnO thin films deriving from a porous structure. Materials Letters, 150, 1-4.
[53]  汪建民主編,材料分析,中國材料科學學會 (1998)
[54]  鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌181期 (2006)
[55]  柯以侃,儀器分析,新聞經圖書出版 (2005)
[56]  Kamil, A. M., Hussein, F. H., Halbus, A. F., & Bahnemann, D. W. (2014). Preparation, characterization, and photocatalytic applications of MWCNTs/TiO2 composite. International Journal of Photoenergy, 2014.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信