§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0409201510345600
DOI 10.6846/TKU.2015.00132
論文名稱(中文) 結合凝聚程序與活性碳動態膜於掃流微過濾以應用於海水淡化前處理
論文名稱(英文) Using of cross-flow microfiltration combined with coagulation process and PAC dynamic membrane filtration for pretreatment of seawater desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 鄭喬維
研究生(英文) Chiao-Wei Cheng
學號 603400010
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-17
論文頁數 92頁
口試委員 指導教授 - 黃國楨
委員 - 童國倫
委員 - 鄭東文
關鍵字(中) 掃流微過濾
海水淡化前處理
活性碳
吸附
關鍵字(英) desalination pretreatment
coagulation
dynamic microfiltration
cross-flow microfiltration
第三語言關鍵字
學科別分類
中文摘要
本研究以複合式的掃流過濾系統進行海水淡化前處理。比較不同程序對於濾速與出水品質的提升。本研究使用0.1μm親水性MCE膜與活性碳動態膜對模擬海水進行過濾,並探討加入凝聚程序對於整個;系統的過濾性質與水質影響。其中活性碳動態膜的生成,為預過濾多孔性粉末狀活性碳(PAC),使其於0.45μm之PVDF膜面上形成一固定高度之濾餅層,此層濾餅層就稱之為動態膜。希望利用複合式的系統,將海水中之有機物質及無機微粒去除,以減少逆滲透程序中薄膜結垢的發生。
結果顯示,使用0.1μm MCE膜過濾模擬海水,當透膜壓差增加至180kPa,相較於100kPa,於過濾初期可使濾速增加70%,但於高壓操作下濾速衰退的情形也會增加。比較活性碳動態膜與0.1μm MCE膜之膜阻力可發現,使用活性碳動態膜即使於高壓操作下仍比0.1 μm MCE膜還低21%,因活性碳動態膜由較大之粒子排列構成,因此結構較為鬆散,易使濾液通過。使用活性碳動態膜過濾海水,過濾初期濾速隨透膜壓差增加而上升,但隨時間增加,透膜壓差越大則濾速下降越快,其阻力主要來源為活性碳吸附攔截所新形成之濾餅所造成。而比較加入凝聚程序,本實驗先以硫酸鋁、氯化鐵、幾丁聚醣三種凝聚劑進行杯瓶試驗以找到最佳劑量,由結果顯示使用幾丁聚醣為凝聚劑於劑量5mg/L下可獲得最大之膠羽且其上清液濁度為最低。若使用凝聚程序之系統可使海水中之物質形成較大之粒子,因此於過濾時粒子排列較為鬆散,因此無論使用0.1μmMCE膜或活性碳動態膜皆可使濾速提升。綜合比較出水品質(DOC、COD、濁度、腐植酸濃度)與濾速之提升可知結合使用凝聚程序結合活性碳動態膜之複合系統可使上述移除率達最大,且有效使濾速提升。
英文摘要
Hybrid cross-flow microfiltration systems for pretreatment of seawater desalination were studied. The permeate flux and quality among different operations, such as hydrophilic membranes with different pore size, dynamic membrane formed by powder activated carbon (PAC), dynamic membrane coupled with coagulation operation, were measured and compared. The PAC dynamic membranes, constructed by pre-coating PAC on the primary membrane, was used for removing organic material and inorganic fine particles in seawater to prevent the  membrane fouling in following Reverse Osmosis (RO) units.
Artificial seawater was filtered using 0.1 μm MCE membrane, the filtration flux increased 70% as the transmembrane pressure increased from 100 to 180 kPa. However, the flux decayed more quickly under higher pressures. The membrane resistance of the PAC dynamic membrane was 21% lower than that of 0.1 μm MCE membrane even under high transmembrane pressures. It was attributed to the large PAC particle size and loose packing structure of dynamic membrane. When PAC dynamic membrane was used for filtering artificial seawater, the flux increased with increasing transmembrane pressure. However, the flux declined dramatically at the beginning of filtration, the major resistance sources were those organic materials adsorbed and captured in PAC dynamic membranes. Three kinds of coagulants, ferric chloride, aluminum sulfate and chitosan, were used to enlarge floc sizes, . The results of jar tester indicated that the use of chitosan with a dose of 5 mg/L was optimal. To combine coagulation operations with cross-flow filtration processes, either the use of 0.1 μm MCE membrane or PAC dynamic membrane, the flux was improved.  Comparing the performances of different operations, the hybrid system coupled with coagulation and PAC dynamic membrane behaved the highest efficiency of pollutant removal and highest permeate flux. The quality of permeate water, DOC, COD, turbidity and concentration of humic acid, for each operation was measured. The permeate quality met the requirement of RO feed.,
第三語言摘要
論文目次
目 錄
頁次
中文摘要 	I
英文摘要       II
目錄           IV
圖目錄	      VII
第一章	緒論	1
1-1薄膜分離程序	1
1-2海水淡化技術	4
1-3研究動機與目的	5
第二章	文獻回顧	6
2-1動態膜之機制與性質	6
2-3化學混凝原理	8
2-2-1混凝之機制	8
2-3-2影響混凝之因素	11
2-4薄膜過濾前處理	13
第三章	理論	16
3-1阻力串聯模式	16
3-2濾餅性質	17
第四章	實驗裝置與方法	19
4-1掃流過濾實驗裝置	19
4-2杯瓶試驗裝置	21
4-3實驗材料	22
4-3-1實驗藥品	22
4-3-2實驗濾膜	25
4-4分析儀器	26
4-5實驗流程	28
4-5-1粉末狀活性碳(Powder activated carbon,PAC)懸浮液配置	28
4-5-1模擬海水配置	29
4-5-3實驗步驟	31
4-5-4出水品質之分析方法	34
第五章 結果與討論	37
5-1模擬海水掃流微過濾性質	37
5-1-1模擬海水之掃流過濾濾速	37
5-1-2濾餅性質分析	39
5-2結合活性碳動態膜之掃流過濾系統	44
5-2-1粉末狀活性碳之掃流微過濾	44
5-2-2使用活性碳動態膜於不同壓差對濾速之影響	47
5-3結合凝聚之掃流過濾系統	50
5-3-1杯瓶試驗	50
5-3-2使用凝聚劑於模擬海水結合掃流微過濾	63
5-3-3結合凝聚與活性碳動態膜之掃流過濾系統	67
5-4模擬海水於不同操作程序下之比較	71
5-4-1對於濾速與濾餅性質之影響	71
5-4-2活性碳動態膜長時間操作之影響	76
5-4-3不同操作程序下之出水品質	80
5-4-4與過去文獻比較	82
第六章 結論	84
符號說明	88
Greek letters	89
參考文獻	90

圖目錄
頁次
Fig.1-1 Schematics of dead-end filtration and cross-flow filtrations (Cheryan,1998)	2
Fig2-1 Schematic of an external cake of large particles preventing small particles from fouling the membrane, but allowing a dissolved species to pass through.(Kuberkar and Davis,2000)	7
Fig2-2 Pathways for the removal of NOM by aluminium-based coagulation(Gregor,Nokes and Fenton,1997)	10
Fig.4-1 A schematic diagram of cross-flow filtration system	20
Fig.4-2 A schematic diagram of Jar Test system	21
Fig.4-3 Size distribution in artificial seawater.	30
Fig.4-4 The absorbance vs. concentration of humic acid solution.	34
Fig.5-1 Time courses of filtration flux during cross-flow microfiltration under various cross-flow velocities.	38
Fig.5-2 Time courses of filtration flux during cross-flow microfiltration under various cross-flow velocities.	39
Fig.5-3 Filtration resistances in cross-flow microfiltration of artificial seawater under various cross-flow velocities.	40
Fig.5-4 Filtration resistances in cross-flow microfiltration of artificial seawater under various transmembrane pressures.	41
Fig.5-5 Effect of cake mass and average specific filtration resistance under various cross-flow velocities.	42
Fig.5-6 Effect of cake mass and average specific filtration resistance  under various transmembrane pressures .	43
Fig.5-7 Time course of filtration flux during cross-flow microfiltration under various cross-flow velocities.	45
Fig.5-8 Resistances in cross-flow microfiltration under various transmembrane pressures.	46
Fig.5-9 Time courses of filtration flux during cross-flow microfiltration of artificial seawater under various transmembrane pressures.	47
Fig.5-10 Filtration resistances in cross-flow microfiltration of artificial seawater under various transmembrane pressures(after operating 2 hrs).	48
Fig.5-11 Effect of cake mass and average specific filtration resistance  under various transmembrane pressures (after operating 2 hrs).	49
Fig.5-12 Floc sizes distribution of artificial seawater under various dose of Al3+(0-9mg/L).	51
Fig.5-14 Mean floc diameter and supernatant turbidity under various dose of Al3+.	53
Fig.5-15 Floc sizes distribution of artificial seawater under various dose of Fe3+(0-9mg/L).	55
Fig.5-16 Floc sizes distribution of artificial seawater under various dose of Fe3+(10-30mg/L).	56
Fig.5-17 Mean floc diameter and supernatant turbidity under various dose of Fe3+.	57
Fig.5-18Floc sizes distribution of artificial seawater under various dose of chitosan.	59
Fig.5-19 Mean floc diameter and supernatant turbidity under various dose of chitosan.	60
Fig.5-20 Floc sizes distribution of artificial seawater under various optimum dose of coagulant.	61
Fig.5-21 Floc sizes distribution of SiO2 and HA in artificial seawater under various optimum dose of coagulant.	62
Fig.5-22 Time courses of filtration flux during cross-flow microfiltration of artificial seawater under various transmembrane pressures.	63
Fig.5-23 Floc sizes distribution of artificial seawater before and after cross-flow microfiltration.	64
Fig.5-24 Resistances of using coagulation process in cross-flow microfiltration under different transmembrane pressures.	65
Fig.5-25 Effect of cake mass and average specific filtration resistance under various filtration pressures under various transmembrane pressures .	66
Fig.5-26 Time courses of filtration flux during combine with coagulation process and PAC dynamic membrane in cross-flow microfiltration under various transmembrane pressures.	68
Fig.5-27 Resistances of combine with coagulation process and PAC dynamic membrane in cross-flow microfiltration under different transmembrane pressures.	69
Fig.5-28 Effect of cake mass and average specific filtration resistance  in this process under various transmembrane pressures .	70
Fig.5-29 Time courses of filtration flux during different process in cross-flow microfiltration under transmembrane pressure 100kPa.	72
Fig.5-30 Resistances during different process in cross-flow microfiltration under transmembrane pressure 100kPa.	74
Fig.5-31 Effect of cake mass and average specific filtration resistance  during different process in cross-flow microfiltration under transmembrane pressure 100kPa.	75
Fig.5-32 Time course of filtration flux during cross-flow microfiltration under various operating conditions.	77
Fig5-33 The PAC dynamic membrane surface after filtration time 48hr under ΔP=100kPa,us=0.3m/s.(a)artificial seawater (b)added coagulant in artificial seawater	77
	81
Fig.5-34 Comparison of COD and DOC of filtrate under various process.	81
 

表目錄
頁次
Table3-1 The average specific filtration resistance and permeability	17
Table4-1 Characteristics of powdered activated carbon used in this study.	28
Table4-2 Composition of artificial seawater	29
Table4-3 The operating condition used in this study.	33
Table5-1 Resistances of different process in cross-flow microfiltration under ΔP=100kPa,us=0.3m/s.	78
Table5-2 Effect of cake mass and average specific filtration resistance  during different process in cross-flow microfiltration under ΔP=100kPa,us=0.3m/s.	79
Table5-3 Comparison of HA concentration and turbidity of filtrate under various process.	81
Table5-4 Comparison of the removal efficiency of DOC with recent studies.	83
Table5-5 Comparison of flux with recent studies.	83
參考文獻
Choi, Y.H., Kweon, J.H., Kim, D.I., and Lee, S. “Evaluation of various pretreatment for particle and inorganic fouling control on performance of SWRO”, Desalination, 247 (1-3), 137-147(2009). 
Chu, H., Zhang, Y., Dong, B., Zhou, X., Cao, D., Qiang, Z., Yu, Z., and Wang, H. “Pretreatment of micro-polluted surface water with a biologically enhanced PAC-diatomite dynamic membrane reactor to produce drinking water”, Desalin. Water Treat., 40 (1-6), 84-91(2012).
Gregor, J.E., Nokes, C.J., and Fenton, E. “Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation”, Water Research, 31 (12), 2949-2958(1997).
Hu, C.-Y., Lo, S.-L., Chang, C.-L., Chen, F.-L., Wu, Y.-D., and Ma, J.-L. “Treatment of highly turbid water using chitosan and aluminum salts”, Sep. Purif. Technol., 104, 322-326(2013). 
Hwang, K. J., Y. L. Hsu and K. L. Tung, “Effect of particle size on the performance of cross-flow microfiltration”, Adv. Powder Technol., 17, 189-206 (2006).
Jeong, S., Naidu, G., and Vigneswaran, S. “Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control” , Bioresour. Technol, 141, 57-64(2013).
Jeong, S., Rice, S.A., and Vigneswaran, S. “Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater desalination” , Bioresour. Technol, 165 (C), 60-68(2014).
Li, K., Liang, H., Qu, F., Shao, S., Yu, H., Han, Z.-S., Du, X., and Li, G. “Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: Comparison of mesoporous adsorbent resin and powdered activated carbon” , J. Membr. Sci., 471, 94-102(2014). 
Ma, W., Y. Zhao and L. Wang, “The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis”, Desalination, 203, 256–259 (2007).
Mohiuddin Md. Taimur Khan, Satoshi Takizawa, Zbigniew Lewandowski, Warren L. Jones, Anne K. Camper, Hiroyuki Katayama, Futoshi Kurisu, and Shinichiro Ohgaki, “Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC–MF system”,  J. Membr. Sci, 371, 99-107(2011).
Nguyen, T.V., Jeong, S., Pham, T.T.N., Kandasamy, J., and Vigneswaran, S. “Effect of granular activated carbon filter on the subsequent flocculation in seawater treatment”, Desalination, 354, 9-16(2014).
Song, Y., B. Su, X. Gao and C. Gao, “The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system”, Desalination, 296, 30–36 (2012).
Vinod T Kuberkar, and Robert H Davis, “Modeling of fouling reduction by secondary membranes”, J. Membr. Sci, 168, 243-258(2000).
Yu, W., Xu, L., Qu, J., and Graham, N. “Investigation of pre-coagulation and powder activate carbon adsorption on ultrafiltration membrane fouling ”, J. Membr. Sci, 459, 157-168(2014).
Xu, J., C. Y. Chang and C. Gao, “Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination”, Sep. Purif. Technol., 75, 165–173 (2010).
Zhao, Y.X., Gao, B.Y., Shon, H.K., Kim, J.-H., Yue, Q.Y., and Wang, Y. “Floc characteristics of titanium tetrachloride (TiCl4) compared with aluminum and iron salts in humic acid-kaolin synthetic water treatment” , Sep. Purif. Technol., 81 (3), 332-338. (2011) 
李曉波,胡保安,顧平,“動態膜分離技術研究進展”,膜科學與技術,第27卷,第4期,91-94(2007).
楊萬發譯,“水及廢水處理化學”,國立編譯館主編、茂昌圖書有限公司發行,第六章、第七章(1987)。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信