淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-0409200815233900
中文論文名稱 積冰現象之空氣動力特性分析-以ATR-72 為例
英文論文名稱 Aircraft Aerodynamic Analysis of ATR-72 under Ice Accretion Condition
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 朱家輝
研究生英文姓名 Jia-Hui Chu
學號 695430057
學位類別 碩士
語文別 中文
口試日期 2008-07-23
論文頁數 81頁
口試委員 指導教授-宛 同
委員-劉 登
委員-苗志銘
中文關鍵字 積冰  空氣動力分析  水滴運動方程式 
英文關鍵字 Ice accretion  Droplet motion equation  Aerodynamic analysis 
學科別分類 學科別應用科學航空太空
中文摘要 2002年12月21日,復興航空GE-791貨機,因遭遇積冰問題而失事墜毀
於澎湖外海。本文針對此台灣境內首例因積冰失事之案件,參考飛行安全委
員會之失事報告,並以復興航空ATR-72為例,模擬二維外形下主翼與水平尾
翼遭遇積冰狀態之升阻力係數與力矩係數相關變化,更進一步的利用飛行力
學分析軟體探究在三維外形下積冰現象對飛機性能參數之影響。
本研究以CFD方法模擬積冰外形生成,利用對翼外形產生非結構網格,
將Navier-Stokes方程式簡化為Euler方程式並以有限體積法離散求解之,最
後以水滴軌跡方程式生成積冰之外形。考慮ATR-72機型因特有T型尾翼,水
平尾翼不受主翼之尾流場之影響,針對當時大氣環境分別模擬出光滑冰
(Glaze Ice)與透明冰(Clear Ice)兩種不同積冰於主翼及水平尾翼上作堆
積,並利用FLUENT軟體求其流場解分析其氣動力之影響。並利用飛行力學軟
體DATCOM模擬在三維外形下遭遇積冰現象下飛行性能參數。
根據計算之結果發現,在二維狀態下於翼面上積冰外形越趨不規則,其
升力係數將越趨遞減,阻力係數隨之提高;在水平尾翼上之積冰將減少其負
向升力,導致負向力矩之增加,水平尾翼氣流提前分離造成失速狀態,將使
機首產生一突然向下之俯仰力矩,對飛行安全上造成極大之威脅。在三維外
型外型處理下,因DATCOM為飛機設計之初步設計之工具,對於積冰後外型處
理有較大誤差,因此未來在這一部分有較大的改進空間,以更精確的模擬出
真實的飛行姿態。
英文摘要 The Trans Asia Airway flight GE-791, an ATR-72 airplane
encountered ice accretion to crash at Peng Hu Island, Taiwan, December
21, 2002, was the first ice accretion accident case ever in Taiwan. This
thesis is based on Aviation Safety Council accident report, and taking
GE791 as the case for numerically simulating aerodynamic coefficients
of main wing and horizontal tail under several two-dimensional icing
conditions.
This study uses existing CFD method to predict the ice accretion on
airfoil. First step is the generation of unstructured grid on the wing and
tail configurations. Secondly, solve Navier-Stokes equation with finite
volume method. Finally, the equation of motion for supercooled water
droplets is implemented for ice accumulation production on the airfoil
leading edge locations. Considering the ATR-72 has distinctive T-tail
shape, it is assumed that the tail will not influenced by the main wing
trailing vortices, thus the glaze ice and clear ice can be simulated under
proper atmospheric conditions. The two-dimensional iced airfoil shapes
are achieved, and the results are extended to three-dimensional and then
IV
use the flight mechanics software DATCOM to analyze the aircraft
performance behavior.
According to the above research, in two-dimensional the airfoil ice
shape is more anomalous; their lift coefficients will hastily decreasing
and drag coefficient will increase. In addition, the ice accretion
phenomenon will cause the horizontal tail to stall ahead of time. When
tail stalls, this downward force is lessened or removed, and nose of the
airplane can severely pitch down, this leads to threaten of flight safety
and is the major cause of ATR-72 accident. On the other hand the
DATCOM is an aircraft preliminary design tool, so it has error in
analyzing complicated ice shapes. There are still major rooms for
improvement in prediction of actual airplane flight performance through
this software.
論文目次 目錄
第一章 緒論 ............................................. 1
1.1 引言 ............................................... 1
1.2 積冰造成之飛安事件 .................................. 1
1.3 文獻回顧 ............................................ 6
第二章 積冰現象 ........................................ 10
2.1 積冰生成之條件 .................................... 10
2.2 積冰種類 .......................................... 12
2.2.1 透明冰(CLEAR ICE 或 GLAZE ICE) ...................... 12
2.2.2 霜狀冰(RIME ICE) .................................. 13
2.2.3 混合冰(MIXED ICE) ................................. 14
2.3 飛行中積冰現象 .................................... 14
2.4 降落時積冰 ........................................ 16
2.5 預防積冰的產生 .................................... 16
2.5.1 防冰系統(ANTI-ICING) .............................. 17
2.5.2 除冰系統(DE-ICING) ................................ 17
第三章 研究方法 ......................................... 19
3.1 CFD 模擬 .......................................... 19
3.1.1 積冰模型建立 .................................... 20
3.1.2 流場解 .......................................... 26
3.2 飛行力學軟體分析 ................................... 27
第四章 結果與討論 ...................................... 29
4.1 CFD 計算結果 ....................................... 29
4.1.1 積冰外形驗證 .................................... 29
4.1.2 流場解驗證 ...................................... 31
4.1.3 網格點品質分析 ................................... 32
4.1.4 主翼積冰外形建立 ................................. 35
4.1.5 水平尾翼積冰外形生成 ............................. 46
4.2 飛行力學模擬 ...................................... 58
4.3 結果與討論 ........................................ 63
第五章 結論與未來展望 .................................. 66
5.1 結論 .............................................. 66
5.2 未來展望 .......................................... 66
參考文獻 ................................................ 69
圖目錄
圖2-1 CLEAR ICE[23] .................................... 13
圖2-2 GLAZE ICE [23] ................................... 13
圖2-3 RIME ICE [23] .................................... 14
圖2-4 MIXED ICE [23] ................................... 14
圖2-5 飛機力矩關係圖[24]................................ 15
圖2-6 飛機力矩變化關係[24] .............................. 16
圖2-7 氣壓式除冰套除冰方式[25] .......................... 18
圖2-8 氣壓式除冰套[25] ................................. 18
圖3-1 ASPECT RATIO 定義圖 ............................... 21
圖3-2 積冰模型建構流程示意圖 ............................ 26
圖4-1 積冰16.7 分鐘後[23] ............................... 30
圖4-2 各種積冰外形比較[23] .............................. 30
圖4-3 NACA63012 結構性網格全圖 .......................... 31
圖4-4 NACA63012 結構性網格局部放大圖 .................... 32
圖4-5 實驗值與數值解之升力係數關係圖 .................... 32
圖4-6 升力係數與攻角關係圖 .............................. 34
圖4-7 阻力係數與攻角關係圖 .............................. 34
圖4-8 ATR-72 主翼翼剖面外形 [UIUC AIRFOIL DATABASE] ..... 37
圖4-9 乾淨外形初始網格點生成 ............................ 38
圖4-10 乾淨外形局部放大................................. 38
圖4-11 積冰時間12 分鐘,所產生外形 ...................... 39
圖4-12 積冰產生後最終網格圖 ............................. 39
圖4-13 積冰產生後局部放大圖 ............................. 40
圖4-14 間隔4 分鐘之積冰外形生成 ......................... 40
圖4-15 積冰產生後最終網格圖 ............................. 43
圖4-16 積冰產生後局部放大圖 ............................. 44
圖4-17 主翼CLEAR ICE 間隔4 分鐘之積冰外形生成 ........... 44
圖4-18 主翼升力係數與攻角關係圖 ......................... 45
圖4-19 主翼阻力係數對攻角關係圖 ......................... 45
圖4-20 主翼力矩係數對攻角關係圖 ......................... 46
圖4-21 ATR-72 飛機水平尾翼 .............................. 47
圖4-22 NACA63012 [UIUC AIRFOIL DATABASE] ................ 47
圖4-23 乾淨外形水平尾翼翼剖面全圖 ....................... 48
圖4-24 乾淨外形水平尾翼翼剖面局部放大圖 ................. 48
圖4-25 水平尾翼CLEAR ICE 積冰外形 ....................... 49
圖4-26 ICE1:12 分鐘水平尾翼積冰局部放大圖 .............. 49
圖4-27 ICE2:積冰外形上下顛倒局部放大圖 ................. 50
圖4-28 二相流架構下蒐集係數與翼端前緣關係圖[18] ......... 50
圖4-29 ICE3:COLLECTION EFFICIENCY 作用下積冰局部放大圖 51
圖4-30 水平尾翼升力係數與攻角關係圖 ..................... 56
圖4-31 水平尾翼阻力係數與攻角關係圖 ..................... 56
圖4-32 水平尾翼力矩係數與攻角關係圖 ..................... 57
圖4-33 水平尾翼對主翼之力矩係數與攻角關係圖 ............. 57
圖4-34 ATR-72 未積冰三視圖 .............................. 59
圖4-35 ATR-72 未積冰三維外形結構圖 ...................... 59
圖4-36 積冰在主翼剖面生成圖 ............................. 60
圖4-37 三維外形下升力係數與攻角關係圖 ................... 62
圖4-38 三維外形下阻力係數與攻角關係圖 ................... 62
表目錄
表1 初始條件: ......................................... 29
表2 結構性網格與非結構性網格之比較: ................... 33
表4 主翼乾淨外型與角狀積冰比較關係: .................... 37
表6 主翼乾淨外型與平滑積冰比較關係: .................... 43
表7 乾淨水平尾翼和犄角冰第一組升阻係數比較: ............ 52
表8 乾淨水平尾翼和犄角冰第二組升阻係數比較: ............ 53
表9 乾淨水平尾翼和犄角冰第三組升阻係數比較: ............ 53
表10 乾淨水平尾翼和平滑冰升阻係數比較: ................. 54
表11 水平尾翼之力矩係數比較: ........................... 54
表12 水平尾翼力對主翼之力矩係數比較: ................... 55
表13 水平尾翼力矩係數誤差比較 ........................... 55
表14 不同模擬條件下ATR-72 之升阻比與攻角關係: .......... 60
表15 DATCOM 計算與無積冰模擬機升阻比與攻角關係: ........ 60
表16 DATCOM 計算乾淨機翼與積冰外形比較: ................ 61
表17 各種積冰狀態模組之升阻比與攻角關係: ............... 61
表18 DATCOM 積冰計算與各積冰模組數值比較: .............. 61
參考文獻 [1] Lankford, T., “Aircraft Icing,” McGraw-Hill Inc., 2000.
[2] NTSB Report Number-AAR-82-08, Adopted on 08/10/1982. Order NTIS Report Number-PB82-910408. Title: Air Florida, Inc., Boeing 737-222, N62AF, Collision with 14th Street Bridge, near Washington National Airport, Washington, DC, January 13, 1982.
[3] NTSB Report Number-AAR-96-01, Adopted on 07/09/1996. Order NTIS Report Number–PB96-910401. Title: In-flight Icing Encounter and Loss of Control Simmons Airlines, d.b.a. American Eagle Flight 4184 Avions de Transport Regional (ATR) Model 72-212, N401AM, Roselawn, Indiana, October 31, 1994.
[4] Shin, J., Berkowitz, B. and Chen, H.H., and Cebeci, T., “Prediction of Ice Shapes and Their Effect on Airfoil Drag,” Journal of Aircraft, Vol. 31, No. 2, March-April, 1994.
[5] Shaw, R. J., “NASA’s Aircraft Icing Analysis Program,” NASA TM-88791, Sept., 1987.
[6] Shaw, R. J., Potapczuk, M. G., and Bidwell, C. S., “Predictions of Airfoil Aerodynamic Performance Degradation Due to Ice, “Numerical and Physical Aspects of Aerodynamic Flows, IV., Edited by Cebeci, T., Springer-Verlag, Long Beach, CA, 1990.
[7] Paraschivoiu, I., Tran, P., and Brahimi, M. T., “Prediction of Ice Accretion with Viscous Effects on Aircraft Wings,” Journal of Aircraft, Vol. 31, No. 4; pp.855-861, 1994.
[8] Hansman, R. J. Jr., “Droplet Size Distribution Effects on Aircraft Ice Accretion,” Journal of Aircraft, Vol. 22, No. 6; pp.503-508, 1985.
[9] Giuseppe, M. and Brand, V., “Ice Accretion Prediction on Multielement Airfoils,” Journal of Aircraft, Vol. 35, No. 2, March-April, 1998.
[10] Wright, W. B., “Users Manual for the Improved NASA Lewis Ice Accretion Code LEWICE 1.6,”NYMA, Inc., Engineering Services Division, Brook Park, Ohio, May, 1995.
[11] Addy, H. E. , Potapczuk, Jr. M. G., and David, W. S., “Modern Airfoil Ice Accretion”, 35th Aerospace Science Meeting & Exhibit American Institute of Aeronautics and Astronautics, Reno, Nevada, January 6-10, 1997.
[12] Fluent. Inc., “Collection Efficiency for Icing Analysis,” 2001.
[13] Ghenai, C. and Lin, C. X., “Verification and Validation of NASA LEWICE 2.2 Icing Software Code” , Journal of Aircraft, Vol. 43, No. 5, September-October,2006
[14] Ogretim. E, Huebsch, W., and Shinn, A., “Aircraft Ice Accretion Prediction Based on Neural Networks,” Journal of Aircraft, Vol. 43, No. 1,January-February, 2006
[15] 宛同. 袁堂鈞, “機翼積冰之成長預測分析,”第七屆全國計算流體力學研究會, 墾丁, 89年8月, pp.102-109.
[16] 中國民航出版社, “世界航空安全與事故分析,” Dec. 1995.
[17] Wan, T., and Lee J.J., “Numerical Prediction of the Airfoil Ice Accretion Growth,” Proceedings of the 23rd ICAS Conference, Toronto, Canada, September 2002.
[18] 宛同, 袁堂鈞, 李浚傑, 吳仕偉,“在大雨和積冰下之飛機空氣動力學特性之研究,”第五屆海峽兩岸航空太空學術研討會, 淡水, 2006.
[19] 行政院飛航安全委員會, ASC-GRP-03-10-001, Oct. 2003, “GE791事故調查事實資料分組報告.”
[20] Wan, T., and Wang, Chen-Min, “A Study of Aircraft Performance Parameter under Adverse Weather Conditions,”AIAA Paper 2006-0234, Reno, USA, January 2006.
[21] 宛同, 吳仕偉, 王正民, 周鴻旭,“復興GE-791積冰模擬研究報告,” 行政院飛航安全委員會, Oct. 2005.
[22] 宛同, 朱家輝, 黃建魁, 潘思澎, “降低飛行積冰對航空器之危害,” 行政院飛航安全委員會, Oct. 2007.
[23] Bruce, L., Steuernagle, J., Roy, K., Wright, D. and Hummel, K., “Aircraft Icing”, Safety Advisor, Weather No. 1.
[24] Ratvasky, T. P. and Judith Foss Van Zante, “In-Flight Aerodynamic Measurements of an Iced Horizontal Tailplane,” 37th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and Astronautics, Reno, Nevada, January 11-14, 1999.
[25] Personal communication and collection.
[26] USAF, “STABILITY AND CONTROL DATCOM,” AFFDL-TR-79-3032 Vol. 1.
[27] Abney, E., “High Angle of Attack Aerodynamic Predictions Using Missile Datcom,” 23rd AIAA Applied Aerodynamics Conference, 6-9 June 2005, Toronto, Ontario, Canada.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-09-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-09-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信