淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0501200609041800
中文論文名稱 二維導體逆散射問題之最佳化研究
英文論文名稱 The Optimization of Inverse problems for Two-Dimensional Conductors.
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 1
出版年 95
研究生中文姓名 錢威
研究生英文姓名 Wei Chien
學號 890350076
學位類別 博士
語文別 中文
口試日期 2005-11-25
論文頁數 145頁
口試委員 指導教授-丘建青
委員-李學智
委員-唐震寰
委員-徐敬文
委員-丘建青
委員-李慶烈
委員-李揚漢
委員-李國明
中文關鍵字 基因法則  三次方仿樣函數  傅立葉級數 
英文關鍵字 Genetic Algorithm  Cubic Spline  Fourier Series 
學科別分類
中文摘要 本論文就柱型導體逆散射問題做了三個面向的探討。
第一個部分,考慮在不同環境下一個未知形狀及表面可變導電係數
的非完全導體,對於非完全導體之邊界條件,可藉由表面阻抗的概念配
合導體表面感應電流的觀念,可導出非線性積分方程式,繼而利用動差
法求得正散射公式。利用正散射公式,我們可以得到散射場的相關資料。
對於逆散射部分,我們引進了基因法則(genetic algorithm)。利用基因
法則時,我們適當地選取參數形式,同時結合所求的散射公式,由此即
可求出散射場的相關資料,藉以求得柱體的形狀函數與導電係數。
第二個部分,藉由傳統的Fourier series 以及cubic-spline 描述
物體外觀形狀,探討在基因法則下,對於不同環境逆散射問題的形狀重
建的適用性,實驗顯示,利用Fourier series 描述複雜形狀往往造成無
法得到收斂解,cubic-spline 的描述方式則可在較少的變數個數,獲得
良好的形狀描述結果。
第三個部分,藉由使用改良的基因法則(NU-SSGA)與傳統GA 比較,
NU-SSGA 可藉由大幅減少計算正散射的次數,獲取遠優於傳統GA 的效
能,以往利用全域解演算法解逆散射問題最令人詬病的收斂時間,實驗
結果顯示,利用NU-SSGA 求解可獲得大幅改善。
英文摘要 The thesis presents three related aspects of computational approach to
the imaging of a conducting cylinder. In the first one, an imperfect
conducting cylinder of unknown shape and variable conductivity is
considered. Two different cases of inverse problem in free space and half
space have done respectively. In the second one, cubic-spline method and
trigonometric series for shape description are used and compared in several
different situations (half space, partially immersed, slab medium, and
periodic conductor in free space). In the third one, the inverse scattering
problem is addressed to discuss the CPU time for reconstructing a perfectly
conducting cylinder for two different cases (half space and slab medium). It
is solved by the improved Steady State Genetic Algorithm (SSGA) and
Simple Genetic Algorithm (SGA) and the consuming time in finding out the
global extreme solution of the objective function is compared. Based on the
boundary conditions and the measured scattered field, a set of nonlinear
integral equations is derived and the imaging problem is reformulated into an
III
optimization problem. In the first one, the genetic algorithm is employed to
find out the global extreme solution of the objective function. Numerical
results demonstrate that, even when the initial guess is far away from the
exact one, a good reconstruction has been obtained. In the second one, the
shape of the scatterer described by using cubic-spline method can be
reconstructed. In such case, Fourier series expansion will fail. Numerical
results show that the shape description by using cubic-spline method is much
better than that Fourier series. In the third one, it is found that the searching
ability of SSGA is much powerful than that of the SGA. The consuming time
for converging to a global extreme solution by using SSGA is much less than
that SGA. Numerical results show that the image reconstruction problem by
using SSGA is much better than by SGA in time consuming.
論文目次 第一章 簡介.……………………………...……………..….………………1
1.1 節 研究動機與相關文獻.………….……………..………………1
1.2 節 本研究之貢獻..………………………………..………………4
1.3 節 各章內容簡述…...……………………………………………..6
第二章 不完全導體之逆散射問題..………...…………….……………….6
2.1 節 自由空間理論推導與數值方法…………………………...6
2.2 節 半空間理論推導與數值方法……………………………10
2.3 節 基因演算法則……………………………………………13
2.4 節 模擬結果……………………………………………....22
第三章 導體之形狀函數適應性問題…………..……………………….46
3.1 節 各種空間理論推導與數值方法………………………...46
3.2 節 任意形狀函數圖形及三次方仿樣函數的描述.…………...62
3.3 節 模擬結果..........…………………………………………65
VI
第四章 導體逆散射之演算法最佳化問題……....……………....………101
4.1 節NU-SSGA……………………………………………………101
4.2 節 模擬結果……………………………………………………102
第五章 結論…………………….………………………………………119
附錄一 計算半空間格林函數收斂的方法……………………………121
附錄二 計算三層結構格林函數收斂的方法…………………………124
附錄三 計算半掩埋結構格林函數收斂的方法.………………………129
附錄四 計算週期性結構格林函數收斂的方法….……………………133
附錄五 當y ≈ y' 時改進週期性格林函數收斂的方法….………………135
參考文獻…..…………………………………………………………….136
圖目錄
圖2.1 導電率為 之二維不完全導體在 平面上的示意圖。………………………………………………………………29
圖2.2 埋藏在半空間導電率為 之二維不完全導體在 平面上的示意圖。……………………………………………………… 30
圖2.3 基因法則流程圖。…………………………………………………31
圖2.4(a) 例子1自由空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。…………………………………………………32
圖2.4(b) 例子1自由空間的導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。…………………………………………33
圖2.4(c) 例子1自由空間的形狀函數及導電率函數隨相對雜訊位準變化的情形。……………………………………………………34
圖2.5(a) 例子2自由空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。…………………………………………………35
圖2.5(b) 例子2自由空間的導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。…………………………………………36
圖2.6(a) 例子3自由空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。…………………………………………………37
圖2.6(b) 例子3的自由空間導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。…………………………………………38
圖2.7(a) 例子4半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。……………………………………………………39
圖2.7(b) 例子4半空間的導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。……………………………………………40
圖2.7(c) 例子4半空間的形狀函數及導電率函數隨相對雜訊位準變化的情形。………………………………………………………41
圖2.8(a) 例子5半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。……………………………………………………42
圖2.8(b) 例子5半空間的導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。……………………………………………43
圖2.9(a) 例子6半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,其他類型的線條則代表不同的基因世代所計算出的形狀函數。……………………………………………………44
圖2.9(b) 例子6半空間的導電率函數的重建情形。星狀線代表真正的導電率函數,其他類型的線條則代表不同的基因世代所計算出的導電率函數。…………………………………………… 45
圖3.1 埋藏在半空間之二維完全導體在 平面上的示意圖。……72
圖3.2 埋藏在三層結構之二維完全導體在 平面上的示意圖。………………………………………………………………73
圖3.3 線電流源位於區域一時的示意圖。………………………………74
圖3.4 線電流源位於區域二時的示意圖。………………………………75
圖3.5(a) 當a>0時,部份埋藏之二維完全導體在 平面上的示意圖。……………………………………………………………76
圖3.5(b) 當a<0時,部份埋藏之二維完全導體在 平面上的示意圖。………………………….…………………………………77
圖3.6 週期長度d之二維週期性完全導體在 平面上的示意圖。………………………………………………………………78
圖3.7 任意形狀結構示意圖。……………………………………………79
圖3.8(a) 例子1半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。……………80
圖3.8(b) 例子1半空間的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。…………………………81
圖3.9(a) 例子2半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。……………82
圖3.9(b) 例子2半空間的形狀函數隨相對雜訊位準變化的情形,S-S表示利用cubic-spline展開法表示欲估測圖形,也用cubic-spline展開法做重建。………………………………83
圖3.10(a) 例子3半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。………84
圖3.10(b) 例子3半空間的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。……………………85
圖3.11(a) 例子4三層結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。……86
圖3.11(b) 例子4三層結構的形狀函數隨相對雜訊位準變化的情形,S-S表示利用cubic-spline展開法表示欲估測圖形,也用cubic-spline展開法做重建。……………………………87
圖3.12(a) 例子5三層結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。……88
圖3.12(b) 例子5三層結構的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。……………………89
圖3.13 例子6三層結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用7項Fourier展開法所重建之圖形,長虛線代表11項Fourier展開法所重建之圖形,實線代表15項Fourier展開法所重建之圖形,點狀線代表cubic-spline展開法所重建之圖形。………………………………………………90
圖3.14(a) 例子7半掩埋結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。91
圖3.14(b) 例子7半掩埋結構的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。…………………92
圖3.15(a) 例子8半掩埋結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用Fourier展開法所重建之圖形,長虛線代表用cubic-spline展開法所重建的圖形。……93
圖3.15(b) 例子8半掩埋結構的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。…………………94
圖3.16 例子9半掩埋結構的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用7項Fourier展開法所重建之圖形,長虛線代表11項Fourier展開法所重建之圖形,實線代表15項Fourier展開法所重建之圖形,點狀線代表cubic-spline展開法所重建之圖形。…………………………………………95
圖3.17(a) 例子10週期性結構的形狀函數的重建情形。星狀線代表真正的形狀函數,長虛線代表用Fourier展開法所重建之圖形,短虛線代表用cubic-spline展開法所重建的圖形。…96
圖3.17(b) 例子10半掩埋結構的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。…………97
圖3.18(a) 例子11半掩埋結構的形狀函數的重建情形。星狀線代表真正的形狀函數,長虛線代表用Fourier展開法所重建之圖形,短虛線代表用cubic-spline展開法所重建的圖形。…98
圖3.18(b) 例子11半掩埋結構的形狀函數隨相對雜訊位準變化的情形,F-F表示利用Fourier展開法表示欲估測圖形,也用Fourier展開法做重建,F-S表示利用Fourier展開法表示欲估測圖形,而用cubic-spline展開法做重建。………99
圖3.19 例子12半掩埋結構的形狀函數的重建情形。星狀線代表真正的形狀函數,實線代表用7項Fourier展開法所重建之圖形,短虛線代表11項Fourier展開法所重建之圖形,長虛線代表15項Fourier展開法所重建之圖形,點狀線代表cubic-spline展開法所重建之圖形。……………………………………… 100
圖4.1 單點交配示意圖。………………………………………………107
圖4.2 Beta分布的機率密度函數。……………………………………108
圖4.3(a) 例子1半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用SGA在經過6000次function call後所重建之圖形,長虛線代表用NU-SSGA在經過6000次function call後所重建的圖形。…………………………109
圖4.3(b) 例子1半空間的形狀誤差函數與function call的關係。虛線代表SGA的收斂情形,實線代表用NU-SSGA的收斂情形。……………………………………………………………110
圖4.3(c) 例子1半空間的形狀誤差函數與function call在相對雜訊強度為 情況下的關係。虛線代表SGA的收斂情形,實線代表用NU-SSGA的收斂情形。………………………………111
圖4.4(a) 例子2半空間的形狀函數的重建情形。星狀線代表真正的形狀函數,短虛線代表用SGA在經過20000次function call後所重建之圖形,長虛線代表用NU-SSGA在經過20000次function call後所重建的圖形。…………………………112
圖4.4(b) 例子2半空間的形狀誤差函數與function call的關係。虛線代表SGA的收斂情形,實線代表用NU-SSGA的收斂情形。……………………………………………………………113
圖4.5(a) 例子3三層結構的形狀函數的重建情形。星狀線代表真正的形狀函數,點狀線代表用SGA在經過6000次function call後所重建之圖形,實線代表用交配率為0.1之NU-SSGA在經過6000次function call後所重建的圖形。……………………………………………………………114
圖4.5(b) 例子3的形狀誤差函數與function call的關係。點虛線代表SGA的收斂情形,星虛線代表用交配率為0.2之NU-SSGA的收斂情形,實線代表用交配率為0.1之NU-SSGA的收斂情形,虛線代表用交配率為0.2之NU-SSGA的收斂情形。……………………………………………………………115
圖4.5(c) 例子3的形狀誤差函數與function call在相對雜訊強度為 情況下的關係。點虛線代表SGA的收斂情形,星虛線代表用交配率為0.2之NU-SSGA的收斂情形,實線代表用交配率為0.1之NU-SSGA的收斂情形,虛線代表用交配率為0.2之NU-SSGA的收斂情形。……………………………………116
圖4.6(a) 例子4的形狀函數的重建情形。星狀線代表真正的形狀函數,點狀線代表用SGA在經過6000次function call後所重建之圖形,實線代表用交配率為0.1之NU-SSGA在經過6000次function call後所重建的圖形。…………………………117
圖4.6(b) 例子4的形狀誤差函數與function call的關係。點虛線代表SGA的收斂情形,星虛線代表用交配率為0.2之NU-SSGA的收斂情形,實線代表用交配率為0.1之NU-SSGA的收斂情形,虛線代表用交配率為0.2之NU-SSGA的收斂情形。……………………………………………………………118
表目錄
表2.1 基因演算法相關名詞解釋與中英對照表……………………… 15
參考文獻 [1] W. M. Boerner, A. K. Jordan, and I. W. Kay, “Inverse methods in electromagnetics,” IEEE Trans. Antennas Propagat., vol. AP-29, no. 2, pp. 185-417, 1981.
[2] K. J. Langenberg, “Inverse Problems,” Wave Motion., vol. 11 no. 2, pp. 99-200, 1989.
[3] B. D. Steinberg, Microwave Imaging Techniques., New York: Wiley, 1991.
[4] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[5] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[6] R. V. McGahan and R. E. Kleinman, “Image reconstruction using real data,” IEEE Antennas Propagat., vol. 38, pp. 39-59, Mar. 1996.
[7] G. Chavent and P. C. Sabatier, Inverse Problems of Wave Propagation and Diffraction., New York: Springer- Verlag, 1997.
[8] A. G. Ramm, Inverse Problems, Tomography, and Image Processing., A. G. Ramm, Ed. Newark, DE, 1997.
[9] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory., New York: Springer- Verlag, 1998.
[10] A. M. Denisov, Elements of the Theory of Inverse Problems., Utrecht, The Netherlands: VSP, 1999.
[11] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems., vol. 6, pp. 635-641, Aug. 1990.
[12] H. P. Baltes, Inverse scattering problems in optics., New York: Springer-verlag Berlin Heidelberg, 1980.
[13] M. M. Ney, A. M. Smith and S. S. Stuchly, “A solution of electromagnetic imaging using pseudo inverse transformation,” IEEE Trans. Med. Imaging., vol. 3, pp. 155- 162, Dec. 1984.
[14] A. N. Tikhonov and V. Y. Aresnin, Solutions of Ill-posed Problems., New York: Wiley, 1977.
[15] V. A. Morozonv, Methods for Solving Incorrectly Posed Problems., New York: Springer-Verlag, 1984.
[16] F. Natterer, “Regularization techniques in medical imaging,” in Mathematics and Computer Science in Medical Imaging., M. A. Viergever and A. Todd-Pokropek, Eds. New York: Springer-Verlag, pp.127-141, 1988.
[17] C. Del Mol, “A critical survey of regularized inversion methods,” in Inverse Problems in Scattering and Imaging., M. Bertero and E. R. Pike, Eds. Bristol, U.K.: Adam Hilger, pp. 345-370, 1992.
[18] B. Hofmann, “Regularization of nonlinear problems and the degree of ill-posedness,” in Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine., G. Anger, R. Gorenflo, and H. Jockmann, Eds. New York: Wiley, pp. 174-188, 1993.
[19] K. P. Bube and R. Burridge, “The One-dimensional inverse problem of reflection seismology,” SIAM Rev., vol. 25 no. 4, pp. 497-559, 1983.
[20] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. AP-17, pp. 308-314, 1969.
[21] G. N. Balanis, “The plasma inverse problem,” J. Math. Phys., vol. 13, pp. 1001-1005, 1972.
[22] R. Burridge, “The Gel’fand- Levitan, The Marchenko, and the Gopinath-Sondhi integral equation of inverse scattering theory, regarded in the context of inverse impulse-response problems,” Waves Motion., vol. 2, pp. 305-323, 1980.
[23] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989, Sept. 1982.
[24] M. A. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 860-874, Aug. 1984.
[25] T. M. Habashy, “A generalized Gel’fand-Levitan-Marchenko integral equation,” Inv. Probl., vol. 7, pp. 703-711, 1991.
[26] J. Sylvester, “On the layer stripping approach to a 1-D inverse problem,” in Inverse Problems in Wave Propagation, G. Chavent et al., Eds. New York: Springer-Verlag, pp. 453-462, 1997.
[27] J. Chang, Y. Wang, and R. Aronson, “Layer-stripping approach fir recovery of scattering media from time-solved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, Ed. Bellingham, WA: SPIE, pp. 384-397, 1992.
[28] J. B. Keller, “Accuracy and validity of Born and Rytov approximations,” J. Opt. Soc. Amer., vol. 59, pp. 1003-1004, 1969.
[29] D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D,” SIAMJ. Appl. Math., vol. 46, pp. 506-523, June 1986.
[30] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, pp.218-225, 1990.
[31] C. C. Chiu and Y. W. Kiang, “Microwave imaging of a Buried cylinder,” Inv. Probl., vol. 7, pp. 182-202, 1991.
[32] M. Moghaddam and W. C. Chew, “Nonlinear two-dimensional velocity profile inversion using Time-domain data,” IEEE Trans. Geosci. Remote Sensing., vol. 30 pp. 147-156, Jan. 1992.
[33] W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 284-286, July 1992.
[34] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Trans. Antennas Propagat., vol. 40, pp. 933-941, Aug. 1992.
[35] W. C. Chew and G. P. Otto, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 137-141, Jan. 1994.
[36] W. C. Chew and Q. H. Liu, “Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT,” IEEE Trans. Geosci. Remote Sensing., vol. 32, pp. 878-884, July 1994.
[37] H. T. Lin and Y. W. Kiang, “Microwave imaging for a dielectric cylinder,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1572-1579, Aug. 1994.
[38] T. A. W. M. Lanen and D. W. Watt, “Singular value decomposition: A diagnostic tool for ill-posed inverse problems in optical computed tomography,” in Detection Technology for Mines and Minelike Targets, A. C. Dubey et al., Eds. Bellingham, WA: SPIE, 1995, pp. 174-185.
[39] P. M. van den Berg and M. van der Horst, “Nonlinear inversion in induction logging using the modified gradient method,” Radio Sci., vol. 30, pp. 1355-1369, 1995.
[40] A. Qing and L. Jen, “Microwave imaging of dielectric cylinder in layered media,” J. Electromagn. Waves Applicat., vol. 11, no. 2, pp. 259-269, 1997.
[41] I. T. Rekanos, T. V. Yioultsis and T. D. Tsiboukis, “Inverse scattering using the finite-element method and a nonlinear optimization technique,” IEEE Trans. Microwave Theory., vol. 47, pp. 336-344, Mar. 1999.
[42] C. C. Chiu and P. T. Liu, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” Proc. Inst. Elect. Eng., Microw., Antennas Propagat., vol. 143, no. 3, pp. 249-253, 1996.
[43] R. Tang et al., “Combined strategy of improved simulated annealing and genetic algorithm for inverse problem,” IEEE Trans. Magn., vol. 32, pp. 1326-1329. Mar. 1996.
[44] C. A. Borghi and M. Fabbri, “A combined technique for the global optimization of the inverse electromagnetic problem solution,” IEEE Trans. Magn., vol. 33 pp. 1947-1950, Feb. 1997.
[45] A. K. Hamid and M. Alsunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada, July 1997, pp. 2278-2281.
[46] F. C. Morabito, A. Formisano and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968-2971, May 1998.
[47] F. Xiao and H. Yabe, “Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm couple with deterministic method,” IEICE Trans. Electron., vol. E81-C, no. 12, pp. 1784-1792, Aug. 1998.
[48] C. S. Park and B. S. Jeong, “Reconstruction of a high-contrast and large object by using the hybrid algorithm combining a Levenberg-Marquardt algorithm and a genetic algorithm,” IEEE Trans. Magn., vol. 35, pp. 1582-1585, Mar. 1999.
[49] M. Pastorino and S. Caorsi, “A microwave inverse scattering techniques for image reconstruction based on a genetic algorithm,” in Proc. 16th IEEE Instrumentation Measurement Technology Conf., Venice, Italy, May 1999, pp. 118-123.
[50] A. Qing and C. K. Lee, “Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm,” in 1999 IEEE Antennas and Propagation Int. Symp., Orlando, FL, July 1999, pp. 2148-2151.
[51] Hung-Yi Li, ”Solution of inverse blackbody radiation problem with conjugate gradient method,” IEEE Trans. Antennas Propagate., vol. 53, issue 5, pp.1840-1842, May. 2005.
[52] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagate., vol. AP-29, pp.232-238, Mar. 1981.
[53] W. Tobocman, “Inverse acoustic wave scattering in two dimensions from impenetrable targets,” Inverse Problems., vol. 5, pp. 1131-1144, Dec. 1989.
[54] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[55] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems., vol. 4, pp.749-770, Aug. 1988.
[56] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems., vol. 10, pp. 375-385, 1994.
[57] C. C. Chiu, C. L. Li and W. Chien, “Image reconstruction of a buried conductor by the genetic algorithm”, IEICE Trans. Electron., Vol. E84-C, No. 7, pp. 961-966, Dec. 2001
[58] W. Chien and C. C. Chiu, “Electromagnetic imaging for shape and variable conductivity”, International Journal of RF and Microwave Computer-Aided Engineering., Vol. 14, issue 2, pp. 433-440, Sept. 2004.
[59] W. Chien, C. C Chiu, and C. L. Li, “Image and conductivity reconstruction of a variable conducting cylinder in half space”, International Journal of Applied Electromagnetics and Mechanics., Vol. 21, No. 2, pp. 51-62, Feb. 2005.
[60] W. Chien and C. C. Chiu, “Cubic-spline expansion with GA for half-space inverse problems”, Applied Computational Electromagnetics Society Journal., Vol. 20, No. 2, pp. 136-143, July 2005.
[61] W. Chien and C. C. Chiu, “Using NU-SSGA to reduce the searching time in inverse problem of a buried metallic object,” IEEE Transactions on Antennas and Propagation., Vol. 53, No. 10, pp. 3128-3134, Oct. 2005.
[62] Anyong Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Transactions on Antennas and Propagation., Vol. 51, No. 6, pp. 1251-1262, June 2003.
[63] Caorsi, S., Massa A., Pastorino M. and Donelli, M., “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Transactions on Antennas and Propagation., Vol. 52, No. 6, pp. 1386-1397, June 2004.
[64] Abubakar, A., van den Berg P.M. and Semenov S.Y., “A robust iterative method for Born inversion,” IEEE Transactions on Geoscience and Remote Sensing., Vol. 42, issue 2, pp. 342-354, Feb. 2004.
[65] Fenghua Li, Qing Huo Liu and Lin-Ping Song, “Three-dimensional reconstruction of objects buried in layered media using Born and distorted Born iterative methods,” IEEE Geoscience and Remote Sensing Letters., Vol. 1, issue 2, pp. 107-111, Apr. 2004.
[66] Cherubini D., Fanni A., Montisci A. and Testoni P., “Inversion of MLP neural networks for direct solution of inverse problems,” IEEE Transactions on Magnetics., Vol. 41, issue 5, pp. 1784-1787, May 2005.
[67] F. B. Hildebrand, Methods of Applied Mathematics, New Jersey: Prentice-Hall, 1965.
[68] T. B. A. Senior, “Approximation boundary conditions,” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, Sept. 1981.
[69] F. M. Tesche, “On the inclusion of loss in time domain solutions of electromagnetic interaction problems,” IEEE Trans. Electromagn. Compat., vol. EMC-32, pp. 1-4, Feb. 1990.
[70] J. R. Wait, Electromagnetic waves in stratified media. New York: Macmillian, 1962.
[71] R. E. Jorgenson and R. Mittra, “Efficient calculation of free-space periodic Green’s function,” IEEE Trans. Antenna Propagat., vol. 38, pp. 633-642, May 1990.
[72] G. S. Wallinga, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, “Efficient computation of the two-dimensional periodic Green’s function,” IEEE Tran. Antenna Propagat., vol. 47, pp. 895-897, May 1999.
[73] “A practical guide to splines,” New York: Spring-Verlag, 1987.
[74] Shoichiro Nakamura, “Applied numerical methods in C,” Prentice-Hall int. 1993.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-02-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-02-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信