淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0412201320211000
中文論文名稱 溶膠凝膠法製備有機-無機混成彩色光學塗膜
英文論文名稱 Preparation of organic-inorganic hybrid color optical coatings by sol-gel process
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 1
出版年 103
研究生中文姓名 陳品莼
研究生英文姓名 Pin-Chun Chen
學號 600400385
學位類別 碩士
語文別 中文
口試日期 2012-12-24
論文頁數 84頁
口試委員 指導教授-鄭廖平
委員-鄭廖平
委員-黃逢璽
委員-陳慶鐘
中文關鍵字 溶膠凝膠法  分散型染料  紫精 
英文關鍵字 sol-gel process  disperse dye  viologens 
學科別分類
中文摘要 本研究之內容分為彩色光學塗膜和有機光致變色塗膜兩個部分,前者乃藉助於溶膠-凝膠及紫外光硬化兩技術,來製備有機-無機染料光學塗膜,先將偶合劑(異氰酸丙基三乙氧基矽烷)與黃色染料(C. I. Disperse Yellow 9)以共價鍵方式合成出改質染料,由FTIR和1H NMR加以證實,接下來將改質染料接枝於二氧化矽顆粒表面,之後再由紫外光照射硬化成膜,探討塗膜之耐熱、耐光性及實用性,由DSC及TGA熱性質分析可以發現,二氧化矽粒子含量越高對熱性質影響越大,而化學接枝於二氧化矽表面之染料,其耐熱性優於物理性吸附於二氧化矽表面之染料。由UV-Vis光譜及CIE色度座標分析,發現在230 oC、1小時的熱處理下,無機改質確實可以減輕染料的裂解,在紫外光曝光測試也呈現改質後比未改質表現好之趨勢。利用三成分組成圖,我們可以圈選出符合實用條件的彩色光學鍍膜組成。
有機光致變色塗膜的研究方面,選用紫精為變色染料,將其分散於塗料中並硬化成膜,探討紫精在塗膜中的濃度對塗膜之退色時間、顏色深度及塗膜之硬度、附著度等性質的影響。光致變色塗膜之退色速度快,由UV-Vis測試得知,約一分鐘就接近原本顏色;而曝光能量愈高,顏色較深,但是紫精染料佔塗膜中的含量越高,硬度及附著度會隨之降低。
英文摘要 This research is divided into two parts: color optical coating and organic photochromic coating. The former involves the use of sol-gel method to prepare organic - inorganic optical coatings. First, the coupling agent (3-(Isocyanatopropyl)triethoxysilane) was covalently bonded to the yellow dye (C.I. Disperse Yellow 9), as confirmed by the FTIR and 1H NMR analyses. Then the silanized dye was grafted on silica particles that were surface-modified by 3-(trimethoxysilyl) propyl methacrylate. The formed particles were UV-cured with the multifunctional monomer, dipentaerythritol hexaacrylate, to yield color coatings on PMMA. The thermal properties of the particles were investigated by DSC and TGA analyses. It was found that thermal properties of the dye grafted on the silica surface were better than that absorbed on the silica surface. UV-Vis spectra and CIE chromaticity coordinates indicates that inorganic modification could lessen dye-cracking during one-hour heat treatment of the coating at 230oC. The UV exposure test also showed good performance of the modified dye. Using a three- component composition diagram, we can effectively identify the suitable compositions for making color optical coatings that meet application standard.
Regarding the photochromic coating research, the dye, viologen, was dispersed in a coating formulation and then UV-cured. The effect of viologen concentration on the bleaching time, color depth, film hardness, and adhesion was studied. The experimental results showed that the coating bleached rapidly after UV-exposure; the coating approached its original color in about one minute. While higher amount of UV-irradiation caused deeper color, higher viologen content in the coating resulted in lower hardness and poorer adhesion.
論文目次 總目錄
中文摘要 I
英文摘要 II
總目錄 IV
圖目錄 VI
表目錄 IX

第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 參考資料 3
第二章 染料光學塗膜 5
2.1 染料簡介 5
2.1.1 染料發展 7
2.1.2 染料發色團學說 7
2.1.3 實驗設計 8
2.2 實驗 10
2.2.1 實驗藥品 10
2.2.2 實驗方法與流程 11
2.2.3 實驗儀器與操作方法[21] 21
2.3 結果與討論 24
2.3.1 改質染料 24
2.3.2 接枝染料二氧化矽之製備與性質分析 29
2.3.3 彩色光學塗膜 36
2.4 結論 62
2.5 參考文獻 63
2.6 建議事項 66
第三章 有機光致變色光學塗膜 67
3.1 光致變色染料簡介 67
3.1.1 Viologens之簡介 68
3.1.2 光致變色染料發色原理 69
3.2 實驗 70
3.2.1 實驗藥品 70
3.2.2 實驗方法與流程 71
3.2.3 實驗儀器操作方法 73
3.3 結果與討論 74
3.4 結論 81
3.5 參考文獻 82
3.6 建議事項 84

圖目錄
圖2.1-1 色素分類圖(摘自[1]) 5
圖2.1-2 合成改質染料(MY)之反應機制 8
圖2.1-3 合成接枝染料二氧化矽(dye-grafted silica)之反應機制 9
圖2.1-4 有機-無機混成彩色光學塗膜之結構設計 9
圖2.2-1 改質染料之製備流程 12
圖2.2-2 改質染料之TLC測試示意圖 13
圖2.2-3 改質二氧化矽之製備流程 14
圖2.2-4 接枝染料二氧化矽之製備流程 15
圖2.2-5 彩色光學塗膜之製備流程 18
圖2.2-6 彩色光學塗膜(未改質染料)之三成分組成圖(依重量百分率) 19
圖2.2-7 彩色光學塗膜(改質染料)之三成分組成圖(依重量百分率) 19
圖2.3-1 DY和ICPTES之FTIR光譜圖 25
圖2.3-2 改質染料反應之FTIR光譜圖 26
圖2.3-3 (a)ICPTES、(b)DY、(c)MY之1H NMR圖譜 27
圖2.3-4 DY、MY之UV-Vis光譜圖 28
圖2.3-5 TEOS與酸水反應之FTIR光譜圖 30
圖2.3-6 以MSMA改質二氧化矽反應之FTIR光譜圖 30
圖2.3-7 合成接枝染料二氧化矽(MY3MS7)過程之FTIR光譜圖 31
圖2.3-8 DY、MY、各比例之接枝染料二氧化矽之TGA圖 33
圖2.3-9 DY、MY、各比例之接枝染料二氧化矽之DTG圖 33
圖2.3-10 DY、MY、各比例之接枝染料二氧化矽之DSC圖 34
圖2.3-11 MY1MS9之TEM圖 36
圖2.3-12 D90MY3MS7經紫外光硬化前、後及後烤之FTIR光譜圖 37
圖2.3-13 D90MY3MS7之FESEM表面圖 38
圖2.3-14 D90MY3MS7之FESEM截面圖 38
圖2.3-15 D90MY3MS7之Surfcorder圖 39
圖2.3-16 D80MY6MS14之Surfcorder圖 40
圖2.3-17 D80DY6MS14之Surfcorder圖 40
圖2.3-18 彩色光學塗膜(D95DY5MS0與D95MY5MS0)之CIE色度座標 41
圖2.3-19 彩色光學塗膜之色度座標(改質前、後之熱處理比較) 42
圖2.3-20 兩系列彩色光學塗膜之CIE色度座標(改質後之熱處理比較) 43
圖2.3-21 MY:MS為1:9系列塗膜(Glass基材)之UV-Vis圖 45
圖2.3-22 MY:MS為3:7系列塗膜(Glass基材)之UV-Vis圖 45
圖2.3-23 彩色光學塗膜之UV-Vis光譜圖(熱處理前、後比較) 47
圖2.3-24 MY:MS為1:9系列塗膜之UV-Vis圖(280 ℃熱處理) 47
圖2.3-25 MY:MS為3:7系列塗膜之UV-Vis圖(280 ℃熱處理) 48
圖2.3-26 改質前、後塗膜之色度座標(紫外光曝光18次) 49
圖2.3-27 改質前、後塗膜之UV-Vis圖(紫外光曝光18次) 50
圖2.3-28 相似MS量塗膜之色度座標(紫外光曝光18次) 51
圖2.3-29 相似MS量塗膜之UV-Vis圖(紫外光曝光18次) 51
圖2.3-30 相同MY量塗膜之色度座標(紫外光曝光18次) 52
圖2.3-31 相同MY量塗膜之UV-Vis圖(紫外光曝光18次) 53
圖2.3-32 MY:MS為3:7系列塗膜(PMMA基材)之UV-Vis圖 54
圖2.3-33 MY:MS為1:9系列塗膜(PMMA基材)之UV-Vis圖 54
圖2.3-34 彩色光學塗膜之可用區域物性圖,硬度>3H(實線框) 61
圖3.1-1 Viologens之氧化還原態示意圖(摘自[15]) 68
圖3.1-2 Viologens之光致變色示意圖(摘自[14]) 69
圖3.1-3 吸收波長與顏色關係圖(摘自[16]) 69
圖3.2-1 有機光致變色光學塗膜製備流程 72
圖3.2-2 有機光致變色光學塗膜製備流程 72
圖3.3-1 塗膜經能量1422 MJ/CM2曝光之退色UV圖(H7D3塗佈於玻璃基材)75
圖3.3-2 塗膜經能量995 MJ/CM2曝光之退色UV圖(H7D3塗佈於玻璃基材) 75
圖3.3-3 塗膜經能量995 MJ/CM2曝光之退色UV圖(H7D3塗佈於PC基材) 76
圖3.3-4 塗膜經能量1422 MJ/CM2曝光之退色UV圖(H7D3塗佈於PC基材) 77
圖3.3-5 塗膜經能量1422 MJ/CM2曝光之退色UV圖(H7D3塗佈於PMMA材) 78
圖3.3-6 塗膜經能量995 MJ/CM2曝光之退色UV圖(H7D3塗佈於PMMA基材) 78

表目錄
表2.1-1 染料分類(依染料性質)(摘自[4]) 6
表2.2-1 改質染料配方表 16
表2.2-2 改質二氧化矽配方表 16
表2.2-3 合成接枝染料二氧化矽配方表 16
表2.2-4 彩色光學塗膜之三成分組成(依重量百分率) 20
表2.3-1 DY、MY、各比例之接枝染料二氧化矽之熱性質整理 35
表2.3-2 彩色光學塗膜之色度座標(改質後之熱處理比較) 43
表2.3-3 兩系列(Glass基材)之UV-Vis波長表 46
表2.3-4 兩系列(Glass基材)之UV-Vis波長表(280 ℃熱處理) 48
表2.3-5 兩系列(PMMA基材)之UV-Vis波長表 55
表2.3-6 樣品表面性質整理(未改質染料系列─PMMA基材) 57
表2.3-7 樣品表面性質整理(改質染料系列─PMMA基材) 58
表2.3-8 樣品表面性質整理(未改質染料系列─玻璃基材) 59
表2.3-9 樣品表面性質整理(改質染料系列─玻璃基材) 60
表3.2-1 有機光致變色塗膜配方表 72
表3.3-1 不同能量不同退色時間之UV吸收度比較表(H7D3塗佈於玻璃基材) 76
表3.3-2 不同能量不同退色時間之UV吸收度比較表(H7D3塗佈於PC基材) 77
表3.3-3 不同能量不同退色時間之UV吸收度比較表(H7D3塗佈於PMMA基材)79
表3.3-4 樣品表面硬度、附著度、外觀等性質(H7D3塗佈於玻璃基材) 80
表3.3-5 樣品表面硬度、附著度、外觀等性質(H7D3塗佈於PC基材) 81
表3.3-6 樣品表面硬度、附著度、外觀等性質(H7D3塗佈於PMMA基材) 81
參考文獻 第一章
[1] Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, R. E. Cohen. Hollow silica nanoparticles in UV−visible antireflection coatings for poly (methyl methacrylate) substrates, ACS nano. 4 (2010) 4308-4316.
[2] C. C. Chang, C. M. Chen, F. H. Hwang, C. C. Chen, L. P. Cheng. Preparation of polymer/silica composite antiglare coatings on poly (ethylene terphathalate)(PET) substrates, Journal of Coatings Technology and Research. 9 (2012) 561-568.
[3] C. C. Chang, F. H. Huang, H. H. Chang, T. M. Don, C. C. Chen, L. P. Cheng. Preparation of Water-Resistant Antifog Hard Coatings on Plastic Substrate, Langmuir. 28 (2012) 17193-17201.
[4] C. C. Chang, F. H. Hwang, C. Y. Hsieh, C. C. Chen, L. P. Cheng. Preparation and characterization of polymer/zirconia nanocomposite antistatic coatings on plastic substrates, Journal of Coatings Technology and Research. 10 (2013) 73-78.
[5] C. K. Lee, T. M. Don, W. C. Lai, C. C. Chen, D. J. Lin, L. P. Cheng. Preparation and properties of nano-silica modified negative acrylate photoresist, Thin Solid Films. 516 (2008) 8399-8407.
[6] F. H. Huang, C. C. Chen, D. J. Lin, T. M. Don, L. P. Cheng. Effect of particle size on the photochromic response of PWA/SiO2 nanocomposite, Journal of Nanoparticle Research. 12 (2010) 2941-2950.
[7] M. A. Berton, C. O. Avellaneda, L. O. Bulhoes. Thin film of CeO2- -SiO2: a new ion storage layer for smart windows, Solar Energy Mater.Solar Cells. 80 (2003) 443-449.
[8] X. Tan, M. Li, P. Cai, L. Luo, X. Zou. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film, Anal. Biochem. 337 (2005) 111-120.
[9] 張子成、邢繼綱, 塑膠產品設計, 全華圖書股份有限公司. (2003) .
[10] H. Miyata, Y. Sugahara, K. Kuroda, C. Kato. Synthesis of montmorillonite–viologen intercalation compounds and their photochromic behaviour, J. Chem. Soc., Faraday Trans.1. 83 (1987) 1851-1858.
[11] 黃逢璽, 感光性有機-無機奈米複合材料的製備與其於光學鍍膜之應用, 淡江大學化學工程與材料工程學系博士班學位論文. (2010) 1-187 .

第二章
[1] 陳怡佑, 自行架橋型水性高分子油墨系統之製備, 淡江大學化學系碩士論文. (2006) 1- 107.
[2] 周秀燕, 類塞安寧之縮合反應與苯胺類高分子之合成研究, 國立中央大學化學工程學系碩士論文. (2001) 1- 107.
[3] 邱永亮, 魏盛德, 染色化學, 徐氏基金會. (1985)
[4] 許希丞, 六面體苯矽氧烷類化合物之合成與其偶合染料之研究, 國立中央大學化學工程與材料工程學系碩士論文. (2005) 1-90 .
[5] 廖盛焜, 超微粒子分散性染料分散液之製備與安定化研究, 逢甲大學紡織工程系碩士論文. (2004) 1- 113.
[6] T. Seckin, A. Gultek, S. Kartaca. The grafting of Rhodamine B onto sol-gel derived mesoporous silicas, Dyes and Pigments. 56 (2003) 51-57.
[7] C. T. Huang, K. N. Chen. Single‐pack, self‐curable, aqueous‐based polyurethane dispersion containing a disperse dye, J. Appl. Polym. Sci. 100 (2006) 3741-3747.
[8] M. L. Ferrer, F. del. Monte, D. Levy. Rhodamine 19 fluorescent dimers resulting from dye aggregation on the porous surface of sol-gel silica glasses, Langmuir. 19 (2003) 2782-2786.
[9] N. Mizoshita, Y. Goto, T. Tani, S. Inagaki. Efficient visible‐light emission from dye‐doped mesostructured organosilica, Adv. Mater. 21 (2009) 4798-4801.
[10] J. F. Bringley, T. L. Penner, R. Wang, J. F. Harder, W. J. Harrison, L. Buonemani. Silica nanoparticles encapsulating near-infrared emissive cyanine dyes, J.Colloid Interface Sci. 320 (2008) 132-139.
[11] T. Seckin, A. Gultek. Postgrafting of Congo red dye onto hyperbranched mesoporous silica with terminal amino groups, J. Appl. Polym. Sci. 90 (2003) 3905-3911.
[12] T. Secki̇n, A. Gultek. Polymerization and characterization of acrylonitrile with γ‐methacryloxypropyltrimethoxy‐silane grafted bentonite clay, J. Appl. Polym. Sci. 84 (2002) 164-171.
[13] C. Huang, K. Chen. Self‐curable aqueous polymeric dyes for printing and dyeing applications, J Appl Polym Sci. 100 (2006) 1919-1931.
[14] Z. J. Hou, L. Y. Liu, L. Xu, Z. L. Xu, W. C. Wang, F. M. Li, et al. Improved second harmonic generation from organic-dye-doped polymer/silica hybrid materials, Chemistry of materials. 11 (1999) 3177-3180.
[15] V. Rosso, J. Loicq, Y. Renotte, Y. Lion. Optical non-linearity in Disperse Red 1 dye-doped sol–gel, J. Non. Cryst. Solids. 342 (2004) 140-145.
[16] D. Wang, X. Chen, X. Zhang, W. Wang, Y. Liu, L. Hu. Fabrication of nonlinear optical films based on methacrylate/silica hybrid matrix, Current Applied Physics. 9 (2009) S170-S173.
[17] G. Wirnsberger, G. D. Stucky. Microring lasing from dye-doped silica/block copolymer nanocomposites, Chemistry of materials. 12 (2000) 2525-2527.
[18] 謝宗錦, 4-甲基 類塞安寧化合物之合成與其性質之探討, 國立中央大學化學工程系碩士論文. (2001) 1- 87.
[19] J. Li, P. Jiang, C. Wei, J. Shi. Linear and nonlinear optical properties of covalently bound CI Disperse Red 1 chromophore/silica hybrid film, Dyes and Pigments. 78 (2008) 219-224.
[20] Y. Cui, M. Wang, L. Chen, G. Qian. Synthesis and spectroscopic characterization of an alkoxysilane dye containing C. I. Disperse Red 1, Dyes and Pigments. 62 (2004) 43-47.
[21] C. K. Lee, F. H. Hwang, C. C. Chen, C. L. Chang, L. P. Cheng. Preparation and characterization of nanosilica‐filled color resist, Adv. Polym. Technol. 31 (2012) 163-171.
[22] Y. Cui, G. Qian, L. Chen, J. Gao, M. Wang. Enhanced thermal stability of optical nonlinearity for anilino–silane derived inorganic–organic hybrid thin films, Opt. Commun. 270 (2007) 414-418.
[23] I. Yilgor, E. Yilgor, I. G. Guler, T. C. Ward, G. L. Wilkes. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes, Polymer. 47 (2006) 4105-4114.
[24] M. Sultan. Synthesis and Characterization of Polyurethane Acrylate Copolymers. (2011).
[25] G. Socrates, G. Socrates: Infrared and Raman characteristic group frequencies: tables and charts (Wiley Chichester 2001).
[26] Y. Cui, M. Wang, L. Chen, G. Qian. Synthesis and characterization of an alkoxysilane dye for nonlinear optical applications, Dyes and Pigments. 65 (2005) 61-66.
[27] 利雅君, 紫外光反應型染料應用於高分子塗裝系統之製備, 淡江大學化學系碩士論文. (2007) 1- 89.
[28] C. K. Chan, S. L. Peng, I. M. Chu, S. C. Ni. Effects of heat treatment on the properties of poly (methyl methacrylate)/silica hybrid materials prepared by sol–gel process, Polymer. 42 (2001) 4189-4196.
[29] Y. Y. Yu, C. Y. Chen, W. C. Chen. Synthesis and characterization of organic–inorganic hybrid thin films from poly (acrylic) and monodispersed colloidal silica, Polymer. 44 (2003) 593-601.
[30] C. C. Chen, D. J. Lin, T. M. Don, F. H. Huang, L. P. Cheng. Preparation of organic–inorganic nano-composites for antireflection coatings, J. Non Cryst. Solids. 354 (2008) 3828-3835.
[31] J. L. Almaral-Sanchez, E. Rubio, A. Mendoza-Galvan, R. Ramirez-Bon. Red colored transparent PMMA–SiO2 hybrid films, Journal of Physics and Chemistry of Solids. 66 (2005) 1660-1667.
[32] C. K. Lee, F. H. Hwang, C. C. Chen, C. L. Chang, L. P. Cheng. Preparation and characterization of nanosilica‐filled color resist, Adv. Polym. Technol. 31 (2012) 163-171.

第三章
[1] E. ter Meer. Uber Dinitroverbindungen der Fettreihe, Justus Liebigs Ann. Chem. 181 (1876) 1-22.
[2] J. Z. Zhang, B. J. Schwartz, J. C. King, C. B. Harris. Ultrafast studies of photochromic spiropyrans in solution, J. Am. Chem. Soc. 114 (1992) 10921-10927.
[3] Y. Hirshberg, E. Fischer. Thermochromism and Photochromism, J. Chem. Phys. 23 (1955) 1723-1723.
[4] R. Heiligman-Rim, Y. Hirshberg, E. Fischer. PHOTOCHROMISM IN SPIROPYRANS. PART V. 1 ON THE MECHANISM OF PHOTOTRANSFORMATION, J. Phys. Chem. 66 (1962) 2470-2477.
[5] L. P. Gao, G. J. Ding, Y. C. Wang, Y. L. Yang. Preparation of UV curing crosslinked polyviologen film and its photochromic and electrochromic performances, Appl. Surf. Sci. 258 (2011) 1184-1191.
[6] L. P. Gao, G. J. Ding, C. L. Li, Y. C. Wang. Photochromic and electrochromic performances of new types of donor/acceptor systems based on crosslinked polyviologen film and electron donors, Appl. Surf. Sci. 257 (2011) 3039-3046.
[7] D. R. Rosseinsky, R. J. Mortimer. Electrochromic systems and the prospects for devices, Adv Mater. 13 (2001) 783-793.
[8] J. T. Sampanthar, K. G. Neoh, S. W. Ng, E. T. Kang, K. L. Tan. Flexible smart window via surface graft copolymerization of viologen on polyethylene, Adv Mater. 12 (2000) 1536-1539.
[9] G. A. Niklasson, C. G. Granqvist. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, Journal of Materials Chemistry. 17 (2007) 127-156.
[10] R. J. Mortimer, A. L. Dyer, J. R. Reynolds. Electrochromic organic and polymeric materials for display applications, Displays. 27 (2006) 2-18.
[11] N. Vlachopoulos, J. Nissfolk, M. Moller, A. Briancon, D. Corr, C. Grave, et al. Electrochemical aspects of display technology based on nanostructured titanium dioxide with attached viologen chromophores, Electrochim. Acta. 53 (2008) 4065-4071.
[12] J. H. Ryu, Y. H. Lee, K. D. Suh. Preparation of a multicolored reflective electrochromic display based on monodisperse polymeric microspheres with N‐substituted viologen pendants, J. Appl. Polym. Sci. 107 (2008) 102-108.
[13] L. Michaelis, E. S. Hill. The viologen indicators, J. Gen. Physiol. 16 (1933) 859.
[14] H. Kamogawa, T. Ono. Redox photochromism in films of viologens and related compounds bearing long-chain alkyl groups, Chemistry of materials. 3 (1991) 1020-1023.
[15] 林巧芬, 以紫精搭配普魯士藍電致色變元件之研究, 國立台灣大學化學工程學系碩士論文. (2002) 1-132 .
[16] 卓重光, 光變色染料Spirooxazines的合成與研究, 朝陽科技大學應用化學系碩士論文. (2003) 1-113.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-01-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-01-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信