淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0501201217183100
中文論文名稱 以奈米片狀四氧化三鈷修飾電極搭配流注分析系統偵測NADH
英文論文名稱 Detection of NADH with nanosheet of Cobalt(II,III) oxide based modified in flow injection analysis system
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 100
學期 1
出版年 101
研究生中文姓名 陳映慈
研究生英文姓名 Ying-Cih Chen
學號 698160206
學位類別 碩士
語文別 中文
口試日期 2011-12-20
論文頁數 86頁
口試委員 指導教授-林孟山
委員-何佳安
委員-蔡東湖
委員-呂晃志
中文關鍵字 四氧化三鈷  流注分析系統 
英文關鍵字 NADH  Cobalt(II,III) oxide  Flow injection analysis system(FIA) 
學科別分類 學科別自然科學化學
中文摘要 NAD+/NADH是相當重要的輔酶,超過300種的酵素會利用此對分子以進行氧化還原作用,因此NADH的量測可發展大量的生化感測器。而在歷史文獻中,已經知道在石墨電極上偵測NADH的氧化時,需使用相當高的過電壓,且在NADH氧化過程中會產生自由基陽離子中間體的氧化物種吸附在電極表面上,造成電極產生毒化現象造成直傳的阻礙以及靈敏度下降。因此,本研究傾向發展低電位偵測NADH的方式。
本研究中進一步探討流注分析系統(FIA)以評估偵測NADH時的最佳化條件:70% Co3O4修飾電極,偵測環境為0.2M pH 6.00 磷酸鹽類緩衝溶液,偵測電位為100 mV (vs. Ag/AgCl),載體流速0.25 mL/min,樣品迴路體為50μL。偵測NADH之分析特性分別為:線性範圍為10-100μM (R=0.99878),電流密度為0.35899 nA/μM,偵測極限(S/N=3)為1μM,連續重覆二十次偵測NADH,所得到相對標準偏差(RSD)為1.4%,反應時間(t90%)為12.26s;在0.1V的電位下,大部分的易氧化物質如dopamine、Urea、 (±)-epinephrine、serotonin、histamine、4-acetaminophen等,均不會有明顯干擾本系統之偵測,僅有抗壞血酸(AA)造成干擾,因此在偵測前先加入抗壞血酸氧化酶進行前處理,加入3U的抗壞血酸氧化酶處理五分鐘之後進行偵測,可避免AA之干擾。
英文摘要 NAD+/NADH is an important cofactors for a class of apozymes in several dehydrogenase, which involves in more than 300 biological reactions. Therefore, a NADH based sensor possesses a great potentiality in development of other biosensors. However, the prior studies indicate that direct oxidation of NADH requires a high overvoltage over 0.7 V, which would be suffered from most of all common biological antioxidants. Besides, a significant surface fouling effect due to the strong adsorbability of the oxidized intermediate also causes a bad reproducibility and low sensitivity. In this work, we develop a simple, sensitive and reliable NADH sensor based upon the Cobalt (II, III) oxide modified electrode. Owning to the redox property of passive layer of the cobalt oxide, the oxidation potential of the NADH can be shifted from 700 mV to 100 mV.

In order to develop a high sensitive scheme for NADH determination, this sesor is held by using a high efficient flow injection analysis system. After optimization, 70% cobalt (II, III) oxide modified carbon ink electrode with a constant operating potential of 100 mV (vs. Ag/AgCl) in 0.2 M phosphate buffer, pH 6.00, and flow rate of 0.25 mL/min were chosen as the optimal conditions. A suitable linear range 10 to 100 μM (R=0.999) with a sensitivity of 0.36 nA/μM is achieved. The detection limit base on 21 successive blank injections is 4.25 μM (S/N=3).the relative standard deviation (RSD) for 20 successive measurements of 75 μM NADH is only 1.4%, which indicates the high stability of this method. Besides, most antioxidants such as dopamine, uric acid, (±)-epinephrine, serotonin, histamine, and 4-acetaminophen do not affect the NADH determination. However, ascorbic acid (AA) causes a significant interference to this scheme. Here, an ascorbate oxidase (EC 1.10.3.3) was utilized to oxidize the ascorbic acid before sample injected into the flow injection analysis system, and the interference from ascorbic acid was eliminated, successfully.
論文目次 目錄 (Contents)
謝誌 I
中文摘要 II
英文摘要 III
第一章 緒論 1
1.1 感測器的種類 1
1.1.1 生化感測器的組成 2
1.1.2 辨識元件的固定方式 3
1.2化學修飾電極 5
1.2.1 吸附法(adsorption) 6
1.2.2 共價鍵修飾法(covalently bonded) 6
1.2.3 氧化還原聚合物(Redox polymer coating) 7
1.2.4 非均相材料混合法 7
1.3 流注分析系統 (Flow Injection Analysis, FIA) 8
1.3.1 流注分析系統之四大部分 8
1.3.2 分散的主要原因 9
1.4 四氧化三鈷(Cobalt(II,III) oxide,Co3O4 )簡介與製備 12
1.5 NAD+/NADH的簡介 14
1.6 不同類型偵測NADH的修飾方式 17
1.6.1 有機物的修飾 18
1.6.2 無機物的修飾 26
1.7 研究目的 28
第二章 實驗 29
2.1 實驗儀器 29
2.1.1 電化學分析 29
2.1.2 流注分析系統 29
2.1.3 其他 30
2.2 藥品與藥品配製 31
2.2.1 藥品 31
2.2.2 藥品配製 32
2.3 四氧化三鈷的製備 32
2.4 電極的製備 33
2.4.1 電極的前處理 33
2.4.2 四氧化三鈷的修飾 33
2.5 實驗設計 33
2.5.1 電化學偵測機制的探討 33
2.5.2 偵測NADH最佳化的探討 34
2.5.2.1 電位的最佳化 34
2.5.2.2 緩衝溶液pH值的最佳化 34
2.5.2.3 修飾比例的最佳化 35
2.5.2.4 緩衝溶液的最佳化 35
2.5.2.5 緩衝溶液濃度的最佳化 35
2.5.2.6 載流液體流速的最佳化 35
2.5.2.7 載體迴路體積的最佳化 36
第三章 結果與討論 37
3.1 電化學偵測機制討論 37
3.2 偵測NADH最佳化的探討 48
3.2.1. 電位最佳化的探討 48
3.2.2 緩衝溶液pH的探討 49
3.2.3 緩衝溶液種類的探討 50
3.2.4 緩衝溶液濃度的探討 52
3.2.5 修飾比例的探討 53
3.2.6 載流液體流速的探討 55
3.2.7 載體迴路體積的探討 56
3.3 四氧化三鈷對氧化NADH特性分析 58
第四章 結論 65
參考資料 69

圖表目錄
圖(1) 樣品擴散波峰的種類 10
圖(2) 分散度的定義 11
圖(3) Co3O4結構 13
圖(4) NAD+/NADH的結構 16
圖(5) 高溫反應釜 31
圖(6) Co3O4 XRD圖譜 39
圖(7) Co3O4 ESCA圖譜 39
圖(8) Co3O4 FE-SEM的影像 40
圖(9) 自製與市售Co3O4背景電流衰退情形 41
圖(10) 氧氣對NADH反應訊號的影響 42
圖(11) Co3O4與NADH的反應機構 43
圖(12) 修飾Co3O4與純導電碳膠電極偵測NADH的探討 45
圖(13) 旋轉速度的探討 47
圖(14) 電位最佳化的探討 49
圖(15) 緩衝溶液pH的探討 50
圖(16) 緩衝溶液種類的探討 51
圖(17)緩衝溶液濃度的探討 53
圖(18) 修飾比例的探討 54
圖(19) 載流液體流速的探討 56
圖(20) 載體迴路體積的探討 57
圖(21) NADH分析校正曲線 59
圖(22) NADH分析校正曲線 62
圖(23) 偵測NADH之再現性探討 62

表(1) 不同去氫酶對受質的反應 15
表(2) 常見的有機修飾物 17
表(3) 偵測NADH最佳化偵測條件 58
表(4) 分析特性 59
表(5) 干擾物的探討 60
表(6) 分析特性 61
表(7) 干擾物的探討 63
表(8) 干擾物的處理 64
表(9) NADH偵測方法的比較 65
表(10) NADH偵測方法的比較 66
參考文獻 J. Filip, J. Šefčovičová, P. Tomčík, P. Gemeiner, J. Tkac, A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing, Talanta 84 (2011) 355–361.

S. P. Kumar, R. Manjunatha, C. Nethravathi, G. S. Suresh, M. Rajamathi, T. V. Venkatesha, electrocatalytic oxidation of NADH on functionalized grapheme modified Graphite electrode, Electroanalysis 23 (2011) 842 – 849.

Y. Dilgin, D. G. Dilgin, Z. Dursun, H. İ. Gökçel, D. Gligor, B. Bayrak, B. Ertek, Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue, Electrochimica Acta 56 (2011) 1138–1143.

H. Mao, Y. Li, X. Liu, W. Zhang, C. Wang, S. S. A. Deyab, M. E. Newehy, The application of novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH), Journal of Colloid and Interface Science 356 (2011) 757–762.

C. Zhao, G. Wittstock, Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase as enzyme label, Biosens. Bioelectron. 20 (2005) 1277–1284.

L. C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals 102 (1962) 29-45

J. Wang, M. S. Lin, Mixed plant tissue-carbon paste bioelectrode, Anal. Chem. 60 (1988) 1545-1548.

M. S. Lin, S. Y. Tham, G. A Rechnit, Pineapple-tissue based bioelectrode for the determination of hydrogen peroxide, Electroanalysis. 2 (1990) 511-516.

L. Rotariu, C. Bala, V. Magearu, Yeast cells sucrose biosensor based on a potentiometric oxygen electrode, Anal. Chim. Acta 458 (2002) 215–222.

P. Mulchandani, W. Chen, A. Mulchandani, J. Wang, L. Chen, Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase, Biosens. Bioelectron. 16 (2001) 433–437.

M. Aizawa, A. Morioka, S. Suzuki, Y. Nagamura, Enzyme immunosenser : Ill. Amperometric determination of human cherienic gonadotropin by membrane-bound antibody, Analytical Biochemistry. 94 (1979) 22-28.

C. Liang, H. Peng, X. Bao, L. Nie, S. Yao, Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine, Analyst 124 (1999) 1781-1785.

Y. Tan, H. Peng, C. Liang, S. Yao, A new assay system for phenacetion using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating,Sensor and Actuators B 73 (2001) 179-184.

V. T. Duret, G. Reach, M. N. Gangnerau, F. Lemonnier, J. C. Klein, Y. Zhang, Y. Hu, G. S. Wilson, Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68 (1996) 3822-3826

R. Nenkova, D. Ivanova, J. Vladimirova, T. Godjevargova, New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film, Sensors and Actuators B 148 (2010) 59–65.

C. Zhao, G. Wittstock, Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase as enzyme label, Biosens. Bioelectron. 20 (2005) 1277–1284.

A. Neubauer, D. Pum, U. B. Sleytr, Fibre-optic glucose biosensor using enzyme membranes with 2-D crystalline structure, Biosens. Bioelectron. 11 (1996) 317-325.

R. Kapoor, C. W. Wang, Highly specific detection of interleukin-6 (IL-6) protein using combination tapered fiber-optic biosensor dip-probe, Biosens. Bioelectron. 24 (2009) 2696–2701.

M. Shimohigoshi, K. Yokoyama, I. Karube, Development of a bio-thermochip and application for the detection of glucose in urine , Anal. Chim. Acta 303 (1995) 295-299.

G.. Urban, H. Kamper, A. Jachimowics, F. Kohl, H. Kuttuer, F. Olcaytug, P. Goiseer, F. Pittner, T. Schalkhammer, E. Mann-Buxbaum, The construction of microcalorimetric by use of high resolution thin-film thermistors, Biosensors Bioelectron 6(1991) 275-280.

M. R. Deakin, M. Shimohigoshi, Electrochemical applications of the quartz crystal micro balance, Anal. Chem., 61(1989) 1147A-1154A.

W. Welsch, C. Klein, M. V. Schickfus, S. Hunklinger, Development of a surface acoustic wave immunosensor , Anal. Chem., 68(1996) 2000-2004.

K. Bezegh, A. Bezegh, J. Janata, U. Oesch, A. Xu, W. Simon, Multisensing ion-selective field effect transistors prepared by ionophore dopping technique , Anal. Chem., 59 (1987) 2846-2848.

S. J. Updike, G. P. Hicks, The enzyme electrode, Nature, 214 (1967) 2161-2165.

J. R. Sandifer, Silver/silver chloride electrodes coated with cellulose acetate for the elimination of bromide and uric acid interferences, Anal. Chem., 53(1981) 1164-1170.

H. Liu, J. Deng, Amperometric glucose sensor using tetrathiafulvalene in Nafion gel as electron shuttle, Anal. Chem. Acta 300 (1995) 65.

J. Wang, M. S. Lin, Mixed Plant Tissue-Carbon Paste Bioelectrode, Anal. Chem., 60 (1988) 1545-1548.

F. L. Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. A. Morales, G. D. Ortiz, J. M. Guisán, R. F. Lafuente, Enzyme stabilization by glutaraldehyde crosslinking of adsorbed protenins on aminated supports, Journal of Biotechnology 119 (2005) 70-75.

M. S. Lin, W. C. Shin, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim. ACta, 381 (1999) 183-189.
N. de-los-Santos-Álvarez, M. J. L. Castañón, A. J. M.. Ordieres, P. T. Blanco, and H. D. Abruña, 5-Hydroxytryptophan as a Precursor of a Catalyst for the Oxidation of NADH , Anal. Chem. 77 (2005) 2624-2631.

J. Adamski, J. Kochana, Meldola’s Blue - doped titania sol-gel sensor for NADH determination, Cent. Eur. J. Chem. 9 (2011) 185-191

N. S. Lawrence, J. Wang, Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH, Electrochemistry Communications 8 (2006) 71–76.

R. F. Lane, A.T. Hubbard, Electrochemistry of chemisorbed molecules. Ⅱ. The influence of charged chemisorbed molecules on the electrode reactions of Platinum complexes, J. Phys. Chem.77 (1973) 1411-1421.

Z. Yang, A. G. Cortes, G. Jourquin, J. C. Vire, J. M. Kauffmann, Analytical application of self-assembled monolayers on gold electrodes: critical importance of surface pretreatment, Biosens. Bioelectron. 10 (1995) 789-795.

S. Behera, S. Sampath, C. R. Raj, Electrochemical Functionalization of a Gold Electrode with Redox-Active Self-Assembled
Monolayer for Electroanalytical Application, J. Phys. Chem. C 112 (2008) 3734-3740.

B. K. Jena, C. R. Raj, Electrochemical biosensor based on Integrated assembly of dehydrogenase enzymes and gold nanoparticles, Anal. Chem . 78 (2006) 6332-6339.

H. Huck, Electrochemical investigations of mono- and multilayers of phenoxazine dyes on graphite electrodes, Phys. Chem. Chem. Phys., 1 (1999) 855-859.

L. Zhu, J. Zhai, R. Yang, C. Tian, L. Guo, Electrocatalytic oxidation of NADH with Meldola’s blue functionalized carbon nanotubes electrodes, Biosensors and Bioelectronics 22 (2007) 2768–2773.

A. Radoi, D. Compagnone, M.A. Valcarcel, P. Placidi, S. Materazzi, D. Moscone, G. Palleschi, Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue, Electrochimica Acta 53 (2008) 2161–2169.

L. Zhu, R. Yang, X. Jiang, D. Yang, Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode, Electrochemistry Communications 11 (2009) 530–533.

D. M. Zhou, H. Q. Fang, H. Y. Chen, H. X. Ju, Y. Wang, The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH, Analytica Chimica Acta 329 (1996) 41-48.

C. X. Cai, K. H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A, Analytica Chimica Acta 343 (1997) 69-77.

C. X. Cai, K. H. Xue, The effects of concentration and solution pH on the kinetic parameters for the electrocatalytic oxidation of dihydronicotiamide adenine dinucleotide NADH at glassy carbon electrode modified with electropolymerized film of toluidine blue o, Microchemical Journal 64 (2000)131-139.

B. Wang, J. Zhang, S. Dong, Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, Biosen. Bioelectron. 15 (2000) 397–402.

G. Wang , J. J. Xu , H.Y. Chen, Z. H. Lu, Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix, Biosen. Bioelectron. 18 (2003) 335-343.

http://www.elsevier.com/wps/find/bookdescription.cws_home/716411/description#description

D. G. Dilgin, D Gligor, H. Ï. Gökçel, Z. Dursun, Y. Dilgin, Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode, Biosens. Bioelectron 26 (2010) 411–417.

Y. Dilgina, D. G. Dilgin, Z. Dursun, H. Ï. Gökçel, D. Gligor, B. Bayrak, B. Ertek, Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue, Electrochimica Acta 56 (2011) 1138-1143.

J. Wang, P. V.A. Pamidi, M. Jiang, Low-potential stable detection of b-NADH at sol-gel derived carbon composite electrodes, Analytica Chimica Acta 360 (1998) 171-178.

X. Q. Zhao, Z. Q. Zhang, Rapid and sensitive determination of formaldehyde in some beverages and foods by flow-injection fluorimetric analysis, International Journal of Food Science and Technology 14 (2009) 216–221.

T. P. Ruiz, C. M. Lozano, V. Tomás, E. Ruiz, Flow injection fluorimetric determination of L-dopa and dopamine, Microchim Acta 158 (2007) 299–305.

M. Gallignani, C. Ayala, M. R. Brunetto, J. L. Burguera, M. Burguera, A simple strategy for determining ethanol in all types of alcoholic beverages based on its on-line liquid–liquid extraction with chloroform, using a flow injection system and Fourier transform infrared spectrometric detection in the mid-IR, Talanta 68 (2005) 470–479

G. Quintás, S. Armenta, A. M. Noé, S. Garrigues, Miguel de la Guardia, Simultaneous determination of Folpet and Metalaxyl in pesticide formulations by flow injection Fourier transform infrared spectrometry, Analytica Chimica Acta 480 (2003) 11–21.

J. Sun, P. Chen, A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora-based dietary supplements, Anal Bioanal Chem (2011)

S. Greenfield, Inductively coupled plasmaatomic emission spectroscopy (ICP-AES) with flow injection analysis (FIA), Spectrochimica Acta Part B: Atomic Spectroscopy 38 (1983) 93-105.

A. G. Cox, I. G. Cook, C. W. McLeod, Rapid sequential determination of chromium (III)-chromium(VI) by flow injection analysis-inductively coupled plasma atomic-emission spectrometry, Analyst 110 (1985) 331-333

J. B. Wu, Y. Lin, X. H. Xia, J.Y. Xu, Q.Y. Shi, Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film, Electrochimica Acta 56 (2011) 7163-7170.

D. M. Antonelli, J. Y. Ying, Synthesis of hexagonally packed mesoporous TiO2by a modified sol-gel method, Angewandte Chemie 34 (1995) 2014-2017.

B. B. Lakshmi, P. k. Dorhout, C. R. Martin, Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater., 9 (1997) 857-862.

G. W. Morey, Hydrothermal synthesis, Journal of the American Ceramic Society 36 (1953) 279-285.

H. Wang, L. Zhang, X. Tan, C. M.B. Holt, B. Zahiri, B. C. Olsen, D. Mitlin, Supercapacitive Properties of Hydrothermally Synthesized Co3O4 Nanostructures, J. Phys. Chem. C 115 (2011) 17599–17605.

Q. Lin, W. M. Zhang, Z. M. Cui, B. Zhang, L.J. Wan, W.G. Song, Aqueous route for mesoporous metal oxides using inorganic metal source and their applications, Microporous and Mesoporous Materials Materials 100 (2007) 233-240.

H. Jaegfeldt, A. B. C. Torstensson, Lo G. O. Gorton, G. Johansson, Catalytic Oxidation of Reduced Nicotinamide Adenine Dinucleotide by Graphite Electrode Modified with Adsorbed Aromatics Containing Catechol Functionalities, Anal. Chem. 53 (1981) 1979-1982.

G. D. Storrier, K. Takada, H. D. Abruña, Catechol-Pendant Terpyridine Complexes: Electrodeposition Studies and Electrocatalysis of NADH Oxidation, Inorg. Chem.38( 1999) 559-565.

P. N. Bartlett, P. R. Birkin, E. N. K. Wallace, Oxidation of b-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes, J. Chem. Soc., Faraday T rans., 93 (1997) 1951-960.

A. Radoi, D. Compagnone, M. Batič, J. Klinčar, Lo Gorton, G. Palleschi, NADH screen-printed electrodes modified with zirconium phosphate, Meldola blue, and Reinecke salt. Application to the detection of glycerol by FIA, Anal Bioanal Chem 387 (2007) 1049–1058.

N. Mano, A. Kuhn, Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation, Journal of Electroanalytical Chemistry 477 (1999) 79–88.

L. T. Kubota, L. Gorton, Electrochemical study of flavins, phenazines, phenoxazines and phenothiazines immobilized on zirconium phosphate, Electroanalysis 11 (1999) 719-728.

L.I. Boguslavsky, L. Geng, I.P. Kovalev, S.K. Sahni, Z. Xu, T.A. Skotheim, Amperometric thin film biosensors based on glucose dehydrogenase and Toluidine Blue O as catalyst for NADH electrooxidation, Biosensors & Bioelectronics 10 (1995) 693-704.

L. T. Kubota, F. Gouvea, A. N. Andrade, B. G. Milagres, G. D. O. Neto, Electrochemical sensor for NADH based on Meldola’s Blue immobilized on silica gel modified with Titanium phosphate, Electruchimica Acta 41(1996) 1465-1469

C. A. Pessoa, Y. Gushikem, L. T. Kubota, Lo Gorton, Preliminary electrochemical study of phenothiazines and phenoxazines immobilized on zirconium phosphate, Journal of Electroanalytical Chemistry 431 (1997) 23-27.

H. Jaegfeldt, A. B. C. Torstensson, Lo G. O. Gorton, G. Johansson, Catalytic Oxidation of Reduced Nicotinamide Adenine Dinucleotide by Graphite Electrode Modified with Adsorbed Aromatics Containing Catechol Functionalities, Anal. Chem. 53 (1981) 1979-1982.

L. T. Kubota, F. Gouvea, A. N. Andrade, B. G. Milagres, G. D. O. Neto, Electrochemical sensor for NADH based on Meldola’s Blue immobilized on silica gel modified with Titanium phosphate, Electruchimica Acta 41(1996) 1465-1469.

F. D. Munteanu, L. T. Kubota, Lo Gorton, Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate, Journal of Electroanalytical Chemistry 509 (2001).

L.T. Kubot, L. Gorton, Electrochemical Study of Flavins, Phenazines, Phenoxazines and Phenothiazines Immobilized on Zirconium Phosphate, Electroanalysis 11 (1999) 719-728.

L.T. Kubot, L. Gorton, Electrochemical investigations of the reaction mechanism and kinetics between NADH and riboflavin immobilised on amorphous zirconium phosphate, J Solid State Electrochem 3 (1999) 370-379.

A. Malinauskas, T. Ruzgas, L. Gorton, Electrochemical study of the redox dyes Nile Blue and Toluidine Blue adsorbed on graphite and zirconium phosphate modified graphite, Journal of Electroanalytical Chemistry 484 (2000) 55–63.

D. Dicu, F. D. Munteanu, I. C. Popescu, L. Gorton, Indophenol and O-Quinone Derivatives Immobilized on Zirconium Phosphate for NADH Electro-oxidation, Analytical Letters 36 (2003) 1755–1779.

C. A. Borgo, A. M. Lazarin, Y. Gushikem, Methylene blue–zirconium phosphate-cellulose acetate hybrid membrane film attached to a platinum electrode and its application in electrocatalytic oxidation of NADH, Sensors and Actuators B 87 (2002) 498–505.

F.D. Munteanu, N. Mano, A. Kuhn, L. Gorton, NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate, Journal of Electroanalytical Chemistry 564 (2004) 167–178.

N. Mano, A. Kuhn, Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation, Journal of Electroanalytical Chemistry 477 (1999) 79–88.

C. I. Ladiu, R. Garcia, I. C. Popescu, L. Gorton, NADH Electrocatalytic Oxidation at Glassy Carbon Paste Electrodes Modified with Meldola Blue Adsorbed on alpha-Titanium Phosphate, REV. CHIM. 58 (2007) 465-469.

C. I. Ladiu, J. R. GARCÍA, I. C. Popescu, L. Gorton, NADH electrocatalytic oxidation at glassy carbon paste Electrodes modified with meldola blue adsorbed on acidic α-zirconium phosphate, Revue Roumaine de Chimie 52 (2007) 67–74.

J. Wang, P. V.A. Pamidi, M. Jiang, Low-potential stable detection of β-NADH at sol-gel derived carbon composite electrodes, Analytica Chimica Acta 360 (1998) 171-178.

A. de S. Santos, L. Gorton, L. T. Kubota, Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH, Electrochimica Acta 47 (2002) 3351-3360.

A. de S. Santos, L. Gorton, Lauro T. Kubota, Electrocatalytic NADH Oxidation Using an Electrode Based on Meldola Blue Immobilized on Silica Coated with Niobium Oxide, Electroanalysis 14 (2002) 805-812.

C. M. Maroneze, L. T. Arenas, R. C.S. Luz, E. V. Benvenutti, R. Landers, Y. Gushikem, Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH, Electrochimica Acta 53 (2008) 4167–4175.

A. Arvinte, A. M. Sesay, V. Virtanen, C. Bala, Evaluation of Meldola Blue-Carbon Nanotube-Sol-Gel Composite for Electrochemical NADH Sensors and Their Application for Lactate Dehydrogenase-Based Biosensors, Electroanalysis 20 (2008) 2355 – 2362.

J. Adamski, J. Kochana, Meldola’s Blue - doped titania sol-gel sensor for NADH determination, Cent. Eur. J. Chem. 9 (2011) 185-191.

T. C. Canevari, R. C.G. Vinhas, R. Landers, Y. Gushikema, SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola’s blue: Application as an electrochemical sensor for NADH, Biosensors and Bioelectronics 26 (2011) 2402–2406.

I. Willner, A. Rlklln, Electrical Communication between Electrodes and NAD(P)+-Dependent Enzymes Using Pyrroloquinolinequinone-Enzyme Electrodes in a Self-Assembled Monolayer Configuration: Design of a New
Class of Amperometric Biosensors, Anal. Chem. 66 (1994) 1535-1539.

M. Ohtani, S. Kuwabata, H. Yoneyama, Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers, Journal of Electroanalytical Chemistry 422 (1997) 45-54.

H. H. Liu, J. L. Lu, M. Zhang, D. W. Pang, Electrochemical Properties of Nile Blue Covalently Immobilized on Self-assembled Thiol-monolayer Modified Gold Electrodes, Analytical Sciences December 18 (2002) 1339-1344.

E. Lorenzo, L. Sánchez, F. Pariente, J. Tirado, H. D. Abruña, Thermodynamics and kinetics of adsorption and electrocatalysis of NADH oxidation with a self-assembling quinine derivative, Analytica Chimica Acta 309 (199.5) 79-88.

P. Ramesh, S. Sampath, A Binderless, Bulk-Modified, Renewable Surface Amperometric Sensor for NADH and Ethanol, Anal. Chem. 72 (2000) 3369-3373.

F. S. Saleh, M. R. Rahman, F. Kitamura, T. Okajima, L. Mao, T Ohsaka, A Simple and Effective Way to Integrate Nile Blue Covalently onto Functionalized SWCNTs Modified GC Electrodes for Sensitive and Selective Electroanalysis of NADH, Electroanalysis 23 (2011) 409–416.

L. Zhu, R. Yang, X. Jiang, D. Yang, Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode, Electrochemistry Communications 11 (2009) 530–533.

Y. Hasebe, Y. Wang, K. Fukuoka, Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis, Journal of Environmental Sciences 23 (2011) 1050–1056.

C. X. Cai, K. H. Xue, Electrochemical polymerization of toulidine blue O and its electrocatalytic activity toward NADH oxidation, Talanta 47 (1998) 1107-1119.

Y. Chen, J. Yuan, C. Tian, X. Wang, Flow-Injection Analysis and Voltammetric Detection of NADH with a poly-Toluidine Blue Modified Electrode, Analytical Sciences March 20 (2004) 507-511.

A. Silber, N. Hampp, W. Schuhmann, Poly(methylene blue)-modified thickfilm gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosensors & Bioelectronics 11 (1996) 215-223.

M. N. Arechederra, C. Jenkins, R. A. Rincón, K. Artyushkova, P. Atanassov, S. D. Minteer, Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications, Electrochimica Acta 55 (2010) 6659–6664.

Y. Sha, Q. Gao, B. Qi, X. Yang, Electropolymerization of Azure B on a Screen-Printed Carbon Electrode and its Application to the Determination of NADH in a Flow Injection Analysis System, Microchim. Acta 148 (2004) 335–341.

Q. Gao, W. Wang, Y. Ma, X. Yang, Electrooxidative polymerization of phenothiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection analysis system, Talanta 62 (2004) 477–482.

S. M. Chen, M. I. Liu, S. A. Kumar, Electrochemical Preparation of Poly(acriflavine) Film-Modified Electrode and Its electrolcatalytic Properties Towards NADH, Nitrite and Sulfur Oxoanions, Electroanalysis 19 (2007) 999-1007.

M. F. Delbem, W. J. Baader, S. H. P. Serrano, Mechanism Of 3,4-Dihydroxybenzaldehyde Electropolymerization At Carbon Paste Electrodes - Catalytic Detection Of Nadh, Quim. Nova, 25 (2002) 741-747.

S. A. Kumar, S. M. Chen, Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: A new potent electroanalysis of NADH and NAD+, Sensors and Actuators B 123 (2007) 964–977.

Q. Gao, X. Cui, F. Yang, Y. Ma, X. Yang, Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system, Biosensors and Bioelectronics 19 (2003) 277-282.

M.J. Lobo, A.J. Miranda, J.M. López-Fonseca, P. Tuñón, Electrocatalytic detection of nicotinamide coenzymes by poly( o-aminophenol) - and poly( o-phenylenediamine) –modified carbon paste electrodes, Analytica Chimica Acta 325 (1996) 33-42.

Y. Li, L. Shi, W. Ma, D. W. Li , H. B. Kraatz, Y. T. Long, 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces, Bioelectrochemistry 80 (2011) 128–131.

N. de-los-Santos-Álvarez, P. de-los-Santos-Álvarez, M. J. L. Castañón, A. J. M. Ordieres, P. T. Blanco, Flavin Adenine Dinucleotide As Precursor for NADH Electrocatalyst, Anal. Chem. 77 (2005) 4286-4289.

S. Mu, Y. Zhang, J. Zhai, Electrocatalysis of NADH oxidation by nanostructured poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid) and experimental evidence for the catalytic mechanism, Electrochemistry Communications 11 (2009) 1960-1963.

F. S. Saleh , M. R. Rahman, T. Okajima, L. Mao, T. Ohsak, Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes, Bioelectrochemistry 80 (2011) 121–127.

A. Ciszewski, G. Milczarek, Electrocatalysis of NADH Oxidation with an Electropolymerized Film of 1,4-Bis(3,4-dihydroxyphenyl)-2,3-dimethylbutane, Anal. Chem. 72 (2000) 3203-3209.

P. N. Bartlett, P. R. Birkin, E. N. K. Wallace, Oxidation of b-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes, J. Chem. Soc., Faraday T rans. 93 (1997) 1951-1960.

P. N. Bartlett, E. Simon, Poly(aniline)–poly(acrylate) composite films as modified electrodes for the oxidation of NADH, Phys. Chem. Chem. Phys.2 (2000) 2599-2606.

E. Simon, C. M. Halliwell, C. S. Toh, A. E.G. Cass, P. N. Bartlett, Oxidation of NADH produced by a lactate dehydrogenase immobilised on poly(aniline)-poly(anion) composite films, Journal of Electroanalytical Chemistry 538-539 (2002) 253-259.

A. Balamurugan, S. M. Chen, Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode, Sensors and Actuators B 129 (2008) 850-858.

F. Valentini, A. Salis, A. Curulli, G. Palleschi, Chemical Reversibility and Stable Low-Potential NADH Detection with Nonconventional Conducting Polymer Nanotubule Modified Glassy Carbon Electrodes, Anal. Chem. 76 (2004) 3244-3248.

J. Zeng, X. Gao, W. Wei, X. Zhai, J. Yin, L. Wu, X. Liu, K. Liu, S. Gong, Fabrication of carbon nanotubes/poly(1,2-diaminobenzene) nanoporous composite via multipulse chronoamperometric electropolymerization process and its electrocatalytic property toward oxidation of NADH, Sensors and Actuators B 120 (2007) 595–602.

Q. Gao, M. Sun, P. Peng, H. Qi, C. Zhang, Electro-oxidative polymerization of phenothiazine dyes into a multilayer-containing carbon nanotube on a glassy carbon electrode for the sensitive and low-potential detection of NADH, Microchim Acta 168 (2010) 299–307.

F. S. Saleh, T. Okajima, F. Kitamura, L. Mao, T. Ohsaka, Poly(phenosafranin)-functionalized single-walled carbon nanotube as nanocomposite electrocatalysts: Fabrication and electrocatalysis for NADH oxidation, Electrochimica Acta 56 (2011) 4916–4923.

D. W. Yang, H. H. Liu, Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor, Biosensors and Bioelectronics 25 (2009) 733–738.

L. Agüí, C. P. Farfal, P. Y. Sedeño, J. M. Pingarrón, Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes, Electrochimica Acta 52 (2007) 7946–7952.

P. Du, S. Liu, P. Wu, C. Cai, Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors, Electrochimica Acta 53 (2007) 1811–1823

Y. Dilgin, L. Gorton, G. Nisli, Photoelectrocatalytic Oxidation of NADH with Electropolymerized Toluidine Blue O, Eletroanalysis 19 (2007) 286-293.

D. G. Dilgin, D. Gligor, H. İ. Gökçel, Z. Dursun, Y. Dilgin, Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode, Biosensors and Bioelectronics 26 (2010) 411–417.

Y. Dilgin, D. G. Dilgin, Z. Dursun, H. İ. Gökçel, D. Gligor, B. Bayrak, B. Ertek, Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue, Electrochimica Acta 56 (2011) 1138–1143.

D. G. Dilgin, D. Gligor, H. İ. Gökçel, Z. Dursun, Y. Dilgin, Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH, Microchim Acta 173 (2011) 469-476.

Y. H. Ho, A.Periasamy, S. M. Chen, Photoelectrocatalytic regeneration of NADH at poly(4,4’-diaminodiphenyl sulfone)/TO2 composite film modified indium tin oxide electrode, Sensors and Actuators B 156 (2011) 84-94.

K.M. Manesh, P.Santhosh, A. Gopalan, K.P. Lee, Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly
(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing, Talanta 75 ( 2008) 1307-1314.

A. Balamurugana, K. C. Ho, S. M. Chen, T. Y. Huang, Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode, Colloids and Surfaces A: Physicochem. Eng. Aspects 362 (2010) 1–7.

V.S. Vasantha, S. M. Chen, Synergistic effect of a catechin-immobilized poly(3,4-ethylenedioxythiophene)-modified electrode on electrocatalysis of NADH in the presence of ascorbic acid and uric acid, Electrochimica Acta 52 (2006) 665–674.

K. S. Lee, M. S. Won, H. B. Noh, Y. B. Shim, Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection, Biomaterials 31 (2010) 7827-7835.

H. Mao, Y. Li, X. Liu, W. Zhang, C. Wang, S. S. A. Deyab, M. E. Newehy, The application of novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH), Journal of Colloid and Interface Science 356 (2011) 757–762.

L. Cui, S. Ai, K. Shang, X. Meng, C. Wang, Electrochemical determination of NADH using a glassy carbon electrode modified with Fe3O4 nanoparticles and poly-2,6-pyridinedicarboxylic acid, and its application to the determination of antioxidant capacity, Microchim Acta 174 (2011) 31–39.

A. Silber, C. Bräuchle, N. Hampp, Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at thick-film gold electrodes, Journal of Electroanalytical Chemistry 390 (1995) 83-89.

L. Angnes, C. M. N. Azevedo, K. . Araki, Henrique E. Toma, Electrochemical detection of NADH and dopamine in flow analysis based on tetraruthenated porphyrin modified electrodes, Analytica Chimica Acta 329 (1996) 91-96.

H. Ju, D. Leech, [Os(bpy)2(PVI)10Cl]Cl polymer-modified carbon fiber electrodes for the electrocatalytic oxidation of NADH, Analytica Chimica Acta 345 (1997) 5 1-58.

G. D. Storrier, K. Takada, H. D. Abruña, Catechol-Pendant Terpyridine Complexes: Electrodeposition Studies and Electrocatalysis of NADH Oxidation, Inorg. Chem.38( 1999) 559-565.

A. M. Gurban, T. Noguer, C. Bala, L. Rotariu, Improvement of NADH detection using Prussian blue modified
screen-printed electrodes and different strategies of immobilization, Sensors and Actuators B 128 (2008) 536–544.

Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V. M. Fernández, E. Lorenzo, d H. D. Abruña, Electrocatalytic Oxidation of NADH at Glassy Carbon Electrodes Modified with Transition Metal Complexes Containing 1,10-Phenanthroline-5,6-dione Ligands, Anal. Chem. 68 (1996) 3688-3696.

C. R. Raj, K. V. Gobi, T. Ohsaka, Electrocatalytic oxidation of NADH at the self-assembled monolayer of nicke (lI) macrocycle on gold electrode, Bioelectrochemistry 51 (2000) 181–186.

M. E. B. Santiago, M. M. Vélez, S. Borrero, A. Díaz, C. A. Casillas, C. Hofmann, A. R. Guadalupe, J. L. Colón, NADH Electrooxidation Using Bis(1,10-phenanthroline-5,6-dione) (2,2’-bipyridine)ruthenium(II)-Exchanged Zirconium Phosphate Modified Carbon Paste Electrodes, Electroanalysis 18 (2006) 559 – 572.

X. Liu, B. Li, X. Wang, C. Li, One-step construction of an electrode modified with electrodeposited Au/SiO2 nanoparticles and its application to the determination of NADH and ethanol, Microchim Acta 171 (2010) 399–405.

Z. Dai, G. Lu, J. Bao, X. Huang, H. Ju, Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode, electroanalysis 19 (2007) 604-607.

N. Rao, I. Yagi, T. Miwa, D. A. Tryk, A. Fujishima, Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes, Anal. Chem. 71 (1999) 2506-2511.

M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochemistry Communications 4 (2002) 743-746.

C. E. Banks, R. G. Compton, Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study, Analyst 130 (2005) 1232-1239.

L. Wu, X. Zhang, H. Ju, Detection of NADH and Ethanol Based on Catalytic Activity of Soluble Carbon Nanofiber with Low Overpotential, Anal. Chem. 79 (2007) 453-458.

M. Wooten, W. Gorski, Facilitation of NADH Electro-oxidation at Treated Carbon Nanotubes, Anal. Chem. 82 ( 2010) 1299–1304.

Y. Wang, C. You, S. Zhang, J. Kong, J. L. Marty, D. Zhao, B. Liu, Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes, Microchim Acta 167 (2009) 75–79.

L. Zhang, Y. Li, L. Zhang, D. W. Li, D. Karpuzov, Y. T. Long, Electrocatalytic Oxidation of NADH on Graphene Oxide and Reduced Graphene Oxide Modified Screen-Printed Electrode, Int. J. Electrochem. Sci., 6 (2011) 819 – 829.

G. P. Keeley, A. Neill, M. Holzinger, S. Cosnier, J. N. Coleman, G. S. Duesberg, DMF-exfoliated graphene for electrochemical NADH detection, Cite this: Phys. Chem. Chem. Phys., 13 (2011) 7747–7750.

E. Tondello, L. Armelao, C. Piccirillo, S. Daolio, M. Fabrizio, D. Barreca, C. Massignan, Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition, Chem Mater., 13 (2001) 588-593.

R. N. Singh, J. F. Koening, G. Poillerate, P. Chartier, Thin films of Co3O4 and NiCo2O4 prepared by the method of chemical spray pyrolsis for electrocatalysis: Part IV. The electrocatalysis of Oxygen reduction, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 314 (1991) 241-257.

M. Hamdani, R. N. Singh, P. Chartier, Co3O4 and Co- based bifunctional oxygen electrodes, Int. J. Electrochem. Sci., 5 (2010) 556-577.

O. Antoine, R. Durand, RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions, Journal of Applied Electrochemistry 30 (2000) 839-844.

A.S.N. Murthy, J. Sharma, Benzoquinone modified electrode for sensing NADH and ascorbic acid, Talanta 45 (1998) 951–956.

P. C. Pandey, Teracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes, Analytical Biochemistry 221 (1994) 392-396.

A. Curulli, I., Carelli, O. Trischitta, G..Palleschi, Assembling and evaluation of new dehydrogenase enzyme electrode probes obtained by electropolymerization of aminobenzne isomers and PQQ on gold, platinum and carbon electrodes, Biosen. Bioelectron. 12 (1997) 1043-1055.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-02-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-02-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信