§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0408201716424600
DOI 10.6846/TKU.2017.00114
論文名稱(中文) 嵌入式碳纖維板於醇胺類系統之二氧化碳吸收效率提升
論文名稱(英文) The Theoretical and Experimental Studies of Carbon Dioxide Absorption through a Gas-Liquid Membrane Contactor with Carbon fiber Channels
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 任立揚
研究生(英文) Li-Yang Jen
學號 604400431
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-07-17
論文頁數 128頁
口試委員 指導教授 - 何啟東
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 二氧化碳吸收
平板薄膜系統
數值解
薄膜吸收
關鍵字(英) CO2 absorption
Runge–Kutta method
carbon fiber
eddy promoter
第三語言關鍵字
學科別分類
中文摘要
本研究主要是針對薄膜氣體吸收系統進行理論分析,利用一維理論模型描述系統中氣體溶質於氣、液兩相內之濃度分佈式,所推導出之解題流程適用於平板之順流與逆流系統。建模過程中使用朗吉庫塔法進行數值分析。實驗的操作參數以改變不同流率、濃度、加裝碳纖維板等進行討論與實驗模擬。吸收效率、吸收速率、平均謝塢數的結果則以實驗和理論之值進行誤差分析與討論。 
   以本論文所推導之理論為基礎,以醇胺對二氧化碳之化學吸收作廣泛的討論,結果發現,不論是何種類型之吸收,增加液體的流率或或以逆流的形式進行實驗皆能增加二氧化碳之吸收效率,而各種濃度變化的趨勢,也都能符合吾等之預期。此外,由平板吸收實驗所得之結果更可以確定本論文所提出的數學模型之正確性。
    實驗與模擬結果皆也顯示嵌入溝渠式碳纖維板後的確能提升系統透膜吸收效率,最高可以達到40.56%的增益率,而實驗與理論的相對誤差最高為3.95。本研究以操作在低體積流率之設備為主,除了有效利用擾流因子的設定已降低操作成本外,改良之設計更顯著提升了吸收效率。
英文摘要
The carbon dioxide absorption by amine in a parallel-plate gas-liquid membrane contactor of concurrent- and countercurrent-flow was investigated theoretically and experimentally in this study.  The numerical method applied in modelling carbon dioxide absorption process in the system was the Runge–Kutta method with shooting method. The absorption efficiency enhancement is represented graphically and validated by experimental results. The absorption efficiency, average Sherwood number and concentration distributions varies with absorbent flow rate, gas feed flow rate and inlet CO2 concentration in the gas feed are predicted and correlated. The correlation is useful in predicting the mass transfer coefficient for carbon dioxide absorption by amine in flat-plate flow channels. The comparison of numerical solutions with experimental data validates the numerical model of the system is within acceptable accuracy.  The new design of eddy promoter with carbon fiber attached in flow channels can effectively enhance the carbon dioxide absorption efficiency among the operating conditions set in this study.
第三語言摘要
論文目次
目錄
中文摘要                                                 Ⅰ
英文摘要                                                 Ⅱ
目錄                                                     Ⅲ
圖目錄                                                   Ⅵ
表目錄                                                  X
第一章 緒論                                               1
   1-1簡介                                                1
     1-1-1引言                                            1
     1-1-2薄膜分離原理                                    4
     1-1-3薄膜分離法                                      6
     1-1-4化學吸收法                                      7
     1-1-5 醇胺的種類及特性於二氧化碳吸收                 10
     1-1-6 薄膜吸收系統簡介                              12
   1-2 研究動機、目的與方向                               13
第二章  文獻回顧                                         17 
   2-1 文獻回顧                                         17
第三章  理論分析                                         21
   3-1	平板型薄膜吸收系統膜組之質量傳送機制分析          21
     3-1-2 平板型薄膜吸收系統模組之理論分析               28
     3-1-3 濃度極化現象與濃度極化係數                     31
   3-2	新型紊流增益因子之謝塢數經驗公式建立與模型        32
   3-3 平板型薄膜吸收系統模組一維理論模型之建立          35
     3-3-1平板型薄膜吸收系統模組一維理論模型                       36
     3-3-2 理論數據取得與計算分析流程-朗吉庫塔數值解析             39
     3-3-3 實驗數據之取得與分析計算流程                         42
   3-4系統水力損耗                                       48
   3-5 數學模擬參數之設定                                50
第四章 實驗分析                                          52
   4-1 嵌入式平板型薄膜吸收系統                          52
   4-2 實驗步驟                                          60
     4-2-1順流吸收實驗                                   60
     4-2-2逆流吸收實驗                                   61
第五章 結果與討論                                        62
   5-1 新型擾流增益因子之謝塢數經驗公式迴歸分析          62
   5-2平板型薄膜吸收系統模組系統                         66
     5-2-1 系統操作變因對於吸收量之影響                   66
     5-2-2 濃度分佈與濃度極化現象                         66
   5-3添加擾流增益因子之平板型薄膜吸收系統模組系統       80
     5-3-1 擾流增益因子對於吸收率之影響                   80
     5-3-2 濃度分佈與濃度極化現象                         81
   5-4 模組設計參數於吸收率與水力損耗之影響             108
     5-4-1 吸收率增益程度與水力損耗提升程度              108
     5-4-2 吸收率與水力損耗提升程度之比較                110
第六章  結   論                                       116
   6-1 新型紊流增益因子之謝塢數經驗公式                 116
   6-2 平板型薄膜吸收系統                               117
   6-3 添加紊流增益因子之平板型薄膜吸收系統             117
   6-4 模組設計參數於吸收率與水力損耗之影響             118
   6-5 一維理論模型與二維理論模型之比較                118
符號說明                                                119
參考文獻                                                122



















圖目錄
圖1-1-1溫室效應示意圖                                     1
圖1-2-1研究架構圖                                        16
圖3-1-1薄膜吸收於薄膜內部之質量傳送阻力模式              26
圖3-1-2薄膜吸收系統模組傳送阻力示意圖                    28
圖3-1-3質量傳送之阻力串聯模式                            29
圖3-3-1順流操作之平板型薄膜吸收系統示意圖                37
圖3-3-2逆流操作之平板型薄膜吸收系統示意圖                38
圖3-3-3朗吉庫塔法求解聯立方程組之計算示意圖              42
圖3-3-4不同操作流態之濃度分佈示意圖                      43
圖3-3-5質傳係數運算流程圖                                45
圖3-3-6順流平板型薄膜吸收系統運算流程圖                  46
圖3-3-7逆流平板型薄膜吸收系統運算流程圖                  47
圖4-1-1順流嵌入式碳纖維板於醇胺類系統之二氧化碳吸收系統
簡圖                                                     53
圖4-1-2逆流嵌入式碳纖維板於醇胺類系統之二氧化碳吸收系統
簡圖                                                     53
圖4-1-3嵌入式碳纖維板於醇胺類系統之二氧化碳吸收系統實驗設
備圖                                                     54
圖4-1-5尼龍纖維支撐層示意圖                              55
圖4-1-6碳纖維板規格圖                                    55
圖4-1-7氣體質量控制器                                    57
圖4-1-8氣相層析儀                                        58
圖5-1-1謝塢數理論值與實驗值比較圖                        65
圖5-2-1順流操作下,不同操作參數對於透膜通量之影響         69
圖5-2-2逆流操作下,不同操作參數對於透膜通量之影響         70
圖5-2-3順流操作下,不同操作參數對於吸收率之影響           71
圖5-2-4逆流操作下,不同操作參數對於吸收率之影響           72
圖5-2-5順流狀態下,不同位置之濃度分佈                     75
圖5-2-6逆流狀態下,不同位置之濃度分佈                     76
圖5-2-7順流狀態下,不同操作參數於濃度極化係數之影響       77圖5-2-8逆流狀態下,不同操作參數於溫度極化係數之影響       78
圖5-3-1順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳薄膜通量與液相流率之關係。(Qa=5cm3/s ; 30% CO2)     83
圖5-3-2逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳薄膜通量與液相流率之關係。(Qa=5cm3/s ; 30% CO2)     84
圖5-3-3順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳薄膜通量與液相流率之關係。(Qa=5cm3/s ; 40% CO2)     85
圖5-3-4逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳薄膜通量與液相流率之關係。(Qa=5cm3/s ; 40% CO2)     86
圖5-3-5順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳吸收速率與液相流率之關係。(Qa=5cm3/s ; 30% CO2)     87
圖5-3-6逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳吸收速率與液相流率之關係。(Qa=5cm3/s ; 30% CO2)     88
圖5-3-7順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳吸收速率與液相流率之關係。(Qa=5cm3/s ; 40% CO2)     89
圖5-3-8逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之二氧化碳吸收速率與液相流率之關係。(Qa=5cm3/s ; 40% CO2)     90
圖5-3-9順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之氣相平均濃度與液相流率之關係。(Qa=5cm3/s ; 30% CO2)         91
圖5-3-10逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之氣相平均濃度與液相流率之關係。(Qa=5cm3/s ; 30% CO2)         92
圖5-3-11順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之氣相平均濃度與液相流率之關係。(Qa=5cm3/s ; 40% CO2)         93
圖5-3-12逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之氣相平均濃度與液相流率之關係。(Qa=5cm3/s ; 40% CO2)         94
圖5-3-13順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之吸收率與液相流率之關係。(Qa=5cm3/s ; 30% CO2)               95
圖5-3-14逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之吸收率與液相流率之關係。(Qa=5cm3/s ; 30% CO2)               96
圖5-3-15順流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之吸收率與液相流率之關係。(Qa=5cm3/s ; 40% CO2)               97
圖5-3-16逆流操作下,裝載不同寬度碳纖維板支撐條,理論與實驗之吸收率與液相流率之關係。(Qa=5cm3/s ; 40% CO2)               98
圖5-3-17平板吸收系統不同氣體濃度下,吸收率與液相流率之
關係                                                    99
圖5-3-18平板吸收系統不同氣體濃度下,裝載寬度2mm碳纖維支撐條,吸收率與液相流率之關係                               100
圖5-3-19平板吸收系統不同氣體濃度下,裝載寬度3mm碳纖維支撐條,吸收率與液相流率之關係                               101
圖5-3-20順流狀態下,不同碳纖維板支撐條寬度與操作參數於濃度  極化係數之影響                                         106
圖5-3-21逆流狀態下,不同碳纖維板支撐條寬度與操作參數於濃度極化係數之影響                                          107


表目錄
表1-1-1二氧化碳捕獲方式                                   3
表1-1-2常見的現象方程式                                   5
表1-1-3常用的醇胺                                        10
表1-1-4參合醇胺之研究文獻                                11
表3-2-1經驗式參數表                                      33
表3-5-1模組相關參數                                      50
表3-5-2疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數        50
表3-5-3流體相關參數                                      51
表4-1 PTFE/PP複合膜之薄膜性質                            56
表5-1-1謝塢數經驗公式所需實驗數據之操作變因表            63
表5-2-1順、逆流操作下平板型薄膜吸收系統模組系統透膜通量實驗值與理論值之相對誤差比較表                               73
表5-2-2順、逆流操作下平板型薄膜吸收系統模組系統吸收率實驗值與理論值之相對誤差比較表                                 74
表5-2-3不同操作流向於平均濃度極化係數之影響比較表        79
表5-3-1順、逆流操作下平板型薄膜吸收系統模組系統,裝載寬度2mm碳纖維支撐條,吸收率實驗值與理論值之相對誤差比較表       102
表5-3-2順、逆流操作下平板型薄膜吸收系統模組系統,裝載寬度3mm碳纖維支撐條,吸收率實驗值與理論值之相對誤差比較表       103
表5-3-3順、逆流操作下平板型薄膜吸收系統模組系統,裝載寬度2mm碳纖維支撐條,透膜通量實驗值與理論值之相對誤差比較表     104
表5-3-4順、逆流操作下平板型薄膜吸收系統模組系統,裝載寬度3mm碳纖維支撐條,透膜通量實驗值與理論值之相對誤差比較表     105
表5-4-1順流操作下平板型薄膜吸收系統模組系統,不同碳纖維板支撐條寬度之理論吸收率增益比例表                          111
表5-4-2逆流操作下平板型薄膜吸收系統模組系統,不同碳纖維板支撐條寬度之理論吸收率增益比例表                          112
表5-4-3不同碳纖維板支撐條寬度之水力損耗提升程度比較表   113
表5-4-4順流操作下,不同模組設計參數之理論吸收率增益程度與水力損耗提升程度比值表                                    114
表5-4-5逆流操作下,不同模組設計參數之理論吸收率增益程度與水力損耗提升程度比值表                                    115
參考文獻
參考文獻
1.	Earth Day & the Greenhouse effect, Astr Camp School Programs, (2015)
2.	G. Wegener., M. Y. Kellermann, M. Elvert, Tracking Activity and Function of Microorganisms by Sable Isotope Probing of Membrane Lipids, Curr. Opin. Biotechnol., 41, 43 (2016). 
3.	R.V. Reis and A. Zydney. Membrane Separations Biotechnology, Curr. Opin. Biotechnol., 12, 208 (2001).
4.	S. Lu, and L. Pei, A Study of Zinc Borne Waste Water Treatment with Dispersion Supported Liquid Membrane, Int. J. Hydrogen Energy., 41, 15717 (2016) 
5.	M. Saleem, L. Alibardi, M. C. Lavagnolo, and R. Cossu, A. Spagni. Effect of Filtration Flux on the Development and Operation of a Dynamic Membrane for Anaerobic Wastewater Treatment, J. Environ. Manage., 180, 459 (2016)
6.	H. M. Yeh, and Y. S. Shu, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci., 54, 897 (1999).
7.	J. J. Guo, C. D. Ho, Theoretical and experimental studies of membrane extraction of Cu2+ with D2EHPA through rectangular conduits. Chem. Eng. Process., 48, 111 (2009).
8.	H. M. Yeh, Y. Y. Peng and Y. K. Chen, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membrane Sci., 163, 177 (1999).
9.	S. H. Lin, K. L. Tung, H.W. and Chang K. R. Lee. Influence of Fluorocarbon Flat-Membrane Hydrophobicity on Carbon Dioxide Recovery, Chemosphere, 75, 1410 (2009)
10.	J. You, L.Tian, C. Zhang, H. Yao, W. Dou, B. Fan, and S. Hu. Adsorption Behavior of Carbon Dioxide and Methane in Bituminous Coal: A Molecular Simulation Study, Chin. J. Chem. Eng., 24, 1275 (2016)
11.	P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639 (2002).
12.	L. E. Applegate, Membrane Separation Processes, Chem. Eng., 91, 64 (1984).
13.	P. M. Bungay, H. K. Lonsdale and M. N. De Pinho, (1986). Synthetic Membrane: Science, Engineering and Applications, D. Redel Publishing Company, Holland.
14.	G. Sartori, and D. W. Savage, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam., 22, 239 (1983).
15.	T. Chakravarty, U. K. Phukan, and R. H. Weiland, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32 (1985).
16.	Kohl, A. L. and R. B. Nielsen, (1997). Gas Purification, 5th edition. Gulf, Houston, TX.	
17.	Bureau of Energy, Minstry of Economic Affairs, (2015). Annual Data, Energy Statistics.
18.	H. Chang, and C. M. Shih, Simulation and Optimization for Power Plant Flue Gas CO2 Absorption‐Stripping Systems, Sep. Sci. Technol., 40, 877 (2015) 
19.	W. C. Sun, C. B. Yong, and M. H. Li, Kinetics of the Absorption of Carbon Dioxide into Mixed Aqueous Solutions of  2-Amino-2-Methyl-L-Propanol and Piperazine, Chem. Eng. Sci., 60, 503 (2005)
20.	C. D. Ho, Y. J. Sung, and Y. C. Chuang, An Analytical Study of Laminar Concurrent Flow Membrane Absorption Through a Hollow Fiber Gas–Liquid Membrane Contactor, J. Membr. Sci., 428, 232 (2013)
21.	J. Phattaranawik, R. Jiraratananon, and A.G. Fane, Effects of Net-Type Spacers on Heat and Mass Transfer in Direct Contact Membrane Distillation and Comparison with Ultrafiltration Studies, J. Membr. Sci., 217, 193 (2003)
22.	G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6, 179 (1969).
23.	E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562 (1973).
24.	H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21, 403 (1986).
25.	C. D. Ho, H. M. Yeh and W. S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer., 44, 2589 (1998).
26.	Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23, 321 (1985).
27.	Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23, 333 (1985).
28.	H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, Sep. Purif. Technol., 46, 33 (2005).
29.	H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78, 197 (1993).
30.	H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membr. Sci., 78, 217 (1993).
31.	H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48, 2093 (1993).
32.	A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membrane Sci., 159, (1999) 61.
33.	Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194, 57 (2001).
34.	J. Phattaranawik, R. Jiraratananon, Fane AG., Direct contact membrane distillation : effect of mass transfer on heat transfer., J. Membr. Sci., 188, 137-143(2001).
35.	Phattaranawik J., Jiraratananon R., Fane A.G. Effect of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206 (2003).
36.	Kakac S., Shah R.K. and Bergles A.E., Low Reynolds Number Flow Heat Exchangers, Hemisphere, Washington, DC, 1983.
37.	S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, Influence of Fuorocarbon Fat-Membrane Hydrophobicity on Carbon Dioxide Recovery, Chemosphere, 75, 1410 (2009).
38.	M. Gryta, M. Tomaszewska, AW. Morawski, Membrane distillation with laminar flow, Sep. Purif. Technol., 11, 93–101 (1997).
39.	L . Martínez-Díez, MI. Vázquez-González, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135 (1998).
40.	J. Phattaranawik, R. Jiraratananon, Fane AG. Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212, 177-193 (2003).
41.	Khayet M, Godino MP, Mengual JI. Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination, 157, 297-305 (2003).
42.	VA . Bui, LTT .Vu, MH. Nguyen, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93 (2010).
43.	V.A. Bui, L.T.T. Vu, M.H. Nguyen, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85(2010)
44.	K.W. Lawson, D.R. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123(1996)
45.	Zhongwei D, Liying L, Runyu M. “Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation,” J. Membr. Sci., 215, 11-23 (2003)
46.	C. H. Yu, C. H. Huang, C. S. Tan, A Review of CO2 Capture by Absorption and Adsorption, Department of Chemical Engineering., 12, 745 (2012)
47.	R. Sakwattanapong, A. Aroonwilas, and A. Veawab, Beahavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines, Ind. Eng. Chem. Fundls., 44, 4465 (2005)
48.	C. D. Ho, L. C, L. C, J. W. Liou and L. Y. Jen, Theoretical And Experimental Studies Of CO2 Absorption By The Amine Solvent System In Parallel-Plate Membrane Contactors. Sep. Purif. Technol., Available online
49.	N. Hamimour and O. C. Sandall, Absorption Of Carbon Dioxide Into Aqueous Methyldiethanolamine. Chem. Eng. Sci., 39, 1791 (1984) 
50.	T. C. Tsai, J. J. Ko, H. M. Wang, C. Y. Lin and M. H. Li, Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions, J. Chem. Eng. Data., 45, 341 (2000)
51.	C. H. Liao and M. H. Li, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine, Chem. Eng. Sci., 57, 4569 (2002)
52.	V. Danckwerts, (1981). Insights into CHEMICAL ENGINEERING. New York: Pergamon press Inc.
53.	K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124, 1 (1997).
54.	R.W. Schofield, A.G. Fane and C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299 (1987).
55.	J. Phattaranawik, R Jiraratananon and A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci., 215, 75 (2003)
56.	Z.W. Ding, R.Y. Ma and A.G. Fane, A new model for mass transfer in direct contact membrane distillation. Desalination, 151, 217 (2003).
57.	F.A. Banat and J. Simandl, “Desalination by membrane distillation : a parametric study.” Sci. Techol., 33, 201 (1998).
58.	S.B. Iversen, V.K. Bhatia, K. Dam-Jphasen, G. Jonsson, Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci., 130, 205 (1997).
59.	E.N. Fuller, P.D. Schettler and J.C. Giddings, New method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58, 18-27 (1966).
60.	RW. Schofield, AG. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299 (1987).
61.	J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193 (2001).
62.	J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci., 217, 193(2003).
63.	KW. Lawson, DR. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123 (1996).
64.	Chen T.C., Ho C.D., Yeh H.M. Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Mem. Sci., 330, 279 (2009).
65.	JR. Welty, CE. Wick, RE. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York, 1984.
66.	G. Satish Kandlikar, S. Derek, “Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels,” PHYSICS OF FLUIDS, 17, 100606 (2005).
67.	R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, New York, 2007.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信